linux-sg2042/drivers/media/tuners/xc4000.c

1776 lines
45 KiB
C

/*
* Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
*
* Copyright (c) 2007 Xceive Corporation
* Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
* Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
* Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
* Copyright (c) 2010 Istvan Varga <istvan_v@mailbox.hu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/videodev2.h>
#include <linux/delay.h>
#include <linux/dvb/frontend.h>
#include <linux/i2c.h>
#include <linux/mutex.h>
#include <asm/unaligned.h>
#include "dvb_frontend.h"
#include "xc4000.h"
#include "tuner-i2c.h"
#include "tuner-xc2028-types.h"
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debugging level (0 to 2, default: 0 (off)).");
static int no_poweroff;
module_param(no_poweroff, int, 0644);
MODULE_PARM_DESC(no_poweroff, "Power management (1: disabled, 2: enabled, "
"0 (default): use device-specific default mode).");
static int audio_std;
module_param(audio_std, int, 0644);
MODULE_PARM_DESC(audio_std, "Audio standard. XC4000 audio decoder explicitly "
"needs to know what audio standard is needed for some video standards "
"with audio A2 or NICAM. The valid settings are a sum of:\n"
" 1: use NICAM/B or A2/B instead of NICAM/A or A2/A\n"
" 2: use A2 instead of NICAM or BTSC\n"
" 4: use SECAM/K3 instead of K1\n"
" 8: use PAL-D/K audio for SECAM-D/K\n"
"16: use FM radio input 1 instead of input 2\n"
"32: use mono audio (the lower three bits are ignored)");
static char firmware_name[30];
module_param_string(firmware_name, firmware_name, sizeof(firmware_name), 0);
MODULE_PARM_DESC(firmware_name, "Firmware file name. Allows overriding the "
"default firmware name.");
static DEFINE_MUTEX(xc4000_list_mutex);
static LIST_HEAD(hybrid_tuner_instance_list);
#define dprintk(level, fmt, arg...) if (debug >= level) \
printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)
/* struct for storing firmware table */
struct firmware_description {
unsigned int type;
v4l2_std_id id;
__u16 int_freq;
unsigned char *ptr;
unsigned int size;
};
struct firmware_properties {
unsigned int type;
v4l2_std_id id;
v4l2_std_id std_req;
__u16 int_freq;
unsigned int scode_table;
int scode_nr;
};
struct xc4000_priv {
struct tuner_i2c_props i2c_props;
struct list_head hybrid_tuner_instance_list;
struct firmware_description *firm;
int firm_size;
u32 if_khz;
u32 freq_hz, freq_offset;
u32 bandwidth;
u8 video_standard;
u8 rf_mode;
u8 default_pm;
u8 dvb_amplitude;
u8 set_smoothedcvbs;
u8 ignore_i2c_write_errors;
__u16 firm_version;
struct firmware_properties cur_fw;
__u16 hwmodel;
__u16 hwvers;
struct mutex lock;
};
#define XC4000_AUDIO_STD_B 1
#define XC4000_AUDIO_STD_A2 2
#define XC4000_AUDIO_STD_K3 4
#define XC4000_AUDIO_STD_L 8
#define XC4000_AUDIO_STD_INPUT1 16
#define XC4000_AUDIO_STD_MONO 32
#define XC4000_DEFAULT_FIRMWARE "dvb-fe-xc4000-1.4.fw"
#define XC4000_DEFAULT_FIRMWARE_NEW "dvb-fe-xc4000-1.4.1.fw"
/* Misc Defines */
#define MAX_TV_STANDARD 24
#define XC_MAX_I2C_WRITE_LENGTH 64
#define XC_POWERED_DOWN 0x80000000U
/* Signal Types */
#define XC_RF_MODE_AIR 0
#define XC_RF_MODE_CABLE 1
/* Product id */
#define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
#define XC_PRODUCT_ID_XC4000 0x0FA0
#define XC_PRODUCT_ID_XC4100 0x1004
/* Registers (Write-only) */
#define XREG_INIT 0x00
#define XREG_VIDEO_MODE 0x01
#define XREG_AUDIO_MODE 0x02
#define XREG_RF_FREQ 0x03
#define XREG_D_CODE 0x04
#define XREG_DIRECTSITTING_MODE 0x05
#define XREG_SEEK_MODE 0x06
#define XREG_POWER_DOWN 0x08
#define XREG_SIGNALSOURCE 0x0A
#define XREG_SMOOTHEDCVBS 0x0E
#define XREG_AMPLITUDE 0x10
/* Registers (Read-only) */
#define XREG_ADC_ENV 0x00
#define XREG_QUALITY 0x01
#define XREG_FRAME_LINES 0x02
#define XREG_HSYNC_FREQ 0x03
#define XREG_LOCK 0x04
#define XREG_FREQ_ERROR 0x05
#define XREG_SNR 0x06
#define XREG_VERSION 0x07
#define XREG_PRODUCT_ID 0x08
#define XREG_SIGNAL_LEVEL 0x0A
#define XREG_NOISE_LEVEL 0x0B
/*
Basic firmware description. This will remain with
the driver for documentation purposes.
This represents an I2C firmware file encoded as a
string of unsigned char. Format is as follows:
char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
char[1 ]=len0_LSB -> length of first write transaction
char[2 ]=data0 -> first byte to be sent
char[3 ]=data1
char[4 ]=data2
char[ ]=...
char[M ]=dataN -> last byte to be sent
char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
char[M+2]=len1_LSB -> length of second write transaction
char[M+3]=data0
char[M+4]=data1
...
etc.
The [len] value should be interpreted as follows:
len= len_MSB _ len_LSB
len=1111_1111_1111_1111 : End of I2C_SEQUENCE
len=0000_0000_0000_0000 : Reset command: Do hardware reset
len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
For the RESET and WAIT commands, the two following bytes will contain
immediately the length of the following transaction.
