linux-sg2042/arch/powerpc/kvm/book3s_pr.c

1811 lines
46 KiB
C

/*
* Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
* Paul Mackerras <paulus@samba.org>
*
* Description:
* Functions relating to running KVM on Book 3S processors where
* we don't have access to hypervisor mode, and we run the guest
* in problem state (user mode).
*
* This file is derived from arch/powerpc/kvm/44x.c,
* by Hollis Blanchard <hollisb@us.ibm.com>.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*/
#include <linux/kvm_host.h>
#include <linux/export.h>
#include <linux/err.h>
#include <linux/slab.h>
#include <asm/reg.h>
#include <asm/cputable.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/uaccess.h>
#include <asm/io.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu_context.h>
#include <asm/switch_to.h>
#include <asm/firmware.h>
#include <asm/setup.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/miscdevice.h>
#include "book3s.h"
#define CREATE_TRACE_POINTS
#include "trace_pr.h"
/* #define EXIT_DEBUG */
/* #define DEBUG_EXT */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr);
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac);
/* Some compatibility defines */
#ifdef CONFIG_PPC_BOOK3S_32
#define MSR_USER32 MSR_USER
#define MSR_USER64 MSR_USER
#define HW_PAGE_SIZE PAGE_SIZE
#endif
static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu)
{
ulong msr = kvmppc_get_msr(vcpu);
return (msr & (MSR_IR|MSR_DR)) == MSR_DR;
}
static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu)
{
ulong msr = kvmppc_get_msr(vcpu);
ulong pc = kvmppc_get_pc(vcpu);
/* We are in DR only split real mode */
if ((msr & (MSR_IR|MSR_DR)) != MSR_DR)
return;
/* We have not fixed up the guest already */
if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK)
return;
/* The code is in fixupable address space */
if (pc & SPLIT_HACK_MASK)
return;
vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK;
kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS);
}
void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu);
static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
svcpu->in_use = 0;
svcpu_put(svcpu);
#endif
/* Disable AIL if supported */
if (cpu_has_feature(CPU_FTR_HVMODE) &&
cpu_has_feature(CPU_FTR_ARCH_207S))
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL);
vcpu->cpu = smp_processor_id();
#ifdef CONFIG_PPC_BOOK3S_32
current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu;
#endif
if (kvmppc_is_split_real(vcpu))
kvmppc_fixup_split_real(vcpu);
}
static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_BOOK3S_64
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
if (svcpu->in_use) {
kvmppc_copy_from_svcpu(vcpu, svcpu);
}
memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
svcpu_put(svcpu);
#endif
if (kvmppc_is_split_real(vcpu))
kvmppc_unfixup_split_real(vcpu);
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
/* Enable AIL if supported */
if (cpu_has_feature(CPU_FTR_HVMODE) &&
cpu_has_feature(CPU_FTR_ARCH_207S))
mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3);
vcpu->cpu = -1;
}
/* Copy data needed by real-mode code from vcpu to shadow vcpu */
void kvmppc_copy_to_svcpu(struct kvmppc_book3s_shadow_vcpu *svcpu,
struct kvm_vcpu *vcpu)
{
svcpu->gpr[0] = vcpu->arch.gpr[0];
svcpu->gpr[1] = vcpu->arch.gpr[1];
svcpu->gpr[2] = vcpu->arch.gpr[2];
svcpu->gpr[3] = vcpu->arch.gpr[3];
svcpu->gpr[4] = vcpu->arch.gpr[4];
svcpu->gpr[5] = vcpu->arch.gpr[5];
svcpu->gpr[6] = vcpu->arch.gpr[6];
svcpu->gpr[7] = vcpu->arch.gpr[7];
svcpu->gpr[8] = vcpu->arch.gpr[8];
svcpu->gpr[9] = vcpu->arch.gpr[9];
svcpu->gpr[10] = vcpu->arch.gpr[10];
svcpu->gpr[11] = vcpu->arch.gpr[11];
svcpu->gpr[12] = vcpu->arch.gpr[12];
svcpu->gpr[13] = vcpu->arch.gpr[13];
svcpu->cr = vcpu->arch.cr;
svcpu->xer = vcpu->arch.xer;
svcpu->ctr = vcpu->arch.ctr;
svcpu->lr = vcpu->arch.lr;
svcpu->pc = vcpu->arch.pc;
#ifdef CONFIG_PPC_BOOK3S_64
svcpu->shadow_fscr = vcpu->arch.shadow_fscr;
#endif
/*
* Now also save the current time base value. We use this
* to find the guest purr and spurr value.
*/
vcpu->arch.entry_tb = get_tb();
vcpu->arch.entry_vtb = get_vtb();
if (cpu_has_feature(CPU_FTR_ARCH_207S))
vcpu->arch.entry_ic = mfspr(SPRN_IC);
svcpu->in_use = true;
}
/* Copy data touched by real-mode code from shadow vcpu back to vcpu */
void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu,
struct kvmppc_book3s_shadow_vcpu *svcpu)
{
/*
* vcpu_put would just call us again because in_use hasn't
* been updated yet.
*/
preempt_disable();
/*
* Maybe we were already preempted and synced the svcpu from
* our preempt notifiers. Don't bother touching this svcpu then.
