linux-sg2042/arch/x86/mm/mpx.c

930 lines
24 KiB
C

/*
* mpx.c - Memory Protection eXtensions
*
* Copyright (c) 2014, Intel Corporation.
* Qiaowei Ren <qiaowei.ren@intel.com>
* Dave Hansen <dave.hansen@intel.com>
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
#include <linux/sched/sysctl.h>
#include <asm/i387.h>
#include <asm/insn.h>
#include <asm/mman.h>
#include <asm/mmu_context.h>
#include <asm/mpx.h>
#include <asm/processor.h>
#include <asm/fpu-internal.h>
static const char *mpx_mapping_name(struct vm_area_struct *vma)
{
return "[mpx]";
}
static struct vm_operations_struct mpx_vma_ops = {
.name = mpx_mapping_name,
};
static int is_mpx_vma(struct vm_area_struct *vma)
{
return (vma->vm_ops == &mpx_vma_ops);
}
/*
* This is really a simplified "vm_mmap". it only handles MPX
* bounds tables (the bounds directory is user-allocated).
*
* Later on, we use the vma->vm_ops to uniquely identify these
* VMAs.
*/
static unsigned long mpx_mmap(unsigned long len)
{
unsigned long ret;
unsigned long addr, pgoff;
struct mm_struct *mm = current->mm;
vm_flags_t vm_flags;
struct vm_area_struct *vma;
/* Only bounds table and bounds directory can be allocated here */
if (len != MPX_BD_SIZE_BYTES && len != MPX_BT_SIZE_BYTES)
return -EINVAL;
down_write(&mm->mmap_sem);
/* Too many mappings? */
if (mm->map_count > sysctl_max_map_count) {
ret = -ENOMEM;
goto out;
}
/* Obtain the address to map to. we verify (or select) it and ensure
* that it represents a valid section of the address space.
*/
addr = get_unmapped_area(NULL, 0, len, 0, MAP_ANONYMOUS | MAP_PRIVATE);
if (addr & ~PAGE_MASK) {
ret = addr;
goto out;
}
vm_flags = VM_READ | VM_WRITE | VM_MPX |
mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
/* Set pgoff according to addr for anon_vma */
pgoff = addr >> PAGE_SHIFT;
ret = mmap_region(NULL, addr, len, vm_flags, pgoff);
if (IS_ERR_VALUE(ret))
goto out;
vma = find_vma(mm, ret);
if (!vma) {
ret = -ENOMEM;
goto out;
}
vma->vm_ops = &mpx_vma_ops;
if (vm_flags & VM_LOCKED) {
up_write(&mm->mmap_sem);
mm_populate(ret, len);
return ret;
}
out:
up_write(&mm->mmap_sem);
return ret;
}
enum reg_type {
REG_TYPE_RM = 0,
REG_TYPE_INDEX,
REG_TYPE_BASE,
};
static unsigned long get_reg_offset(struct insn *insn, struct pt_regs *regs,
enum reg_type type)
{
int regno = 0;
static const int regoff[] = {
offsetof(struct pt_regs, ax),
offsetof(struct pt_regs, cx),
offsetof(struct pt_regs, dx),
offsetof(struct pt_regs, bx),
offsetof(struct pt_regs, sp),
offsetof(struct pt_regs, bp),
offsetof(struct pt_regs, si),
offsetof(struct pt_regs, di),
#ifdef CONFIG_X86_64
offsetof(struct pt_regs, r8),
offsetof(struct pt_regs, r9),
offsetof(struct pt_regs, r10),
offsetof(struct pt_regs, r11),
offsetof(struct pt_regs, r12),
offsetof(struct pt_regs, r13),
offsetof(struct pt_regs, r14),
offsetof(struct pt_regs, r15),
#endif
};
int nr_registers = ARRAY_SIZE(regoff);
/*
* Don't possibly decode a 32-bit instructions as
* reading a 64-bit-only register.