*/
struct XC_TV_STANDARD {
const char *Name;
u16 audio_mode;
u16 video_mode;
u16 int_freq;
};
/* Tuner standards */
#define XC4000_MN_NTSC_PAL_BTSC 0
#define XC4000_MN_NTSC_PAL_A2 1
#define XC4000_MN_NTSC_PAL_EIAJ 2
#define XC4000_MN_NTSC_PAL_Mono 3
#define XC4000_BG_PAL_A2 4
#define XC4000_BG_PAL_NICAM 5
#define XC4000_BG_PAL_MONO 6
#define XC4000_I_PAL_NICAM 7
#define XC4000_I_PAL_NICAM_MONO 8
#define XC4000_DK_PAL_A2 9
#define XC4000_DK_PAL_NICAM 10
#define XC4000_DK_PAL_MONO 11
#define XC4000_DK_SECAM_A2DK1 12
#define XC4000_DK_SECAM_A2LDK3 13
#define XC4000_DK_SECAM_A2MONO 14
#define XC4000_DK_SECAM_NICAM 15
#define XC4000_L_SECAM_NICAM 16
#define XC4000_LC_SECAM_NICAM 17
#define XC4000_DTV6 18
#define XC4000_DTV8 19
#define XC4000_DTV7_8 20
#define XC4000_DTV7 21
#define XC4000_FM_Radio_INPUT2 22
#define XC4000_FM_Radio_INPUT1 23
static struct XC_TV_STANDARD xc4000_standard[MAX_TV_STANDARD] = {
{"M/N-NTSC/PAL-BTSC", 0x0000, 0x80A0, 4500},
{"M/N-NTSC/PAL-A2", 0x0000, 0x80A0, 4600},
{"M/N-NTSC/PAL-EIAJ", 0x0040, 0x80A0, 4500},
{"M/N-NTSC/PAL-Mono", 0x0078, 0x80A0, 4500},
{"B/G-PAL-A2", 0x0000, 0x8159, 5640},
{"B/G-PAL-NICAM", 0x0004, 0x8159, 5740},
{"B/G-PAL-MONO", 0x0078, 0x8159, 5500},
{"I-PAL-NICAM", 0x0080, 0x8049, 6240},
{"I-PAL-NICAM-MONO", 0x0078, 0x8049, 6000},
{"D/K-PAL-A2", 0x0000, 0x8049, 6380},
{"D/K-PAL-NICAM", 0x0080, 0x8049, 6200},
{"D/K-PAL-MONO", 0x0078, 0x8049, 6500},
{"D/K-SECAM-A2 DK1", 0x0000, 0x8049, 6340},
{"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049, 6000},
{"D/K-SECAM-A2 MONO", 0x0078, 0x8049, 6500},
{"D/K-SECAM-NICAM", 0x0080, 0x8049, 6200},
{"L-SECAM-NICAM", 0x8080, 0x0009, 6200},
{"L'-SECAM-NICAM", 0x8080, 0x4009, 6200},
{"DTV6", 0x00C0, 0x8002, 0},
{"DTV8", 0x00C0, 0x800B, 0},
{"DTV7/8", 0x00C0, 0x801B, 0},
{"DTV7", 0x00C0, 0x8007, 0},
{"FM Radio-INPUT2", 0x0008, 0x9800, 10700},
{"FM Radio-INPUT1", 0x0008, 0x9000, 10700}
};
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
static int xc4000_tuner_reset(struct dvb_frontend *fe);
static void xc_debug_dump(struct xc4000_priv *priv);
static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
{
struct i2c_msg msg = { .addr = priv->i2c_props.addr,
.flags = 0, .buf = buf, .len = len };
if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
if (priv->ignore_i2c_write_errors == 0) {
printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n",
len);
if (len == 4) {
printk(KERN_ERR "bytes %*ph\n", 4, buf);
}
return -EREMOTEIO;
}
}
return 0;
}
static int xc4000_tuner_reset(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret;
dprintk(1, "%s()\n", __func__);
if (fe->callback) {
ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
fe->dvb->priv :
priv->i2c_props.adap->algo_data,
DVB_FRONTEND_COMPONENT_TUNER,
XC4000_TUNER_RESET, 0);
if (ret) {
printk(KERN_ERR "xc4000: reset failed\n");
return -EREMOTEIO;
}
} else {
printk(KERN_ERR "xc4000: no tuner reset callback function, "
"fatal\n");
return -EINVAL;
}
return 0;
}
static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
{
u8 buf[4];
int result;
buf[0] = (regAddr >> 8) & 0xFF;
buf[1] = regAddr & 0xFF;
buf[2] = (i2cData >> 8) & 0xFF;
buf[3] = i2cData & 0xFF;
result = xc_send_i2c_data(priv, buf, 4);
return result;
}
static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
{
struct xc4000_priv *priv = fe->tuner_priv;
int i, nbytes_to_send, result;
unsigned int len, pos, index;
u8 buf[XC_MAX_I2C_WRITE_LENGTH];
index = 0;
while ((i2c_sequence[index] != 0xFF) ||
(i2c_sequence[index + 1] != 0xFF)) {
len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
if (len == 0x0000) {
/* RESET command */
/* NOTE: this is ignored, as the reset callback was */
/* already called by check_firmware() */
index += 2;
} else if (len & 0x8000) {
/* WAIT command */
msleep(len & 0x7FFF);
index += 2;
} else {
/* Send i2c data whilst ensuring individual transactions
* do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
*/
index += 2;
buf[0] = i2c_sequence[index];
buf[1] = i2c_sequence[index + 1];
pos = 2;
while (pos < len) {
if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
nbytes_to_send =
XC_MAX_I2C_WRITE_LENGTH;
else
nbytes_to_send = (len - pos + 2);
for (i = 2; i < nbytes_to_send; i++) {
buf[i] = i2c_sequence[index + pos +
i - 2];
}
result = xc_send_i2c_data(priv, buf,
nbytes_to_send);
if (result != 0)
return result;
pos += nbytes_to_send - 2;
}
index += len;
}
}
return 0;
}
static int xc_set_tv_standard(struct xc4000_priv *priv,
u16 video_mode, u16 audio_mode)
{
int ret;
dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
dprintk(1, "%s() Standard = %s\n",
__func__,
xc4000_standard[priv->video_standard].Name);
/* Don't complain when the request fails because of i2c stretching */
priv->ignore_i2c_write_errors = 1;
ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
if (ret == 0)
ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
priv->ignore_i2c_write_errors = 0;
return ret;
}
static int xc_set_signal_source(struct xc4000_priv *priv, u16 rf_mode)
{
dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
rf_mode = XC_RF_MODE_CABLE;
printk(KERN_ERR
"%s(), Invalid mode, defaulting to CABLE",
__func__);
}
return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
}
static const struct dvb_tuner_ops xc4000_tuner_ops;