*/
if (!svcpu->in_use)
goto out;
vcpu->arch.gpr[0] = svcpu->gpr[0];
vcpu->arch.gpr[1] = svcpu->gpr[1];
vcpu->arch.gpr[2] = svcpu->gpr[2];
vcpu->arch.gpr[3] = svcpu->gpr[3];
vcpu->arch.gpr[4] = svcpu->gpr[4];
vcpu->arch.gpr[5] = svcpu->gpr[5];
vcpu->arch.gpr[6] = svcpu->gpr[6];
vcpu->arch.gpr[7] = svcpu->gpr[7];
vcpu->arch.gpr[8] = svcpu->gpr[8];
vcpu->arch.gpr[9] = svcpu->gpr[9];
vcpu->arch.gpr[10] = svcpu->gpr[10];
vcpu->arch.gpr[11] = svcpu->gpr[11];
vcpu->arch.gpr[12] = svcpu->gpr[12];
vcpu->arch.gpr[13] = svcpu->gpr[13];
vcpu->arch.cr = svcpu->cr;
vcpu->arch.xer = svcpu->xer;
vcpu->arch.ctr = svcpu->ctr;
vcpu->arch.lr = svcpu->lr;
vcpu->arch.pc = svcpu->pc;
vcpu->arch.shadow_srr1 = svcpu->shadow_srr1;
vcpu->arch.fault_dar = svcpu->fault_dar;
vcpu->arch.fault_dsisr = svcpu->fault_dsisr;
vcpu->arch.last_inst = svcpu->last_inst;
#ifdef CONFIG_PPC_BOOK3S_64
vcpu->arch.shadow_fscr = svcpu->shadow_fscr;
#endif
/*
* Update purr and spurr using time base on exit.
*/
vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb;
vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb;
vcpu->arch.vtb += get_vtb() - vcpu->arch.entry_vtb;
if (cpu_has_feature(CPU_FTR_ARCH_207S))
vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic;
svcpu->in_use = false;
out:
preempt_enable();
}
static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu)
{
int r = 1; /* Indicate we want to get back into the guest */
/* We misuse TLB_FLUSH to indicate that we want to clear
all shadow cache entries */
if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return r;
}
/************* MMU Notifiers *************/
static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start,
unsigned long end)
{
long i;
struct kvm_vcpu *vcpu;
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
slots = kvm_memslots(kvm);
kvm_for_each_memslot(memslot, slots) {
unsigned long hva_start, hva_end;
gfn_t gfn, gfn_end;
hva_start = max(start, memslot->userspace_addr);
hva_end = min(end, memslot->userspace_addr +
(memslot->npages << PAGE_SHIFT));
if (hva_start >= hva_end)
continue;
/*
* {gfn(page) | page intersects with [hva_start, hva_end)} =
* {gfn, gfn+1, ..., gfn_end-1}.
*/
gfn = hva_to_gfn_memslot(hva_start, memslot);
gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
kvm_for_each_vcpu(i, vcpu, kvm)
kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT,
gfn_end << PAGE_SHIFT);
}
}
static int kvm_unmap_hva_pr(struct kvm *kvm, unsigned long hva)
{
trace_kvm_unmap_hva(hva);
do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
return 0;
}
static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start,
unsigned long end)
{
do_kvm_unmap_hva(kvm, start, end);
return 0;
}
static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start,
unsigned long end)
{
/* XXX could be more clever ;) */
return 0;
}
static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva)
{
/* XXX could be more clever ;) */
return 0;
}
static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte)
{
/* The page will get remapped properly on its next fault */
do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE);
}
/*****************************************/
static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
{
ulong guest_msr = kvmppc_get_msr(vcpu);
ulong smsr = guest_msr;
/* Guest MSR values */
smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE;
/* Process MSR values */
smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
/* External providers the guest reserved */
smsr |= (guest_msr & vcpu->arch.guest_owned_ext);
/* 64-bit Process MSR values */
#ifdef CONFIG_PPC_BOOK3S_64
smsr |= MSR_ISF | MSR_HV;
#endif
vcpu->arch.shadow_msr = smsr;
}
static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr)
{
ulong old_msr = kvmppc_get_msr(vcpu);
#ifdef EXIT_DEBUG
printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
#endif
msr &= to_book3s(vcpu)->msr_mask;
kvmppc_set_msr_fast(vcpu, msr);
kvmppc_recalc_shadow_msr(vcpu);
if (msr & MSR_POW) {
if (!vcpu->arch.pending_exceptions) {
kvm_vcpu_block(vcpu);
clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
vcpu->stat.halt_wakeup++;
/* Unset POW bit after we woke up */
msr &= ~MSR_POW;
kvmppc_set_msr_fast(vcpu, msr);
}
}
if (kvmppc_is_split_real(vcpu))
kvmppc_fixup_split_real(vcpu);
else
kvmppc_unfixup_split_real(vcpu);
if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) !=
(old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
kvmppc_mmu_flush_segments(vcpu);
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
/* Preload magic page segment when in kernel mode */
if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
struct kvm_vcpu_arch *a = &vcpu->arch;
if (msr & MSR_DR)
kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
else
kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
}
}
/*
* When switching from 32 to 64-bit, we may have a stale 32-bit
* magic page around, we need to flush it. Typically 32-bit magic
* page will be instanciated when calling into RTAS. Note: We
* assume that such transition only happens while in kernel mode,
* ie, we never transition from user 32-bit to kernel 64-bit with
* a 32-bit magic page around.