*/
if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
nr_registers -= 8;
switch (type) {
case REG_TYPE_RM:
regno = X86_MODRM_RM(insn->modrm.value);
if (X86_REX_B(insn->rex_prefix.value) == 1)
regno += 8;
break;
case REG_TYPE_INDEX:
regno = X86_SIB_INDEX(insn->sib.value);
if (X86_REX_X(insn->rex_prefix.value) == 1)
regno += 8;
break;
case REG_TYPE_BASE:
regno = X86_SIB_BASE(insn->sib.value);
if (X86_REX_B(insn->rex_prefix.value) == 1)
regno += 8;
break;
default:
pr_err("invalid register type");
BUG();
break;
}
if (regno > nr_registers) {
WARN_ONCE(1, "decoded an instruction with an invalid register");
return -EINVAL;
}
return regoff[regno];
}
/*
* return the address being referenced be instruction
* for rm=3 returning the content of the rm reg
* for rm!=3 calculates the address using SIB and Disp
*/
static void __user *mpx_get_addr_ref(struct insn *insn, struct pt_regs *regs)
{
unsigned long addr, addr_offset;
unsigned long base, base_offset;
unsigned long indx, indx_offset;
insn_byte_t sib;
insn_get_modrm(insn);
insn_get_sib(insn);
sib = insn->sib.value;
if (X86_MODRM_MOD(insn->modrm.value) == 3) {
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
if (addr_offset < 0)
goto out_err;
addr = regs_get_register(regs, addr_offset);
} else {
if (insn->sib.nbytes) {
base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
if (base_offset < 0)
goto out_err;
indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
if (indx_offset < 0)
goto out_err;
base = regs_get_register(regs, base_offset);
indx = regs_get_register(regs, indx_offset);
addr = base + indx * (1 << X86_SIB_SCALE(sib));
} else {
addr_offset = get_reg_offset(insn, regs, REG_TYPE_RM);
if (addr_offset < 0)
goto out_err;
addr = regs_get_register(regs, addr_offset);
}
addr += insn->displacement.value;
}
return (void __user *)addr;
out_err:
return (void __user *)-1;
}
static int mpx_insn_decode(struct insn *insn,
struct pt_regs *regs)
{
unsigned char buf[MAX_INSN_SIZE];
int x86_64 = !test_thread_flag(TIF_IA32);
int not_copied;
int nr_copied;
not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf));
nr_copied = sizeof(buf) - not_copied;
/*
* The decoder _should_ fail nicely if we pass it a short buffer.
* But, let's not depend on that implementation detail. If we
* did not get anything, just error out now.
*/
if (!nr_copied)
return -EFAULT;
insn_init(insn, buf, nr_copied, x86_64);
insn_get_length(insn);
/*
* copy_from_user() tries to get as many bytes as we could see in
* the largest possible instruction. If the instruction we are
* after is shorter than that _and_ we attempt to copy from
* something unreadable, we might get a short read. This is OK
* as long as the read did not stop in the middle of the
* instruction. Check to see if we got a partial instruction.
*/
if (nr_copied < insn->length)
return -EFAULT;
insn_get_opcode(insn);
/*
* We only _really_ need to decode bndcl/bndcn/bndcu
* Error out on anything else.
*/
if (insn->opcode.bytes[0] != 0x0f)
goto bad_opcode;
if ((insn->opcode.bytes[1] != 0x1a) &&
(insn->opcode.bytes[1] != 0x1b))
goto bad_opcode;
return 0;
bad_opcode:
return -EINVAL;
}
/*
* If a bounds overflow occurs then a #BR is generated. This
* function decodes MPX instructions to get violation address
* and set this address into extended struct siginfo.
*
* Note that this is not a super precise way of doing this.
* Userspace could have, by the time we get here, written
* anything it wants in to the instructions. We can not
* trust anything about it. They might not be valid
* instructions or might encode invalid registers, etc...
*
* The caller is expected to kfree() the returned siginfo_t.
*/
siginfo_t *mpx_generate_siginfo(struct pt_regs *regs,
struct xsave_struct *xsave_buf)
{
struct bndreg *bndregs, *bndreg;
siginfo_t *info = NULL;
struct insn insn;
uint8_t bndregno;
int err;
err = mpx_insn_decode(&insn, regs);
if (err)
goto err_out;
/*
* We know at this point that we are only dealing with
* MPX instructions.
*/
insn_get_modrm(&insn);
bndregno = X86_MODRM_REG(insn.modrm.value);
if (bndregno > 3) {
err = -EINVAL;
goto err_out;
}
/* get the bndregs _area_ of the xsave structure */
bndregs = get_xsave_addr(xsave_buf, XSTATE_BNDREGS);
if (!bndregs) {
err = -EINVAL;
goto err_out;
}
/* now go select the individual register in the set of 4 */
bndreg = &bndregs[bndregno];
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info) {
err = -ENOMEM;
goto err_out;
}
/*
* The registers are always 64-bit, but the upper 32
* bits are ignored in 32-bit mode. Also, note that the
* upper bounds are architecturally represented in 1's
* complement form.