static int xc_set_rf_frequency(struct xc4000_priv *priv, u32 freq_hz)
{
u16 freq_code;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
if ((freq_hz > xc4000_tuner_ops.info.frequency_max) ||
(freq_hz < xc4000_tuner_ops.info.frequency_min))
return -EINVAL;
freq_code = (u16)(freq_hz / 15625);
/* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
only be used for fast scanning for channel lock) */
/* WAS: XREG_FINERFREQ */
return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
}
static int xc_get_adc_envelope(struct xc4000_priv *priv, u16 *adc_envelope)
{
return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
}
static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
{
int result;
u16 regData;
u32 tmp;
result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
if (result != 0)
return result;
tmp = (u32)regData & 0xFFFFU;
tmp = (tmp < 0x8000U ? tmp : 0x10000U - tmp);
(*freq_error_hz) = tmp * 15625;
return result;
}
static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
{
return xc4000_readreg(priv, XREG_LOCK, lock_status);
}
static int xc_get_version(struct xc4000_priv *priv,
u8 *hw_majorversion, u8 *hw_minorversion,
u8 *fw_majorversion, u8 *fw_minorversion)
{
u16 data;
int result;
result = xc4000_readreg(priv, XREG_VERSION, &data);
if (result != 0)
return result;
(*hw_majorversion) = (data >> 12) & 0x0F;
(*hw_minorversion) = (data >> 8) & 0x0F;
(*fw_majorversion) = (data >> 4) & 0x0F;
(*fw_minorversion) = data & 0x0F;
return 0;
}
static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
{
u16 regData;
int result;
result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
if (result != 0)
return result;
(*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
return result;
}
static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
{
return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
}
static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
{
return xc4000_readreg(priv, XREG_QUALITY, quality);
}
static int xc_get_signal_level(struct xc4000_priv *priv, u16 *signal)
{
return xc4000_readreg(priv, XREG_SIGNAL_LEVEL, signal);
}
static int xc_get_noise_level(struct xc4000_priv *priv, u16 *noise)
{
return xc4000_readreg(priv, XREG_NOISE_LEVEL, noise);
}
static u16 xc_wait_for_lock(struct xc4000_priv *priv)
{
u16 lock_state = 0;
int watchdog_count = 40;
while ((lock_state == 0) && (watchdog_count > 0)) {
xc_get_lock_status(priv, &lock_state);
if (lock_state != 1) {
msleep(5);
watchdog_count--;
}
}
return lock_state;
}
static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz)
{
int found = 1;
int result;
dprintk(1, "%s(%u)\n", __func__, freq_hz);
/* Don't complain when the request fails because of i2c stretching */
priv->ignore_i2c_write_errors = 1;
result = xc_set_rf_frequency(priv, freq_hz);
priv->ignore_i2c_write_errors = 0;
if (result != 0)
return 0;
/* wait for lock only in analog TV mode */
if ((priv->cur_fw.type & (FM | DTV6 | DTV7 | DTV78 | DTV8)) == 0) {
if (xc_wait_for_lock(priv) != 1)
found = 0;
}
/* Wait for stats to stabilize.
* Frame Lines needs two frame times after initial lock
* before it is valid.
*/
msleep(debug ? 100 : 10);
if (debug)
xc_debug_dump(priv);
return found;
}
static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
{
u8 buf[2] = { reg >> 8, reg & 0xff };
u8 bval[2] = { 0, 0 };
struct i2c_msg msg[2] = {
{ .addr = priv->i2c_props.addr,
.flags = 0, .buf = &buf[0], .len = 2 },
{ .addr = priv->i2c_props.addr,
.flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
};
if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
printk(KERN_ERR "xc4000: I2C read failed\n");
return -EREMOTEIO;
}
*val = (bval[0] << 8) | bval[1];
return 0;
}
#define dump_firm_type(t) dump_firm_type_and_int_freq(t, 0)
static void dump_firm_type_and_int_freq(unsigned int type, u16 int_freq)
{
if (type & BASE)
printk(KERN_CONT "BASE ");
if (type & INIT1)
printk(KERN_CONT "INIT1 ");
if (type & F8MHZ)
printk(KERN_CONT "F8MHZ ");
if (type & MTS)
printk(KERN_CONT "MTS ");
if (type & D2620)
printk(KERN_CONT "D2620 ");
if (type & D2633)
printk(KERN_CONT "D2633 ");
if (type & DTV6)
printk(KERN_CONT "DTV6 ");
if (type & QAM)
printk(KERN_CONT "QAM ");
if (type & DTV7)
printk(KERN_CONT "DTV7 ");
if (type & DTV78)
printk(KERN_CONT "DTV78 ");
if (type & DTV8)
printk(KERN_CONT "DTV8 ");
if (type & FM)
printk(KERN_CONT "FM ");
if (type & INPUT1)
printk(KERN_CONT "INPUT1 ");
if (type & LCD)
printk(KERN_CONT "LCD ");
if (type & NOGD)
printk(KERN_CONT "NOGD ");
if (type & MONO)
printk(KERN_CONT "MONO ");
if (type & ATSC)
printk(KERN_CONT "ATSC ");
if (type & IF)
printk(KERN_CONT "IF ");
if (type & LG60)
printk(KERN_CONT "LG60 ");
if (type & ATI638)
printk(KERN_CONT "ATI638 ");
if (type & OREN538)
printk(KERN_CONT "OREN538 ");
if (type & OREN36)
printk(KERN_CONT "OREN36 ");
if (type & TOYOTA388)
printk(KERN_CONT "TOYOTA388 ");
if (type & TOYOTA794)
printk(KERN_CONT "TOYOTA794 ");
if (type & DIBCOM52)
printk(KERN_CONT "DIBCOM52 ");
if (type & ZARLINK456)
printk(KERN_CONT "ZARLINK456 ");
if (type & CHINA)
printk(KERN_CONT "CHINA ");
if (type & F6MHZ)
printk(KERN_CONT "F6MHZ ");
if (type & INPUT2)
printk(KERN_CONT "INPUT2 ");
if (type & SCODE)
printk(KERN_CONT "SCODE ");
if (type & HAS_IF)
printk(KERN_CONT "HAS_IF_%d ", int_freq);