*/
if (vcpu->arch.magic_page_pa &&
!(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
/* going from RTAS to normal kernel code */
kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
~0xFFFUL);
}
/* Preload FPU if it's enabled */
if (kvmppc_get_msr(vcpu) & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
}
void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr)
{
u32 host_pvr;
vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
vcpu->arch.pvr = pvr;
#ifdef CONFIG_PPC_BOOK3S_64
if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
kvmppc_mmu_book3s_64_init(vcpu);
if (!to_book3s(vcpu)->hior_explicit)
to_book3s(vcpu)->hior = 0xfff00000;
to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
vcpu->arch.cpu_type = KVM_CPU_3S_64;
} else
#endif
{
kvmppc_mmu_book3s_32_init(vcpu);
if (!to_book3s(vcpu)->hior_explicit)
to_book3s(vcpu)->hior = 0;
to_book3s(vcpu)->msr_mask = 0xffffffffULL;
vcpu->arch.cpu_type = KVM_CPU_3S_32;
}
kvmppc_sanity_check(vcpu);
/* If we are in hypervisor level on 970, we can tell the CPU to
* treat DCBZ as 32 bytes store */
vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
!strcmp(cur_cpu_spec->platform, "ppc970"))
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
/* Cell performs badly if MSR_FEx are set. So let's hope nobody
really needs them in a VM on Cell and force disable them. */
if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
/*
* If they're asking for POWER6 or later, set the flag
* indicating that we can do multiple large page sizes
* and 1TB segments.
* Also set the flag that indicates that tlbie has the large
* page bit in the RB operand instead of the instruction.
*/
switch (PVR_VER(pvr)) {
case PVR_POWER6:
case PVR_POWER7:
case PVR_POWER7p:
case PVR_POWER8:
vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE |
BOOK3S_HFLAG_NEW_TLBIE;
break;
}
#ifdef CONFIG_PPC_BOOK3S_32
/* 32 bit Book3S always has 32 byte dcbz */
vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
#endif
/* On some CPUs we can execute paired single operations natively */
asm ( "mfpvr %0" : "=r"(host_pvr));
switch (host_pvr) {
case 0x00080200: /* lonestar 2.0 */
case 0x00088202: /* lonestar 2.2 */
case 0x70000100: /* gekko 1.0 */
case 0x00080100: /* gekko 2.0 */
case 0x00083203: /* gekko 2.3a */
case 0x00083213: /* gekko 2.3b */
case 0x00083204: /* gekko 2.4 */
case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
case 0x00087200: /* broadway */
vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
/* Enable HID2.PSE - in case we need it later */
mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
}
}
/* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
* make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
* emulate 32 bytes dcbz length.
*
* The Book3s_64 inventors also realized this case and implemented a special bit
* in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
*
* My approach here is to patch the dcbz instruction on executing pages.
*/
static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
{
struct page *hpage;
u64 hpage_offset;
u32 *page;
int i;
hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
if (is_error_page(hpage))
return;
hpage_offset = pte->raddr & ~PAGE_MASK;
hpage_offset &= ~0xFFFULL;
hpage_offset /= 4;
get_page(hpage);
page = kmap_atomic(hpage);
/* patch dcbz into reserved instruction, so we trap */
for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ)
page[i] &= cpu_to_be32(0xfffffff7);
kunmap_atomic(page);
put_page(hpage);
}
static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
{
ulong mp_pa = vcpu->arch.magic_page_pa;
if (!(kvmppc_get_msr(vcpu) & MSR_SF))
mp_pa = (uint32_t)mp_pa;
gpa &= ~0xFFFULL;
if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) {
return true;
}
return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT);
}
int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
ulong eaddr, int vec)
{
bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
bool iswrite = false;
int r = RESUME_GUEST;
int relocated;
int page_found = 0;
struct kvmppc_pte pte;
bool is_mmio = false;
bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false;
bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false;
u64 vsid;
relocated = data ? dr : ir;
if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE))
iswrite = true;
/* Resolve real address if translation turned on */
if (relocated) {
page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite);
} else {
pte.may_execute = true;
pte.may_read = true;
pte.may_write = true;
pte.raddr = eaddr & KVM_PAM;
pte.eaddr = eaddr;
pte.vpage = eaddr >> 12;
pte.page_size = MMU_PAGE_64K;
}
switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) {
case 0:
pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
break;
case MSR_DR:
if (!data &&
(vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) &&
((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS))
pte.raddr &= ~SPLIT_HACK_MASK;
/* fall through */
case MSR_IR:
vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR)
pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
else
pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
pte.vpage |= vsid;
if (vsid == -1)
page_found = -EINVAL;
break;
}
if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* If we do the dcbz hack, we have to NX on every execution,
* so we can patch the executing code. This renders our guest
* NX-less.
*/
pte.may_execute = !data;
}
if (page_found == -ENOENT) {
/* Page not found in guest PTE entries */
u64 ssrr1 = vcpu->arch.shadow_srr1;
u64 msr = kvmppc_get_msr(vcpu);
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
kvmppc_set_dsisr(vcpu, vcpu->arch.fault_dsisr);
kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EPERM) {
/* Storage protection */
u32 dsisr = vcpu->arch.fault_dsisr;
u64 ssrr1 = vcpu->arch.shadow_srr1;
u64 msr = kvmppc_get_msr(vcpu);
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
dsisr = (dsisr & ~DSISR_NOHPTE) | DSISR_PROTFAULT;
kvmppc_set_dsisr(vcpu, dsisr);
kvmppc_set_msr_fast(vcpu, msr | (ssrr1 & 0xf8000000ULL));
kvmppc_book3s_queue_irqprio(vcpu, vec);
} else if (page_found == -EINVAL) {
/* Page not found in guest SLB */
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
} else if (!is_mmio &&
kvmppc_visible_gpa(vcpu, pte.raddr)) {
if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) {
/*
* There is already a host HPTE there, presumably
* a read-only one for a page the guest thinks
* is writable, so get rid of it first.