*
* The 'unsigned long' cast is because the compiler
* complains when casting from integers to different-size
* pointers.
*/
info->si_lower = (void __user *)(unsigned long)bndreg->lower_bound;
info->si_upper = (void __user *)(unsigned long)~bndreg->upper_bound;
info->si_addr_lsb = 0;
info->si_signo = SIGSEGV;
info->si_errno = 0;
info->si_code = SEGV_BNDERR;
info->si_addr = mpx_get_addr_ref(&insn, regs);
/*
* We were not able to extract an address from the instruction,
* probably because there was something invalid in it.
*/
if (info->si_addr == (void *)-1) {
err = -EINVAL;
goto err_out;
}
return info;
err_out:
/* info might be NULL, but kfree() handles that */
kfree(info);
return ERR_PTR(err);
}
static __user void *task_get_bounds_dir(struct task_struct *tsk)
{
struct bndcsr *bndcsr;
if (!cpu_feature_enabled(X86_FEATURE_MPX))
return MPX_INVALID_BOUNDS_DIR;
/*
* The bounds directory pointer is stored in a register
* only accessible if we first do an xsave.
*/
fpu_save_init(&tsk->thread.fpu);
bndcsr = get_xsave_addr(&tsk->thread.fpu.state->xsave, XSTATE_BNDCSR);
if (!bndcsr)
return MPX_INVALID_BOUNDS_DIR;
/*
* Make sure the register looks valid by checking the
* enable bit.
*/
if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG))
return MPX_INVALID_BOUNDS_DIR;
/*
* Lastly, mask off the low bits used for configuration
* flags, and return the address of the bounds table.
*/
return (void __user *)(unsigned long)
(bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK);
}
int mpx_enable_management(struct task_struct *tsk)
{
void __user *bd_base = MPX_INVALID_BOUNDS_DIR;
struct mm_struct *mm = tsk->mm;
int ret = 0;
/*
* runtime in the userspace will be responsible for allocation of
* the bounds directory. Then, it will save the base of the bounds
* directory into XSAVE/XRSTOR Save Area and enable MPX through
* XRSTOR instruction.
*
* fpu_xsave() is expected to be very expensive. Storing the bounds
* directory here means that we do not have to do xsave in the unmap
* path; we can just use mm->bd_addr instead.
*/
bd_base = task_get_bounds_dir(tsk);
down_write(&mm->mmap_sem);
mm->bd_addr = bd_base;
if (mm->bd_addr == MPX_INVALID_BOUNDS_DIR)
ret = -ENXIO;
up_write(&mm->mmap_sem);
return ret;
}
int mpx_disable_management(struct task_struct *tsk)
{
struct mm_struct *mm = current->mm;
if (!cpu_feature_enabled(X86_FEATURE_MPX))
return -ENXIO;
down_write(&mm->mmap_sem);
mm->bd_addr = MPX_INVALID_BOUNDS_DIR;
up_write(&mm->mmap_sem);
return 0;
}
/*
* With 32-bit mode, MPX_BT_SIZE_BYTES is 4MB, and the size of each
* bounds table is 16KB. With 64-bit mode, MPX_BT_SIZE_BYTES is 2GB,
* and the size of each bounds table is 4MB.
*/
static int allocate_bt(long __user *bd_entry)
{
unsigned long expected_old_val = 0;
unsigned long actual_old_val = 0;
unsigned long bt_addr;
int ret = 0;
/*
* Carve the virtual space out of userspace for the new
* bounds table:
*/
bt_addr = mpx_mmap(MPX_BT_SIZE_BYTES);
if (IS_ERR((void *)bt_addr))
return PTR_ERR((void *)bt_addr);
/*
* Set the valid flag (kinda like _PAGE_PRESENT in a pte)
*/
bt_addr = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
/*
* Go poke the address of the new bounds table in to the
* bounds directory entry out in userspace memory. Note:
* we may race with another CPU instantiating the same table.
* In that case the cmpxchg will see an unexpected
* 'actual_old_val'.
*
* This can fault, but that's OK because we do not hold
* mmap_sem at this point, unlike some of the other part
* of the MPX code that have to pagefault_disable().