}
static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
v4l2_std_id *id)
{
struct xc4000_priv *priv = fe->tuner_priv;
int i, best_i = -1;
unsigned int best_nr_diffs = 255U;
if (!priv->firm) {
printk(KERN_ERR "Error! firmware not loaded\n");
return -EINVAL;
}
if (((type & ~SCODE) == 0) && (*id == 0))
*id = V4L2_STD_PAL;
/* Seek for generic video standard match */
for (i = 0; i < priv->firm_size; i++) {
v4l2_std_id id_diff_mask =
(priv->firm[i].id ^ (*id)) & (*id);
unsigned int type_diff_mask =
(priv->firm[i].type ^ type)
& (BASE_TYPES | DTV_TYPES | LCD | NOGD | MONO | SCODE);
unsigned int nr_diffs;
if (type_diff_mask
& (BASE | INIT1 | FM | DTV6 | DTV7 | DTV78 | DTV8 | SCODE))
continue;
nr_diffs = hweight64(id_diff_mask) + hweight32(type_diff_mask);
if (!nr_diffs) /* Supports all the requested standards */
goto found;
if (nr_diffs < best_nr_diffs) {
best_nr_diffs = nr_diffs;
best_i = i;
}
}
/* FIXME: Would make sense to seek for type "hint" match ? */
if (best_i < 0) {
i = -ENOENT;
goto ret;
}
if (best_nr_diffs > 0U) {
printk(KERN_WARNING
"Selecting best matching firmware (%u bits differ) for "
"type=(%x), id %016llx:\n",
best_nr_diffs, type, (unsigned long long)*id);
i = best_i;
}
found:
*id = priv->firm[i].id;
ret:
if (debug) {
printk(KERN_DEBUG "%s firmware for type=",
(i < 0) ? "Can't find" : "Found");
dump_firm_type(type);
printk(KERN_DEBUG "(%x), id %016llx.\n", type, (unsigned long long)*id);
}
return i;
}
static int load_firmware(struct dvb_frontend *fe, unsigned int type,
v4l2_std_id *id)
{
struct xc4000_priv *priv = fe->tuner_priv;
int pos, rc;
unsigned char *p;
pos = seek_firmware(fe, type, id);
if (pos < 0)
return pos;
p = priv->firm[pos].ptr;
/* Don't complain when the request fails because of i2c stretching */
priv->ignore_i2c_write_errors = 1;
rc = xc_load_i2c_sequence(fe, p);
priv->ignore_i2c_write_errors = 0;
return rc;
}
static int xc4000_fwupload(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
const struct firmware *fw = NULL;
const unsigned char *p, *endp;
int rc = 0;
int n, n_array;
char name[33];
const char *fname;
if (firmware_name[0] != '\0') {
fname = firmware_name;
dprintk(1, "Reading custom firmware %s\n", fname);
rc = request_firmware(&fw, fname,
priv->i2c_props.adap->dev.parent);
} else {
fname = XC4000_DEFAULT_FIRMWARE_NEW;
dprintk(1, "Trying to read firmware %s\n", fname);
rc = request_firmware(&fw, fname,
priv->i2c_props.adap->dev.parent);
if (rc == -ENOENT) {
fname = XC4000_DEFAULT_FIRMWARE;
dprintk(1, "Trying to read firmware %s\n", fname);
rc = request_firmware(&fw, fname,
priv->i2c_props.adap->dev.parent);
}
}
if (rc < 0) {
if (rc == -ENOENT)
printk(KERN_ERR "Error: firmware %s not found.\n", fname);
else
printk(KERN_ERR "Error %d while requesting firmware %s\n",
rc, fname);
return rc;
}
dprintk(1, "Loading Firmware: %s\n", fname);
p = fw->data;
endp = p + fw->size;
if (fw->size < sizeof(name) - 1 + 2 + 2) {
printk(KERN_ERR "Error: firmware file %s has invalid size!\n",
fname);
goto corrupt;
}
memcpy(name, p, sizeof(name) - 1);
name[sizeof(name) - 1] = '\0';
p += sizeof(name) - 1;
priv->firm_version = get_unaligned_le16(p);
p += 2;
n_array = get_unaligned_le16(p);
p += 2;
dprintk(1, "Loading %d firmware images from %s, type: %s, ver %d.%d\n",
n_array, fname, name,
priv->firm_version >> 8, priv->firm_version & 0xff);
priv->firm = kcalloc(n_array, sizeof(*priv->firm), GFP_KERNEL);
if (priv->firm == NULL) {
printk(KERN_ERR "Not enough memory to load firmware file.\n");
rc = -ENOMEM;
goto done;
}
priv->firm_size = n_array;
n = -1;
while (p < endp) {
__u32 type, size;
v4l2_std_id id;
__u16 int_freq = 0;
n++;
if (n >= n_array) {
printk(KERN_ERR "More firmware images in file than "
"were expected!\n");
goto corrupt;
}
/* Checks if there's enough bytes to read */
if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
goto header;
type = get_unaligned_le32(p);
p += sizeof(type);
id = get_unaligned_le64(p);
p += sizeof(id);
if (type & HAS_IF) {
int_freq = get_unaligned_le16(p);
p += sizeof(int_freq);
if (endp - p < sizeof(size))
goto header;
}
size = get_unaligned_le32(p);
p += sizeof(size);
if (!size || size > endp - p) {
printk(KERN_ERR "Firmware type (%x), id %llx is corrupted (size=%d, expected %d)\n",
type, (unsigned long long)id,
(unsigned)(endp - p), size);
goto corrupt;
}
priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
if (priv->firm[n].ptr == NULL) {
printk(KERN_ERR "Not enough memory to load firmware file.\n");
rc = -ENOMEM;
goto done;
}
if (debug) {
printk(KERN_DEBUG "Reading firmware type ");
dump_firm_type_and_int_freq(type, int_freq);
printk(KERN_DEBUG "(%x), id %llx, size=%d.\n",
type, (unsigned long long)id, size);
}
memcpy(priv->firm[n].ptr, p, size);
priv->firm[n].type = type;
priv->firm[n].id = id;
priv->firm[n].size = size;
priv->firm[n].int_freq = int_freq;
p += size;
}
if (n + 1 != priv->firm_size) {
printk(KERN_ERR "Firmware file is incomplete!\n");
goto corrupt;
}
goto done;
header:
printk(KERN_ERR "Firmware header is incomplete!\n");
corrupt:
rc = -EINVAL;
printk(KERN_ERR "Error: firmware file is corrupted!\n");
done:
release_firmware(fw);
if (rc == 0)
dprintk(1, "Firmware files loaded.\n");
return rc;
}
static int load_scode(struct dvb_frontend *fe, unsigned int type,