*/
kvmppc_mmu_unmap_page(vcpu, &pte);
}
/* The guest's PTE is not mapped yet. Map on the host */
kvmppc_mmu_map_page(vcpu, &pte, iswrite);
if (data)
vcpu->stat.sp_storage++;
else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
kvmppc_patch_dcbz(vcpu, &pte);
} else {
/* MMIO */
vcpu->stat.mmio_exits++;
vcpu->arch.paddr_accessed = pte.raddr;
vcpu->arch.vaddr_accessed = pte.eaddr;
r = kvmppc_emulate_mmio(run, vcpu);
if ( r == RESUME_HOST_NV )
r = RESUME_HOST;
}
return r;
}
/* Give up external provider (FPU, Altivec, VSX) */
void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
{
struct thread_struct *t = &current->thread;
/*
* VSX instructions can access FP and vector registers, so if
* we are giving up VSX, make sure we give up FP and VMX as well.
*/
if (msr & MSR_VSX)
msr |= MSR_FP | MSR_VEC;
msr &= vcpu->arch.guest_owned_ext;
if (!msr)
return;
#ifdef DEBUG_EXT
printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
#endif
if (msr & MSR_FP) {
/*
* Note that on CPUs with VSX, giveup_fpu stores
* both the traditional FP registers and the added VSX
* registers into thread.fp_state.fpr[].
*/
if (t->regs->msr & MSR_FP)
giveup_fpu(current);
t->fp_save_area = NULL;
}
#ifdef CONFIG_ALTIVEC
if (msr & MSR_VEC) {
if (current->thread.regs->msr & MSR_VEC)
giveup_altivec(current);
t->vr_save_area = NULL;
}
#endif
vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX);
kvmppc_recalc_shadow_msr(vcpu);
}
/* Give up facility (TAR / EBB / DSCR) */
static void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac)
{
#ifdef CONFIG_PPC_BOOK3S_64
if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) {
/* Facility not available to the guest, ignore giveup request*/
return;
}
switch (fac) {
case FSCR_TAR_LG:
vcpu->arch.tar = mfspr(SPRN_TAR);
mtspr(SPRN_TAR, current->thread.tar);
vcpu->arch.shadow_fscr &= ~FSCR_TAR;
break;
}
#endif
}
/* Handle external providers (FPU, Altivec, VSX) */
static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
ulong msr)
{
struct thread_struct *t = &current->thread;
/* When we have paired singles, we emulate in software */
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
return RESUME_GUEST;
if (!(kvmppc_get_msr(vcpu) & msr)) {
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
return RESUME_GUEST;
}
if (msr == MSR_VSX) {
/* No VSX? Give an illegal instruction interrupt */
#ifdef CONFIG_VSX
if (!cpu_has_feature(CPU_FTR_VSX))
#endif
{
kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
return RESUME_GUEST;
}
/*
* We have to load up all the FP and VMX registers before
* we can let the guest use VSX instructions.
*/
msr = MSR_FP | MSR_VEC | MSR_VSX;
}
/* See if we already own all the ext(s) needed */
msr &= ~vcpu->arch.guest_owned_ext;
if (!msr)
return RESUME_GUEST;
#ifdef DEBUG_EXT
printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
#endif
if (msr & MSR_FP) {
preempt_disable();
enable_kernel_fp();
load_fp_state(&vcpu->arch.fp);
disable_kernel_fp();
t->fp_save_area = &vcpu->arch.fp;
preempt_enable();
}
if (msr & MSR_VEC) {
#ifdef CONFIG_ALTIVEC
preempt_disable();
enable_kernel_altivec();
load_vr_state(&vcpu->arch.vr);
disable_kernel_altivec();
t->vr_save_area = &vcpu->arch.vr;
preempt_enable();
#endif
}
t->regs->msr |= msr;
vcpu->arch.guest_owned_ext |= msr;
kvmppc_recalc_shadow_msr(vcpu);
return RESUME_GUEST;
}
/*
* Kernel code using FP or VMX could have flushed guest state to
* the thread_struct; if so, get it back now.
*/
static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu)
{
unsigned long lost_ext;
lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr;
if (!lost_ext)
return;
if (lost_ext & MSR_FP) {
preempt_disable();
enable_kernel_fp();
load_fp_state(&vcpu->arch.fp);
disable_kernel_fp();
preempt_enable();
}
#ifdef CONFIG_ALTIVEC
if (lost_ext & MSR_VEC) {
preempt_disable();
enable_kernel_altivec();
load_vr_state(&vcpu->arch.vr);
disable_kernel_altivec();
preempt_enable();
}
#endif
current->thread.regs->msr |= lost_ext;
}
#ifdef CONFIG_PPC_BOOK3S_64
static void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac)
{
/* Inject the Interrupt Cause field and trigger a guest interrupt */
vcpu->arch.fscr &= ~(0xffULL << 56);
vcpu->arch.fscr |= (fac << 56);
kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL);
}
static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac)
{
enum emulation_result er = EMULATE_FAIL;
if (!(kvmppc_get_msr(vcpu) & MSR_PR))
er = kvmppc_emulate_instruction(vcpu->run, vcpu);
if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) {
/* Couldn't emulate, trigger interrupt in guest */
kvmppc_trigger_fac_interrupt(vcpu, fac);
}
}
/* Enable facilities (TAR, EBB, DSCR) for the guest */
static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac)
{
bool guest_fac_enabled;
BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S));
/*
* Not every facility is enabled by FSCR bits, check whether the
* guest has this facility enabled at all.