*/
ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
expected_old_val, bt_addr);
if (ret)
goto out_unmap;
/*
* The user_atomic_cmpxchg_inatomic() will only return nonzero
* for faults, *not* if the cmpxchg itself fails. Now we must
* verify that the cmpxchg itself completed successfully.
*/
/*
* We expected an empty 'expected_old_val', but instead found
* an apparently valid entry. Assume we raced with another
* thread to instantiate this table and desclare succecss.
*/
if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) {
ret = 0;
goto out_unmap;
}
/*
* We found a non-empty bd_entry but it did not have the
* VALID_FLAG set. Return an error which will result in
* a SEGV since this probably means that somebody scribbled
* some invalid data in to a bounds table.
*/
if (expected_old_val != actual_old_val) {
ret = -EINVAL;
goto out_unmap;
}
return 0;
out_unmap:
vm_munmap(bt_addr & MPX_BT_ADDR_MASK, MPX_BT_SIZE_BYTES);
return ret;
}
/*
* When a BNDSTX instruction attempts to save bounds to a bounds
* table, it will first attempt to look up the table in the
* first-level bounds directory. If it does not find a table in
* the directory, a #BR is generated and we get here in order to
* allocate a new table.
*
* With 32-bit mode, the size of BD is 4MB, and the size of each
* bound table is 16KB. With 64-bit mode, the size of BD is 2GB,
* and the size of each bound table is 4MB.
*/
static int do_mpx_bt_fault(struct xsave_struct *xsave_buf)
{
unsigned long bd_entry, bd_base;
struct bndcsr *bndcsr;
bndcsr = get_xsave_addr(xsave_buf, XSTATE_BNDCSR);
if (!bndcsr)
return -EINVAL;
/*
* Mask off the preserve and enable bits
*/
bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK;
/*
* The hardware provides the address of the missing or invalid
* entry via BNDSTATUS, so we don't have to go look it up.
*/
bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK;
/*
* Make sure the directory entry is within where we think
* the directory is.
*/
if ((bd_entry < bd_base) ||
(bd_entry >= bd_base + MPX_BD_SIZE_BYTES))
return -EINVAL;
return allocate_bt((long __user *)bd_entry);
}
int mpx_handle_bd_fault(struct xsave_struct *xsave_buf)
{
/*
* Userspace never asked us to manage the bounds tables,
* so refuse to help.
*/
if (!kernel_managing_mpx_tables(current->mm))
return -EINVAL;
if (do_mpx_bt_fault(xsave_buf)) {
force_sig(SIGSEGV, current);
/*
* The force_sig() is essentially "handling" this
* exception, so we do not pass up the error
* from do_mpx_bt_fault().
*/
}
return 0;
}
/*
* A thin wrapper around get_user_pages(). Returns 0 if the
* fault was resolved or -errno if not.
*/
static int mpx_resolve_fault(long __user *addr, int write)
{
long gup_ret;
int nr_pages = 1;
int force = 0;
gup_ret = get_user_pages(current, current->mm, (unsigned long)addr,
nr_pages, write, force, NULL, NULL);
/*
* get_user_pages() returns number of pages gotten.
* 0 means we failed to fault in and get anything,
* probably because 'addr' is bad.
*/
if (!gup_ret)
return -EFAULT;
/* Other error, return it */
if (gup_ret < 0)
return gup_ret;
/* must have gup'd a page and gup_ret>0, success */
return 0;
}
/*
* Get the base of bounds tables pointed by specific bounds
* directory entry.
*/
static int get_bt_addr(struct mm_struct *mm,
long __user *bd_entry, unsigned long *bt_addr)
{
int ret;
int valid_bit;
if (!access_ok(VERIFY_READ, (bd_entry), sizeof(*bd_entry)))
return -EFAULT;
while (1) {
int need_write = 0;
pagefault_disable();
ret = get_user(*bt_addr, bd_entry);
pagefault_enable();
if (!ret)
break;
if (ret == -EFAULT)
ret = mpx_resolve_fault(bd_entry, need_write);
/*
* If we could not resolve the fault, consider it
* userspace's fault and error out.
*/
if (ret)
return ret;
}
valid_bit = *bt_addr & MPX_BD_ENTRY_VALID_FLAG;
*bt_addr &= MPX_BT_ADDR_MASK;
/*
* When the kernel is managing bounds tables, a bounds directory
* entry will either have a valid address (plus the valid bit)
* *OR* be completely empty. If we see a !valid entry *and* some
* data in the address field, we know something is wrong. This
* -EINVAL return will cause a SIGSEGV.