v4l2_std_id *id, __u16 int_freq, int scode)
{
struct xc4000_priv *priv = fe->tuner_priv;
int pos, rc;
unsigned char *p;
u8 scode_buf[13];
u8 indirect_mode[5];
dprintk(1, "%s called int_freq=%d\n", __func__, int_freq);
if (!int_freq) {
pos = seek_firmware(fe, type, id);
if (pos < 0)
return pos;
} else {
for (pos = 0; pos < priv->firm_size; pos++) {
if ((priv->firm[pos].int_freq == int_freq) &&
(priv->firm[pos].type & HAS_IF))
break;
}
if (pos == priv->firm_size)
return -ENOENT;
}
p = priv->firm[pos].ptr;
if (priv->firm[pos].size != 12 * 16 || scode >= 16)
return -EINVAL;
p += 12 * scode;
if (debug) {
tuner_info("Loading SCODE for type=");
dump_firm_type_and_int_freq(priv->firm[pos].type,
priv->firm[pos].int_freq);
printk(KERN_CONT "(%x), id %016llx.\n", priv->firm[pos].type,
(unsigned long long)*id);
}
scode_buf[0] = 0x00;
memcpy(&scode_buf[1], p, 12);
/* Enter direct-mode */
rc = xc_write_reg(priv, XREG_DIRECTSITTING_MODE, 0);
if (rc < 0) {
printk(KERN_ERR "failed to put device into direct mode!\n");
return -EIO;
}
rc = xc_send_i2c_data(priv, scode_buf, 13);
if (rc != 0) {
/* Even if the send failed, make sure we set back to indirect
mode */
printk(KERN_ERR "Failed to set scode %d\n", rc);
}
/* Switch back to indirect-mode */
memset(indirect_mode, 0, sizeof(indirect_mode));
indirect_mode[4] = 0x88;
xc_send_i2c_data(priv, indirect_mode, sizeof(indirect_mode));
msleep(10);
return 0;
}
static int check_firmware(struct dvb_frontend *fe, unsigned int type,
v4l2_std_id std, __u16 int_freq)
{
struct xc4000_priv *priv = fe->tuner_priv;
struct firmware_properties new_fw;
int rc = 0, is_retry = 0;
u16 hwmodel;
v4l2_std_id std0;
u8 hw_major = 0, hw_minor = 0, fw_major = 0, fw_minor = 0;
dprintk(1, "%s called\n", __func__);
if (!priv->firm) {
rc = xc4000_fwupload(fe);
if (rc < 0)
return rc;
}
retry:
new_fw.type = type;
new_fw.id = std;
new_fw.std_req = std;
new_fw.scode_table = SCODE;
new_fw.scode_nr = 0;
new_fw.int_freq = int_freq;
dprintk(1, "checking firmware, user requested type=");
if (debug) {
dump_firm_type(new_fw.type);
printk(KERN_CONT "(%x), id %016llx, ", new_fw.type,
(unsigned long long)new_fw.std_req);
if (!int_freq)
printk(KERN_CONT "scode_tbl ");
else
printk(KERN_CONT "int_freq %d, ", new_fw.int_freq);
printk(KERN_CONT "scode_nr %d\n", new_fw.scode_nr);
}
/* No need to reload base firmware if it matches */
if (priv->cur_fw.type & BASE) {
dprintk(1, "BASE firmware not changed.\n");
goto skip_base;
}
/* Updating BASE - forget about all currently loaded firmware */
memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
/* Reset is needed before loading firmware */
rc = xc4000_tuner_reset(fe);
if (rc < 0)
goto fail;
/* BASE firmwares are all std0 */
std0 = 0;
rc = load_firmware(fe, BASE, &std0);
if (rc < 0) {
printk(KERN_ERR "Error %d while loading base firmware\n", rc);
goto fail;
}
/* Load INIT1, if needed */
dprintk(1, "Load init1 firmware, if exists\n");
rc = load_firmware(fe, BASE | INIT1, &std0);
if (rc == -ENOENT)
rc = load_firmware(fe, BASE | INIT1, &std0);
if (rc < 0 && rc != -ENOENT) {
tuner_err("Error %d while loading init1 firmware\n",
rc);
goto fail;
}
skip_base:
/*
* No need to reload standard specific firmware if base firmware
* was not reloaded and requested video standards have not changed.
*/
if (priv->cur_fw.type == (BASE | new_fw.type) &&
priv->cur_fw.std_req == std) {
dprintk(1, "Std-specific firmware already loaded.\n");
goto skip_std_specific;
}
/* Reloading std-specific firmware forces a SCODE update */
priv->cur_fw.scode_table = 0;
/* Load the standard firmware */
rc = load_firmware(fe, new_fw.type, &new_fw.id);
if (rc < 0)
goto fail;
skip_std_specific:
if (priv->cur_fw.scode_table == new_fw.scode_table &&
priv->cur_fw.scode_nr == new_fw.scode_nr) {
dprintk(1, "SCODE firmware already loaded.\n");
goto check_device;
}
/* Load SCODE firmware, if exists */
rc = load_scode(fe, new_fw.type | new_fw.scode_table, &new_fw.id,
new_fw.int_freq, new_fw.scode_nr);
if (rc != 0)
dprintk(1, "load scode failed %d\n", rc);
check_device:
rc = xc4000_readreg(priv, XREG_PRODUCT_ID, &hwmodel);
if (xc_get_version(priv, &hw_major, &hw_minor, &fw_major,
&fw_minor) != 0) {
printk(KERN_ERR "Unable to read tuner registers.\n");
goto fail;
}
dprintk(1, "Device is Xceive %d version %d.%d, "
"firmware version %d.%d\n",
hwmodel, hw_major, hw_minor, fw_major, fw_minor);
/* Check firmware version against what we downloaded. */
if (priv->firm_version != ((fw_major << 8) | fw_minor)) {
printk(KERN_WARNING
"Incorrect readback of firmware version %d.%d.\n",
fw_major, fw_minor);
goto fail;
}
/* Check that the tuner hardware model remains consistent over time. */
if (priv->hwmodel == 0 &&
(hwmodel == XC_PRODUCT_ID_XC4000 ||
hwmodel == XC_PRODUCT_ID_XC4100)) {
priv->hwmodel = hwmodel;
priv->hwvers = (hw_major << 8) | hw_minor;
} else if (priv->hwmodel == 0 || priv->hwmodel != hwmodel ||
priv->hwvers != ((hw_major << 8) | hw_minor)) {
printk(KERN_WARNING
"Read invalid device hardware information - tuner "
"hung?\n");
goto fail;
}
priv->cur_fw = new_fw;
/*
* By setting BASE in cur_fw.type only after successfully loading all
* firmwares, we can:
* 1. Identify that BASE firmware with type=0 has been loaded;
* 2. Tell whether BASE firmware was just changed the next time through.