*/
switch (fac) {
case FSCR_TAR_LG:
case FSCR_EBB_LG:
guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac));
break;
case FSCR_TM_LG:
guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM;
break;
default:
guest_fac_enabled = false;
break;
}
if (!guest_fac_enabled) {
/* Facility not enabled by the guest */
kvmppc_trigger_fac_interrupt(vcpu, fac);
return RESUME_GUEST;
}
switch (fac) {
case FSCR_TAR_LG:
/* TAR switching isn't lazy in Linux yet */
current->thread.tar = mfspr(SPRN_TAR);
mtspr(SPRN_TAR, vcpu->arch.tar);
vcpu->arch.shadow_fscr |= FSCR_TAR;
break;
default:
kvmppc_emulate_fac(vcpu, fac);
break;
}
return RESUME_GUEST;
}
void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr)
{
if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) {
/* TAR got dropped, drop it in shadow too */
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
}
vcpu->arch.fscr = fscr;
}
#endif
static void kvmppc_setup_debug(struct kvm_vcpu *vcpu)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
u64 msr = kvmppc_get_msr(vcpu);
kvmppc_set_msr(vcpu, msr | MSR_SE);
}
}
static void kvmppc_clear_debug(struct kvm_vcpu *vcpu)
{
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
u64 msr = kvmppc_get_msr(vcpu);
kvmppc_set_msr(vcpu, msr & ~MSR_SE);
}
}
int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int exit_nr)
{
int r = RESUME_HOST;
int s;
vcpu->stat.sum_exits++;
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
/* We get here with MSR.EE=1 */
trace_kvm_exit(exit_nr, vcpu);
guest_exit();
switch (exit_nr) {
case BOOK3S_INTERRUPT_INST_STORAGE:
{
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
vcpu->stat.pf_instruc++;
if (kvmppc_is_split_real(vcpu))
kvmppc_fixup_split_real(vcpu);
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
{
struct kvmppc_book3s_shadow_vcpu *svcpu;
u32 sr;
svcpu = svcpu_get(vcpu);
sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT];
svcpu_put(svcpu);
if (sr == SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
r = RESUME_GUEST;
break;
}
}
#endif
/* only care about PTEG not found errors, but leave NX alone */
if (shadow_srr1 & 0x40000000) {
int idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
vcpu->stat.sp_instruc++;
} else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
(!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
/*
* XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
* so we can't use the NX bit inside the guest. Let's cross our fingers,
* that no guest that needs the dcbz hack does NX.
*/
kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
r = RESUME_GUEST;
} else {
u64 msr = kvmppc_get_msr(vcpu);
msr |= shadow_srr1 & 0x58000000;
kvmppc_set_msr_fast(vcpu, msr);
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
}
case BOOK3S_INTERRUPT_DATA_STORAGE:
{
ulong dar = kvmppc_get_fault_dar(vcpu);
u32 fault_dsisr = vcpu->arch.fault_dsisr;
vcpu->stat.pf_storage++;
#ifdef CONFIG_PPC_BOOK3S_32
/* We set segments as unused segments when invalidating them. So
* treat the respective fault as segment fault. */
{
struct kvmppc_book3s_shadow_vcpu *svcpu;
u32 sr;
svcpu = svcpu_get(vcpu);
sr = svcpu->sr[dar >> SID_SHIFT];
svcpu_put(svcpu);
if (sr == SR_INVALID) {
kvmppc_mmu_map_segment(vcpu, dar);
r = RESUME_GUEST;
break;
}
}
#endif
/*
* We need to handle missing shadow PTEs, and
* protection faults due to us mapping a page read-only
* when the guest thinks it is writable.
*/
if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) {
int idx = srcu_read_lock(&vcpu->kvm->srcu);
r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
srcu_read_unlock(&vcpu->kvm->srcu, idx);
} else {
kvmppc_set_dar(vcpu, dar);
kvmppc_set_dsisr(vcpu, fault_dsisr);
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
}
case BOOK3S_INTERRUPT_DATA_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu));
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_SEGMENT);
}
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_INST_SEGMENT:
if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_INST_SEGMENT);
}
r = RESUME_GUEST;
break;
/* We're good on these - the host merely wanted to get our attention */
case BOOK3S_INTERRUPT_DECREMENTER:
case BOOK3S_INTERRUPT_HV_DECREMENTER:
case BOOK3S_INTERRUPT_DOORBELL:
case BOOK3S_INTERRUPT_H_DOORBELL:
vcpu->stat.dec_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_EXTERNAL:
case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
case BOOK3S_INTERRUPT_EXTERNAL_HV:
vcpu->stat.ext_intr_exits++;
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PERFMON:
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_PROGRAM:
case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
{
enum emulation_result er;
ulong flags;
u32 last_inst;
int emul;
program_interrupt:
/*
* shadow_srr1 only contains valid flags if we came here via
* a program exception. The other exceptions (emulation assist,
* FP unavailable, etc.) do not provide flags in SRR1, so use
* an illegal-instruction exception when injecting a program
* interrupt into the guest.