*/
if (!valid_bit && *bt_addr)
return -EINVAL;
/*
* Do we have an completely zeroed bt entry? That is OK. It
* just means there was no bounds table for this memory. Make
* sure to distinguish this from -EINVAL, which will cause
* a SEGV.
*/
if (!valid_bit)
return -ENOENT;
return 0;
}
/*
* Free the backing physical pages of bounds table 'bt_addr'.
* Assume start...end is within that bounds table.
*/
static int zap_bt_entries(struct mm_struct *mm,
unsigned long bt_addr,
unsigned long start, unsigned long end)
{
struct vm_area_struct *vma;
unsigned long addr, len;
/*
* Find the first overlapping vma. If vma->vm_start > start, there
* will be a hole in the bounds table. This -EINVAL return will
* cause a SIGSEGV.
*/
vma = find_vma(mm, start);
if (!vma || vma->vm_start > start)
return -EINVAL;
/*
* A NUMA policy on a VM_MPX VMA could cause this bouds table to
* be split. So we need to look across the entire 'start -> end'
* range of this bounds table, find all of the VM_MPX VMAs, and
* zap only those.
*/
addr = start;
while (vma && vma->vm_start < end) {
/*
* We followed a bounds directory entry down
* here. If we find a non-MPX VMA, that's bad,
* so stop immediately and return an error. This
* probably results in a SIGSEGV.
*/
if (!is_mpx_vma(vma))
return -EINVAL;
len = min(vma->vm_end, end) - addr;
zap_page_range(vma, addr, len, NULL);
vma = vma->vm_next;
addr = vma->vm_start;
}
return 0;
}
static int unmap_single_bt(struct mm_struct *mm,
long __user *bd_entry, unsigned long bt_addr)
{
unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG;
unsigned long actual_old_val = 0;
int ret;
while (1) {
int need_write = 1;
pagefault_disable();
ret = user_atomic_cmpxchg_inatomic(&actual_old_val, bd_entry,
expected_old_val, 0);
pagefault_enable();
if (!ret)
break;
if (ret == -EFAULT)
ret = mpx_resolve_fault(bd_entry, need_write);
/*
* If we could not resolve the fault, consider it
* userspace's fault and error out.
*/
if (ret)
return ret;
}
/*
* The cmpxchg was performed, check the results.
*/
if (actual_old_val != expected_old_val) {
/*
* Someone else raced with us to unmap the table.
* There was no bounds table pointed to by the
* directory, so declare success. Somebody freed
* it.
*/
if (!actual_old_val)
return 0;
/*
* Something messed with the bounds directory
* entry. We hold mmap_sem for read or write
* here, so it could not be a _new_ bounds table
* that someone just allocated. Something is
* wrong, so pass up the error and SIGSEGV.
*/
return -EINVAL;
}
/*
* Note, we are likely being called under do_munmap() already. To
* avoid recursion, do_munmap() will check whether it comes
* from one bounds table through VM_MPX flag.
*/
return do_munmap(mm, bt_addr, MPX_BT_SIZE_BYTES);
}
/*
* If the bounds table pointed by bounds directory 'bd_entry' is
* not shared, unmap this whole bounds table. Otherwise, only free
* those backing physical pages of bounds table entries covered
* in this virtual address region start...end.
*/
static int unmap_shared_bt(struct mm_struct *mm,
long __user *bd_entry, unsigned long start,
unsigned long end, bool prev_shared, bool next_shared)
{
unsigned long bt_addr;
int ret;
ret = get_bt_addr(mm, bd_entry, &bt_addr);
/*
* We could see an "error" ret for not-present bounds
* tables (not really an error), or actual errors, but
* stop unmapping either way.
*/
if (ret)
return ret;
if (prev_shared && next_shared)
ret = zap_bt_entries(mm, bt_addr,
bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
else if (prev_shared)
ret = zap_bt_entries(mm, bt_addr,
bt_addr+MPX_GET_BT_ENTRY_OFFSET(start),
bt_addr+MPX_BT_SIZE_BYTES);
else if (next_shared)
ret = zap_bt_entries(mm, bt_addr, bt_addr,
bt_addr+MPX_GET_BT_ENTRY_OFFSET(end));
else
ret = unmap_single_bt(mm, bd_entry, bt_addr);
return ret;
}
/*
* A virtual address region being munmap()ed might share bounds table
* with adjacent VMAs. We only need to free the backing physical
* memory of these shared bounds tables entries covered in this virtual
* address region.