*/
priv->cur_fw.type |= BASE;
return 0;
fail:
memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
if (!is_retry) {
msleep(50);
is_retry = 1;
dprintk(1, "Retrying firmware load\n");
goto retry;
}
if (rc == -ENOENT)
rc = -EINVAL;
return rc;
}
static void xc_debug_dump(struct xc4000_priv *priv)
{
u16 adc_envelope;
u32 freq_error_hz = 0;
u16 lock_status;
u32 hsync_freq_hz = 0;
u16 frame_lines;
u16 quality;
u16 signal = 0;
u16 noise = 0;
u8 hw_majorversion = 0, hw_minorversion = 0;
u8 fw_majorversion = 0, fw_minorversion = 0;
xc_get_adc_envelope(priv, &adc_envelope);
dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
xc_get_frequency_error(priv, &freq_error_hz);
dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
xc_get_lock_status(priv, &lock_status);
dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
lock_status);
xc_get_version(priv, &hw_majorversion, &hw_minorversion,
&fw_majorversion, &fw_minorversion);
dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
hw_majorversion, hw_minorversion,
fw_majorversion, fw_minorversion);
if (priv->video_standard < XC4000_DTV6) {
xc_get_hsync_freq(priv, &hsync_freq_hz);
dprintk(1, "*** Horizontal sync frequency = %d Hz\n",
hsync_freq_hz);
xc_get_frame_lines(priv, &frame_lines);
dprintk(1, "*** Frame lines = %d\n", frame_lines);
}
xc_get_quality(priv, &quality);
dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
xc_get_signal_level(priv, &signal);
dprintk(1, "*** Signal level = -%ddB (%d)\n", signal >> 8, signal);
xc_get_noise_level(priv, &noise);
dprintk(1, "*** Noise level = %ddB (%d)\n", noise >> 8, noise);
}
static int xc4000_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u32 delsys = c->delivery_system;
u32 bw = c->bandwidth_hz;
struct xc4000_priv *priv = fe->tuner_priv;
unsigned int type;
int ret = -EREMOTEIO;
dprintk(1, "%s() frequency=%d (Hz)\n", __func__, c->frequency);
mutex_lock(&priv->lock);
switch (delsys) {
case SYS_ATSC:
dprintk(1, "%s() VSB modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_AIR;
priv->freq_offset = 1750000;
priv->video_standard = XC4000_DTV6;
type = DTV6;
break;
case SYS_DVBC_ANNEX_B:
dprintk(1, "%s() QAM modulation\n", __func__);
priv->rf_mode = XC_RF_MODE_CABLE;
priv->freq_offset = 1750000;
priv->video_standard = XC4000_DTV6;
type = DTV6;
break;
case SYS_DVBT:
case SYS_DVBT2:
dprintk(1, "%s() OFDM\n", __func__);
if (bw == 0) {
if (c->frequency < 400000000) {
priv->freq_offset = 2250000;
} else {
priv->freq_offset = 2750000;
}
priv->video_standard = XC4000_DTV7_8;
type = DTV78;
} else if (bw <= 6000000) {
priv->video_standard = XC4000_DTV6;
priv->freq_offset = 1750000;
type = DTV6;
} else if (bw <= 7000000) {
priv->video_standard = XC4000_DTV7;
priv->freq_offset = 2250000;
type = DTV7;
} else {
priv->video_standard = XC4000_DTV8;
priv->freq_offset = 2750000;
type = DTV8;
}
priv->rf_mode = XC_RF_MODE_AIR;
break;
default:
printk(KERN_ERR "xc4000 delivery system not supported!\n");
ret = -EINVAL;
goto fail;
}
priv->freq_hz = c->frequency - priv->freq_offset;
dprintk(1, "%s() frequency=%d (compensated)\n",
__func__, priv->freq_hz);
/* Make sure the correct firmware type is loaded */
if (check_firmware(fe, type, 0, priv->if_khz) != 0)
goto fail;
priv->bandwidth = c->bandwidth_hz;
ret = xc_set_signal_source(priv, priv->rf_mode);
if (ret != 0) {
printk(KERN_ERR "xc4000: xc_set_signal_source(%d) failed\n",
priv->rf_mode);
goto fail;
} else {
u16 video_mode, audio_mode;
video_mode = xc4000_standard[priv->video_standard].video_mode;
audio_mode = xc4000_standard[priv->video_standard].audio_mode;
if (type == DTV6 && priv->firm_version != 0x0102)
video_mode |= 0x0001;
ret = xc_set_tv_standard(priv, video_mode, audio_mode);
if (ret != 0) {
printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
/* DJH - do not return when it fails... */
/* goto fail; */
}
}
if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
ret = 0;
if (priv->dvb_amplitude != 0) {
if (xc_write_reg(priv, XREG_AMPLITUDE,
(priv->firm_version != 0x0102 ||
priv->dvb_amplitude != 134 ?