*/
if (exit_nr == BOOK3S_INTERRUPT_PROGRAM)
flags = vcpu->arch.shadow_srr1 & 0x1f0000ull;
else
flags = SRR1_PROGILL;
emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
if (emul != EMULATE_DONE) {
r = RESUME_GUEST;
break;
}
if (kvmppc_get_msr(vcpu) & MSR_PR) {
#ifdef EXIT_DEBUG
pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n",
kvmppc_get_pc(vcpu), last_inst);
#endif
if ((last_inst & 0xff0007ff) !=
(INS_DCBZ & 0xfffffff7)) {
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
}
}
vcpu->stat.emulated_inst_exits++;
er = kvmppc_emulate_instruction(run, vcpu);
switch (er) {
case EMULATE_DONE:
r = RESUME_GUEST_NV;
break;
case EMULATE_AGAIN:
r = RESUME_GUEST;
break;
case EMULATE_FAIL:
printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
__func__, kvmppc_get_pc(vcpu), last_inst);
kvmppc_core_queue_program(vcpu, flags);
r = RESUME_GUEST;
break;
case EMULATE_DO_MMIO:
run->exit_reason = KVM_EXIT_MMIO;
r = RESUME_HOST_NV;
break;
case EMULATE_EXIT_USER:
r = RESUME_HOST_NV;
break;
default:
BUG();
}
break;
}
case BOOK3S_INTERRUPT_SYSCALL:
{
u32 last_sc;
int emul;
/* Get last sc for papr */
if (vcpu->arch.papr_enabled) {
/* The sc instuction points SRR0 to the next inst */
emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc);
if (emul != EMULATE_DONE) {
kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4);
r = RESUME_GUEST;
break;
}
}
if (vcpu->arch.papr_enabled &&
(last_sc == 0x44000022) &&
!(kvmppc_get_msr(vcpu) & MSR_PR)) {
/* SC 1 papr hypercalls */
ulong cmd = kvmppc_get_gpr(vcpu, 3);
int i;
#ifdef CONFIG_PPC_BOOK3S_64
if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
r = RESUME_GUEST;
break;
}
#endif
run->papr_hcall.nr = cmd;
for (i = 0; i < 9; ++i) {
ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
run->papr_hcall.args[i] = gpr;
}
run->exit_reason = KVM_EXIT_PAPR_HCALL;
vcpu->arch.hcall_needed = 1;
r = RESUME_HOST;
} else if (vcpu->arch.osi_enabled &&
(((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
(((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
/* MOL hypercalls */
u64 *gprs = run->osi.gprs;
int i;
run->exit_reason = KVM_EXIT_OSI;
for (i = 0; i < 32; i++)
gprs[i] = kvmppc_get_gpr(vcpu, i);
vcpu->arch.osi_needed = 1;
r = RESUME_HOST_NV;
} else if (!(kvmppc_get_msr(vcpu) & MSR_PR) &&
(((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
/* KVM PV hypercalls */
kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
r = RESUME_GUEST;
} else {
/* Guest syscalls */
vcpu->stat.syscall_exits++;
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
}
case BOOK3S_INTERRUPT_FP_UNAVAIL:
case BOOK3S_INTERRUPT_ALTIVEC:
case BOOK3S_INTERRUPT_VSX:
{
int ext_msr = 0;
int emul;
u32 last_inst;
if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) {
/* Do paired single instruction emulation */
emul = kvmppc_get_last_inst(vcpu, INST_GENERIC,
&last_inst);
if (emul == EMULATE_DONE)
goto program_interrupt;
else
r = RESUME_GUEST;
break;
}
/* Enable external provider */
switch (exit_nr) {
case BOOK3S_INTERRUPT_FP_UNAVAIL:
ext_msr = MSR_FP;
break;
case BOOK3S_INTERRUPT_ALTIVEC:
ext_msr = MSR_VEC;
break;
case BOOK3S_INTERRUPT_VSX:
ext_msr = MSR_VSX;
break;
}
r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
break;
}
case BOOK3S_INTERRUPT_ALIGNMENT:
{
u32 last_inst;
int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
if (emul == EMULATE_DONE) {
u32 dsisr;
u64 dar;
dsisr = kvmppc_alignment_dsisr(vcpu, last_inst);
dar = kvmppc_alignment_dar(vcpu, last_inst);
kvmppc_set_dsisr(vcpu, dsisr);
kvmppc_set_dar(vcpu, dar);
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
}
r = RESUME_GUEST;
break;
}
#ifdef CONFIG_PPC_BOOK3S_64
case BOOK3S_INTERRUPT_FAC_UNAVAIL:
kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56);
r = RESUME_GUEST;
break;
#endif
case BOOK3S_INTERRUPT_MACHINE_CHECK:
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
break;
case BOOK3S_INTERRUPT_TRACE:
if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
run->exit_reason = KVM_EXIT_DEBUG;
r = RESUME_HOST;
} else {
kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
r = RESUME_GUEST;
}
break;
default:
{
ulong shadow_srr1 = vcpu->arch.shadow_srr1;
/* Ugh - bork here! What did we get? */
printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
r = RESUME_HOST;
BUG();
break;
}
}
if (!(r & RESUME_HOST)) {
/* To avoid clobbering exit_reason, only check for signals if
* we aren't already exiting to userspace for some other
* reason. */
/*
* Interrupts could be timers for the guest which we have to
* inject again, so let's postpone them until we're in the guest
* and if we really did time things so badly, then we just exit
* again due to a host external interrupt.