*/
static int unmap_edge_bts(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
int ret;
long __user *bde_start, *bde_end;
struct vm_area_struct *prev, *next;
bool prev_shared = false, next_shared = false;
bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
/*
* Check whether bde_start and bde_end are shared with adjacent
* VMAs.
*
* We already unliked the VMAs from the mm's rbtree so 'start'
* is guaranteed to be in a hole. This gets us the first VMA
* before the hole in to 'prev' and the next VMA after the hole
* in to 'next'.
*/
next = find_vma_prev(mm, start, &prev);
if (prev && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(prev->vm_end-1))
== bde_start)
prev_shared = true;
if (next && (mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(next->vm_start))
== bde_end)
next_shared = true;
/*
* This virtual address region being munmap()ed is only
* covered by one bounds table.
*
* In this case, if this table is also shared with adjacent
* VMAs, only part of the backing physical memory of the bounds
* table need be freeed. Otherwise the whole bounds table need
* be unmapped.
*/
if (bde_start == bde_end) {
return unmap_shared_bt(mm, bde_start, start, end,
prev_shared, next_shared);
}
/*
* If more than one bounds tables are covered in this virtual
* address region being munmap()ed, we need to separately check
* whether bde_start and bde_end are shared with adjacent VMAs.
*/
ret = unmap_shared_bt(mm, bde_start, start, end, prev_shared, false);
if (ret)
return ret;
ret = unmap_shared_bt(mm, bde_end, start, end, false, next_shared);
if (ret)
return ret;
return 0;
}
static int mpx_unmap_tables(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
int ret;
long __user *bd_entry, *bde_start, *bde_end;
unsigned long bt_addr;
/*
* "Edge" bounds tables are those which are being used by the region
* (start -> end), but that may be shared with adjacent areas. If they
* turn out to be completely unshared, they will be freed. If they are
* shared, we will free the backing store (like an MADV_DONTNEED) for
* areas used by this region.
*/
ret = unmap_edge_bts(mm, start, end);
switch (ret) {
/* non-present tables are OK */
case 0:
case -ENOENT:
/* Success, or no tables to unmap */
break;
case -EINVAL:
case -EFAULT:
default:
return ret;
}
/*
* Only unmap the bounds table that are
* 1. fully covered
* 2. not at the edges of the mapping, even if full aligned
*/
bde_start = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(start);
bde_end = mm->bd_addr + MPX_GET_BD_ENTRY_OFFSET(end-1);
for (bd_entry = bde_start + 1; bd_entry < bde_end; bd_entry++) {
ret = get_bt_addr(mm, bd_entry, &bt_addr);
switch (ret) {
case 0:
break;
case -ENOENT:
/* No table here, try the next one */
continue;
case -EINVAL:
case -EFAULT:
default:
/*
* Note: we are being strict here.
* Any time we run in to an issue
* unmapping tables, we stop and
* SIGSEGV.
*/
return ret;
}
ret = unmap_single_bt(mm, bd_entry, bt_addr);
if (ret)
return ret;
}
return 0;
}
/*
* Free unused bounds tables covered in a virtual address region being
* munmap()ed. Assume end > start.
*
* This function will be called by do_munmap(), and the VMAs covering
* the virtual address region start...end have already been split if
* necessary, and the 'vma' is the first vma in this range (start -> end).
*/
void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
int ret;
/*
* Refuse to do anything unless userspace has asked
* the kernel to help manage the bounds tables,
*/
if (!kernel_managing_mpx_tables(current->mm))
return;
/*
* This will look across the entire 'start -> end' range,
* and find all of the non-VM_MPX VMAs.
*
* To avoid recursion, if a VM_MPX vma is found in the range
* (start->end), we will not continue follow-up work. This
* recursion represents having bounds tables for bounds tables,
* which should not occur normally. Being strict about it here
* helps ensure that we do not have an exploitable stack overflow.
*/
do {
if (vma->vm_flags & VM_MPX)
return;
vma = vma->vm_next;
} while (vma && vma->vm_start < end);
ret = mpx_unmap_tables(mm, start, end);
if (ret)
force_sig(SIGSEGV, current);
}