priv->dvb_amplitude : 132)) != 0)
ret = -EREMOTEIO;
}
if (priv->set_smoothedcvbs != 0) {
if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
ret = -EREMOTEIO;
}
if (ret != 0) {
printk(KERN_ERR "xc4000: setting registers failed\n");
/* goto fail; */
}
xc_tune_channel(priv, priv->freq_hz);
ret = 0;
fail:
mutex_unlock(&priv->lock);
return ret;
}
static int xc4000_set_analog_params(struct dvb_frontend *fe,
struct analog_parameters *params)
{
struct xc4000_priv *priv = fe->tuner_priv;
unsigned int type = 0;
int ret = -EREMOTEIO;
if (params->mode == V4L2_TUNER_RADIO) {
dprintk(1, "%s() frequency=%d (in units of 62.5Hz)\n",
__func__, params->frequency);
mutex_lock(&priv->lock);
params->std = 0;
priv->freq_hz = params->frequency * 125L / 2;
if (audio_std & XC4000_AUDIO_STD_INPUT1) {
priv->video_standard = XC4000_FM_Radio_INPUT1;
type = FM | INPUT1;
} else {
priv->video_standard = XC4000_FM_Radio_INPUT2;
type = FM | INPUT2;
}
goto tune_channel;
}
dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
__func__, params->frequency);
mutex_lock(&priv->lock);
/* params->frequency is in units of 62.5khz */
priv->freq_hz = params->frequency * 62500;
params->std &= V4L2_STD_ALL;
/* if std is not defined, choose one */
if (!params->std)
params->std = V4L2_STD_PAL_BG;
if (audio_std & XC4000_AUDIO_STD_MONO)
type = MONO;
if (params->std & V4L2_STD_MN) {
params->std = V4L2_STD_MN;
if (audio_std & XC4000_AUDIO_STD_MONO) {
priv->video_standard = XC4000_MN_NTSC_PAL_Mono;
} else if (audio_std & XC4000_AUDIO_STD_A2) {
params->std |= V4L2_STD_A2;
priv->video_standard = XC4000_MN_NTSC_PAL_A2;
} else {
params->std |= V4L2_STD_BTSC;
priv->video_standard = XC4000_MN_NTSC_PAL_BTSC;
}
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_BG) {
params->std = V4L2_STD_PAL_BG;
if (audio_std & XC4000_AUDIO_STD_MONO) {
priv->video_standard = XC4000_BG_PAL_MONO;
} else if (!(audio_std & XC4000_AUDIO_STD_A2)) {
if (!(audio_std & XC4000_AUDIO_STD_B)) {
params->std |= V4L2_STD_NICAM_A;
priv->video_standard = XC4000_BG_PAL_NICAM;
} else {
params->std |= V4L2_STD_NICAM_B;
priv->video_standard = XC4000_BG_PAL_NICAM;
}
} else {
if (!(audio_std & XC4000_AUDIO_STD_B)) {
params->std |= V4L2_STD_A2_A;
priv->video_standard = XC4000_BG_PAL_A2;
} else {
params->std |= V4L2_STD_A2_B;
priv->video_standard = XC4000_BG_PAL_A2;
}
}
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_I) {
/* default to NICAM audio standard */
params->std = V4L2_STD_PAL_I | V4L2_STD_NICAM;
if (audio_std & XC4000_AUDIO_STD_MONO)
priv->video_standard = XC4000_I_PAL_NICAM_MONO;
else
priv->video_standard = XC4000_I_PAL_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_PAL_DK) {
params->std = V4L2_STD_PAL_DK;
if (audio_std & XC4000_AUDIO_STD_MONO) {
priv->video_standard = XC4000_DK_PAL_MONO;
} else if (audio_std & XC4000_AUDIO_STD_A2) {
params->std |= V4L2_STD_A2;
priv->video_standard = XC4000_DK_PAL_A2;
} else {
params->std |= V4L2_STD_NICAM;
priv->video_standard = XC4000_DK_PAL_NICAM;
}
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_DK) {
/* default to A2 audio standard */
params->std = V4L2_STD_SECAM_DK | V4L2_STD_A2;
if (audio_std & XC4000_AUDIO_STD_L) {
type = 0;
priv->video_standard = XC4000_DK_SECAM_NICAM;
} else if (audio_std & XC4000_AUDIO_STD_MONO) {
priv->video_standard = XC4000_DK_SECAM_A2MONO;
} else if (audio_std & XC4000_AUDIO_STD_K3) {
params->std |= V4L2_STD_SECAM_K3;
priv->video_standard = XC4000_DK_SECAM_A2LDK3;
} else {
priv->video_standard = XC4000_DK_SECAM_A2DK1;
}
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_L) {
/* default to NICAM audio standard */
type = 0;
params->std = V4L2_STD_SECAM_L | V4L2_STD_NICAM;
priv->video_standard = XC4000_L_SECAM_NICAM;
goto tune_channel;
}
if (params->std & V4L2_STD_SECAM_LC) {
/* default to NICAM audio standard */
type = 0;
params->std = V4L2_STD_SECAM_LC | V4L2_STD_NICAM;
priv->video_standard = XC4000_LC_SECAM_NICAM;
goto tune_channel;
}
tune_channel:
/* FIXME: it could be air. */
priv->rf_mode = XC_RF_MODE_CABLE;
if (check_firmware(fe, type, params->std,
xc4000_standard[priv->video_standard].int_freq) != 0)
goto fail;
ret = xc_set_signal_source(priv, priv->rf_mode);
if (ret != 0) {
printk(KERN_ERR
"xc4000: xc_set_signal_source(%d) failed\n",
priv->rf_mode);
goto fail;
} else {
u16 video_mode, audio_mode;
video_mode = xc4000_standard[priv->video_standard].video_mode;
audio_mode = xc4000_standard[priv->video_standard].audio_mode;
if (priv->video_standard < XC4000_BG_PAL_A2) {
if (type & NOGD)
video_mode &= 0xFF7F;
} else if (priv->video_standard < XC4000_I_PAL_NICAM) {
if (priv->firm_version == 0x0102)
video_mode &= 0xFEFF;
if (audio_std & XC4000_AUDIO_STD_B)
video_mode |= 0x0080;
}
ret = xc_set_tv_standard(priv, video_mode, audio_mode);
if (ret != 0) {
printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
goto fail;
}
}
if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
ret = 0;
if (xc_write_reg(priv, XREG_AMPLITUDE, 1) != 0)
ret = -EREMOTEIO;
if (priv->set_smoothedcvbs != 0) {
if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
ret = -EREMOTEIO;
}
if (ret != 0) {
printk(KERN_ERR "xc4000: setting registers failed\n");
goto fail;
}
xc_tune_channel(priv, priv->freq_hz);
ret = 0;
fail:
mutex_unlock(&priv->lock);
return ret;
}
static int xc4000_get_signal(struct dvb_frontend *fe, u16 *strength)
{
struct xc4000_priv *priv = fe->tuner_priv;
u16 value = 0;
int rc;
mutex_lock(&priv->lock);
rc = xc4000_readreg(priv, XREG_SIGNAL_LEVEL, &value);
mutex_unlock(&priv->lock);
if (rc < 0)
goto ret;
/* Informations from real testing of DVB-T and radio part,
coeficient for one dB is 0xff.
*/
tuner_dbg("Signal strength: -%ddB (%05d)\n", value >> 8, value);
/* all known digital modes */
if ((priv->video_standard == XC4000_DTV6) ||
(priv->video_standard == XC4000_DTV7) ||
(priv->video_standard == XC4000_DTV7_8) ||
(priv->video_standard == XC4000_DTV8))
goto digital;
/* Analog mode has NOISE LEVEL important, signal
depends only on gain of antenna and amplifiers,
but it doesn't tell anything about real quality
of reception.
*/
mutex_lock(&priv->lock);
rc = xc4000_readreg(priv, XREG_NOISE_LEVEL, &value);
mutex_unlock(&priv->lock);
tuner_dbg("Noise level: %ddB (%05d)\n", value >> 8, value);
/* highest noise level: 32dB */
if (value >= 0x2000) {
value = 0;
} else {
value = (~value << 3) & 0xffff;
}
goto ret;
/* Digital mode has SIGNAL LEVEL important and real
noise level is stored in demodulator registers.