*/
s = kvmppc_prepare_to_enter(vcpu);
if (s <= 0)
r = s;
else {
/* interrupts now hard-disabled */
kvmppc_fix_ee_before_entry();
}
kvmppc_handle_lost_ext(vcpu);
}
trace_kvm_book3s_reenter(r, vcpu);
return r;
}
static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
sregs->pvr = vcpu->arch.pvr;
sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
}
} else {
for (i = 0; i < 16; i++)
sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i);
for (i = 0; i < 8; i++) {
sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
}
}
return 0;
}
static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int i;
kvmppc_set_pvr_pr(vcpu, sregs->pvr);
vcpu3s->sdr1 = sregs->u.s.sdr1;
if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
for (i = 0; i < 64; i++) {
vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
sregs->u.s.ppc64.slb[i].slbe);
}
} else {
for (i = 0; i < 16; i++) {
vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
}
for (i = 0; i < 8; i++) {
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
(u32)sregs->u.s.ppc32.ibat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
(u32)(sregs->u.s.ppc32.ibat[i] >> 32));
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
(u32)sregs->u.s.ppc32.dbat[i]);
kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
(u32)(sregs->u.s.ppc32.dbat[i] >> 32));
}
}
/* Flush the MMU after messing with the segments */
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return 0;
}
static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_DEBUG_INST:
*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
break;
case KVM_REG_PPC_HIOR:
*val = get_reg_val(id, to_book3s(vcpu)->hior);
break;
case KVM_REG_PPC_LPCR:
case KVM_REG_PPC_LPCR_64:
/*
* We are only interested in the LPCR_ILE bit
*/
if (vcpu->arch.intr_msr & MSR_LE)
*val = get_reg_val(id, LPCR_ILE);
else
*val = get_reg_val(id, 0);
break;
default:
r = -EINVAL;
break;
}
return r;
}
static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr)
{
if (new_lpcr & LPCR_ILE)
vcpu->arch.intr_msr |= MSR_LE;
else
vcpu->arch.intr_msr &= ~MSR_LE;
}
static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id,
union kvmppc_one_reg *val)
{
int r = 0;
switch (id) {
case KVM_REG_PPC_HIOR:
to_book3s(vcpu)->hior = set_reg_val(id, *val);
to_book3s(vcpu)->hior_explicit = true;
break;
case KVM_REG_PPC_LPCR:
case KVM_REG_PPC_LPCR_64:
kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val));
break;
default:
r = -EINVAL;
break;
}
return r;
}
static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm,
unsigned int id)
{
struct kvmppc_vcpu_book3s *vcpu_book3s;
struct kvm_vcpu *vcpu;
int err = -ENOMEM;
unsigned long p;
vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
if (!vcpu)
goto out;
vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
if (!vcpu_book3s)
goto free_vcpu;
vcpu->arch.book3s = vcpu_book3s;
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
vcpu->arch.shadow_vcpu =
kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL);
if (!vcpu->arch.shadow_vcpu)
goto free_vcpu3s;
#endif
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto free_shadow_vcpu;
err = -ENOMEM;
p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
if (!p)
goto uninit_vcpu;
vcpu->arch.shared = (void *)p;
#ifdef CONFIG_PPC_BOOK3S_64
/* Always start the shared struct in native endian mode */
#ifdef __BIG_ENDIAN__
vcpu->arch.shared_big_endian = true;
#else
vcpu->arch.shared_big_endian = false;
#endif
/*
* Default to the same as the host if we're on sufficiently
* recent machine that we have 1TB segments;
* otherwise default to PPC970FX.
*/
vcpu->arch.pvr = 0x3C0301;
if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
vcpu->arch.pvr = mfspr(SPRN_PVR);
vcpu->arch.intr_msr = MSR_SF;
#else
/* default to book3s_32 (750) */
vcpu->arch.pvr = 0x84202;
#endif
kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr);
vcpu->arch.slb_nr = 64;
vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE;
err = kvmppc_mmu_init(vcpu);
if (err < 0)
goto uninit_vcpu;
return vcpu;
uninit_vcpu:
kvm_vcpu_uninit(vcpu);
free_shadow_vcpu:
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
kfree(vcpu->arch.shadow_vcpu);
free_vcpu3s:
#endif
vfree(vcpu_book3s);
free_vcpu:
kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
return ERR_PTR(err);
}
static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
kvm_vcpu_uninit(vcpu);
#ifdef CONFIG_KVM_BOOK3S_32_HANDLER
kfree(vcpu->arch.shadow_vcpu);
#endif
vfree(vcpu_book3s);
kmem_cache_free(kvm_vcpu_cache, vcpu);
}
static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
int ret;
#ifdef CONFIG_ALTIVEC
unsigned long uninitialized_var(vrsave);
#endif
/* Check if we can run the vcpu at all */
if (!vcpu->arch.sane) {
kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = -EINVAL;
goto out;
}
kvmppc_setup_debug(vcpu);
/*
* Interrupts could be timers for the guest which we have to inject
* again, so let's postpone them until we're in the guest and if we
* really did time things so badly, then we just exit again due to
* a host external interrupt.
*/
ret = kvmppc_prepare_to_enter(vcpu);
if (ret <= 0)
goto out;
/* interrupts now hard-disabled */
/* Save FPU, Altivec and VSX state */
giveup_all(current);
/* Preload FPU if it's enabled */
if (kvmppc_get_msr(vcpu) & MSR_FP)
kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
kvmppc_fix_ee_before_entry();
ret = __kvmppc_vcpu_run(kvm_run, vcpu);
kvmppc_clear_debug(vcpu);
/* No need for guest_exit. It's done in handle_exit.
We also get here with interrupts enabled. */
/* Make sure we save the guest FPU/Altivec/VSX state */
kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX);
/* Make sure we save the guest TAR/EBB/DSCR state */
kvmppc_giveup_fac(vcpu, FSCR_TAR_LG);
out:
vcpu->mode = OUTSIDE_GUEST_MODE;
return ret;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm,
struct kvm_dirty_log *log)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
struct kvm_vcpu *vcpu;
ulong ga, ga_end;
int is_dirty = 0;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
slots = kvm_memslots(kvm);
memslot = id_to_memslot(slots, log->slot);
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
kvm_for_each_vcpu(n, vcpu, kvm)
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
static void kvmppc_core_flush_memslot_pr(struct kvm *kvm,
struct kvm_memory_slot *memslot)
{
return;
}
static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm,
struct kvm_memory_slot *memslot,
const struct kvm_userspace_memory_region *mem)
{
return 0;
}
static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm,
const struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
const struct kvm_memory_slot *new)
{
return;
}
static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
return;
}
static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot,
unsigned long npages)
{
return 0;
}
#ifdef CONFIG_PPC64
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
struct kvm_ppc_smmu_info *info)
{
long int i;
struct kvm_vcpu *vcpu;
info->flags = 0;
/* SLB is always 64 entries */
info->slb_size = 64;
/* Standard 4k base page size segment */
info->sps[0].page_shift = 12;
info->sps[0].slb_enc = 0;
info->sps[0].enc[0].page_shift = 12;
info->sps[0].enc[0].pte_enc = 0;
/*
* 64k large page size.
* We only want to put this in if the CPUs we're emulating
* support it, but unfortunately we don't have a vcpu easily
* to hand here to test. Just pick the first vcpu, and if
* that doesn't exist yet, report the minimum capability,
* i.e., no 64k pages.
* 1T segment support goes along with 64k pages.
*/
i = 1;
vcpu = kvm_get_vcpu(kvm, 0);
if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) {
info->flags = KVM_PPC_1T_SEGMENTS;
info->sps[i].page_shift = 16;
info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01;
info->sps[i].enc[0].page_shift = 16;
info->sps[i].enc[0].pte_enc = 1;
++i;
}
/* Standard 16M large page size segment */
info->sps[i].page_shift = 24;
info->sps[i].slb_enc = SLB_VSID_L;
info->sps[i].enc[0].page_shift = 24;
info->sps[i].enc[0].pte_enc = 0;
return 0;
}
#else
static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm,
struct kvm_ppc_smmu_info *info)
{
/* We should not get called */
BUG();
}
#endif /* CONFIG_PPC64 */
static unsigned int kvm_global_user_count = 0;
static DEFINE_SPINLOCK(kvm_global_user_count_lock);
static int kvmppc_core_init_vm_pr(struct kvm *kvm)
{
mutex_init(&kvm->arch.hpt_mutex);
#ifdef CONFIG_PPC_BOOK3S_64
/* Start out with the default set of hcalls enabled */
kvmppc_pr_init_default_hcalls(kvm);
#endif
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
spin_lock(&kvm_global_user_count_lock);
if (++kvm_global_user_count == 1)
pseries_disable_reloc_on_exc();
spin_unlock(&kvm_global_user_count_lock);
}
return 0;
}
static void kvmppc_core_destroy_vm_pr(struct kvm *kvm)
{
#ifdef CONFIG_PPC64
WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
#endif
if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
spin_lock(&kvm_global_user_count_lock);
BUG_ON(kvm_global_user_count == 0);
if (--kvm_global_user_count == 0)
pseries_enable_reloc_on_exc();
spin_unlock(&kvm_global_user_count_lock);
}
}
static int kvmppc_core_check_processor_compat_pr(void)
{
/*
* Disable KVM for Power9 untill the required bits merged.
*/
if (cpu_has_feature(CPU_FTR_ARCH_300))
return -EIO;
return 0;
}
static long kvm_arch_vm_ioctl_pr(struct file *filp,
unsigned int ioctl, unsigned long arg)
{
return -ENOTTY;
}
static struct kvmppc_ops kvm_ops_pr = {
.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr,
.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr,
.get_one_reg = kvmppc_get_one_reg_pr,
.set_one_reg = kvmppc_set_one_reg_pr,
.vcpu_load = kvmppc_core_vcpu_load_pr,
.vcpu_put = kvmppc_core_vcpu_put_pr,
.set_msr = kvmppc_set_msr_pr,
.vcpu_run = kvmppc_vcpu_run_pr,
.vcpu_create = kvmppc_core_vcpu_create_pr,
.vcpu_free = kvmppc_core_vcpu_free_pr,
.check_requests = kvmppc_core_check_requests_pr,
.get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr,
.flush_memslot = kvmppc_core_flush_memslot_pr,
.prepare_memory_region = kvmppc_core_prepare_memory_region_pr,
.commit_memory_region = kvmppc_core_commit_memory_region_pr,
.unmap_hva = kvm_unmap_hva_pr,
.unmap_hva_range = kvm_unmap_hva_range_pr,
.age_hva = kvm_age_hva_pr,
.test_age_hva = kvm_test_age_hva_pr,
.set_spte_hva = kvm_set_spte_hva_pr,
.mmu_destroy = kvmppc_mmu_destroy_pr,
.free_memslot = kvmppc_core_free_memslot_pr,
.create_memslot = kvmppc_core_create_memslot_pr,
.init_vm = kvmppc_core_init_vm_pr,
.destroy_vm = kvmppc_core_destroy_vm_pr,
.get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr,
.emulate_op = kvmppc_core_emulate_op_pr,
.emulate_mtspr = kvmppc_core_emulate_mtspr_pr,
.emulate_mfspr = kvmppc_core_emulate_mfspr_pr,
.fast_vcpu_kick = kvm_vcpu_kick,
.arch_vm_ioctl = kvm_arch_vm_ioctl_pr,
#ifdef CONFIG_PPC_BOOK3S_64
.hcall_implemented = kvmppc_hcall_impl_pr,
#endif
};
int kvmppc_book3s_init_pr(void)
{
int r;
r = kvmppc_core_check_processor_compat_pr();
if (r < 0)
return r;
kvm_ops_pr.owner = THIS_MODULE;
kvmppc_pr_ops = &kvm_ops_pr;
r = kvmppc_mmu_hpte_sysinit();
return r;
}
void kvmppc_book3s_exit_pr(void)
{
kvmppc_pr_ops = NULL;
kvmppc_mmu_hpte_sysexit();
}
/*
* We only support separate modules for book3s 64
*/
#ifdef CONFIG_PPC_BOOK3S_64
module_init(kvmppc_book3s_init_pr);
module_exit(kvmppc_book3s_exit_pr);
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");
#endif