*/
digital:
/* best signal: -50dB */
if (value <= 0x3200) {
value = 0xffff;
/* minimum: -114dB - should be 0x7200 but real zero is 0x713A */
} else if (value >= 0x713A) {
value = 0;
} else {
value = ~(value - 0x3200) << 2;
}
ret:
*strength = value;
return rc;
}
static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
{
struct xc4000_priv *priv = fe->tuner_priv;
*freq = priv->freq_hz + priv->freq_offset;
if (debug) {
mutex_lock(&priv->lock);
if ((priv->cur_fw.type
& (BASE | FM | DTV6 | DTV7 | DTV78 | DTV8)) == BASE) {
u16 snr = 0;
if (xc4000_readreg(priv, XREG_SNR, &snr) == 0) {
mutex_unlock(&priv->lock);
dprintk(1, "%s() freq = %u, SNR = %d\n",
__func__, *freq, snr);
return 0;
}
}
mutex_unlock(&priv->lock);
}
dprintk(1, "%s()\n", __func__);
return 0;
}
static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
*bw = priv->bandwidth;
return 0;
}
static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
{
struct xc4000_priv *priv = fe->tuner_priv;
u16 lock_status = 0;
mutex_lock(&priv->lock);
if (priv->cur_fw.type & BASE)
xc_get_lock_status(priv, &lock_status);
*status = (lock_status == 1 ?
TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO : 0);
if (priv->cur_fw.type & (DTV6 | DTV7 | DTV78 | DTV8))
*status &= (~TUNER_STATUS_STEREO);
mutex_unlock(&priv->lock);
dprintk(2, "%s() lock_status = %d\n", __func__, lock_status);
return 0;
}
static int xc4000_sleep(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
int ret = 0;
dprintk(1, "%s()\n", __func__);
mutex_lock(&priv->lock);
/* Avoid firmware reload on slow devices */
if ((no_poweroff == 2 ||
(no_poweroff == 0 && priv->default_pm != 0)) &&
(priv->cur_fw.type & BASE) != 0) {
/* force reset and firmware reload */
priv->cur_fw.type = XC_POWERED_DOWN;
if (xc_write_reg(priv, XREG_POWER_DOWN, 0) != 0) {
printk(KERN_ERR
"xc4000: %s() unable to shutdown tuner\n",
__func__);
ret = -EREMOTEIO;
}
msleep(20);
}
mutex_unlock(&priv->lock);
return ret;
}
static int xc4000_init(struct dvb_frontend *fe)
{
dprintk(1, "%s()\n", __func__);
return 0;
}
static int xc4000_release(struct dvb_frontend *fe)
{
struct xc4000_priv *priv = fe->tuner_priv;
dprintk(1, "%s()\n", __func__);
mutex_lock(&xc4000_list_mutex);
if (priv)
hybrid_tuner_release_state(priv);
mutex_unlock(&xc4000_list_mutex);
fe->tuner_priv = NULL;
return 0;
}
static const struct dvb_tuner_ops xc4000_tuner_ops = {
.info = {
.name = "Xceive XC4000",
.frequency_min = 1000000,
.frequency_max = 1023000000,
.frequency_step = 50000,
},
.release = xc4000_release,
.init = xc4000_init,
.sleep = xc4000_sleep,
.set_params = xc4000_set_params,
.set_analog_params = xc4000_set_analog_params,
.get_frequency = xc4000_get_frequency,
.get_rf_strength = xc4000_get_signal,
.get_bandwidth = xc4000_get_bandwidth,
.get_status = xc4000_get_status
};
struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
struct i2c_adapter *i2c,
struct xc4000_config *cfg)
{
struct xc4000_priv *priv = NULL;
int instance;
u16 id = 0;
dprintk(1, "%s(%d-%04x)\n", __func__,
i2c ? i2c_adapter_id(i2c) : -1,
cfg ? cfg->i2c_address : -1);
mutex_lock(&xc4000_list_mutex);
instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
hybrid_tuner_instance_list,
i2c, cfg->i2c_address, "xc4000");
switch (instance) {
case 0:
goto fail;
case 1:
/* new tuner instance */
priv->bandwidth = 6000000;
/* set default configuration */
priv->if_khz = 4560;
priv->default_pm = 0;
priv->dvb_amplitude = 134;
priv->set_smoothedcvbs = 1;
mutex_init(&priv->lock);
fe->tuner_priv = priv;
break;
default:
/* existing tuner instance */
fe->tuner_priv = priv;
break;
}
if (cfg->if_khz != 0) {
/* copy configuration if provided by the caller */
priv->if_khz = cfg->if_khz;
priv->default_pm = cfg->default_pm;
priv->dvb_amplitude = cfg->dvb_amplitude;
priv->set_smoothedcvbs = cfg->set_smoothedcvbs;
}
/* Check if firmware has been loaded. It is possible that another
instance of the driver has loaded the firmware.
*/
if (instance == 1) {
if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
goto fail;
} else {
id = ((priv->cur_fw.type & BASE) != 0 ?
priv->hwmodel : XC_PRODUCT_ID_FW_NOT_LOADED);
}
switch (id) {
case XC_PRODUCT_ID_XC4000:
case XC_PRODUCT_ID_XC4100:
printk(KERN_INFO
"xc4000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc4000: Firmware has been loaded previously\n");
break;
case XC_PRODUCT_ID_FW_NOT_LOADED:
printk(KERN_INFO
"xc4000: Successfully identified at address 0x%02x\n",
cfg->i2c_address);
printk(KERN_INFO
"xc4000: Firmware has not been loaded previously\n");
break;
default:
printk(KERN_ERR
"xc4000: Device not found at addr 0x%02x (0x%x)\n",
cfg->i2c_address, id);
goto fail;
}
mutex_unlock(&xc4000_list_mutex);
memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
sizeof(struct dvb_tuner_ops));
if (instance == 1) {
int ret;
mutex_lock(&priv->lock);
ret = xc4000_fwupload(fe);
mutex_unlock(&priv->lock);
if (ret != 0)
goto fail2;
}
return fe;
fail:
mutex_unlock(&xc4000_list_mutex);
fail2:
xc4000_release(fe);
return NULL;
}
EXPORT_SYMBOL(xc4000_attach);
MODULE_AUTHOR("Steven Toth, Davide Ferri");
MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(XC4000_DEFAULT_FIRMWARE_NEW);
MODULE_FIRMWARE(XC4000_DEFAULT_FIRMWARE);