linux-sg2042/drivers/gpu/ipu-v3/ipu-common.c

1371 lines
33 KiB
C

/*
* Copyright (c) 2010 Sascha Hauer <s.hauer@pengutronix.de>
* Copyright (C) 2005-2009 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include <linux/module.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/reset.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/list.h>
#include <linux/irq.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/of_device.h>
#include <linux/of_graph.h>
#include <drm/drm_fourcc.h>
#include <video/imx-ipu-v3.h>
#include "ipu-prv.h"
static inline u32 ipu_cm_read(struct ipu_soc *ipu, unsigned offset)
{
return readl(ipu->cm_reg + offset);
}
static inline void ipu_cm_write(struct ipu_soc *ipu, u32 value, unsigned offset)
{
writel(value, ipu->cm_reg + offset);
}
void ipu_srm_dp_sync_update(struct ipu_soc *ipu)
{
u32 val;
val = ipu_cm_read(ipu, IPU_SRM_PRI2);
val |= 0x8;
ipu_cm_write(ipu, val, IPU_SRM_PRI2);
}
EXPORT_SYMBOL_GPL(ipu_srm_dp_sync_update);
enum ipu_color_space ipu_drm_fourcc_to_colorspace(u32 drm_fourcc)
{
switch (drm_fourcc) {
case DRM_FORMAT_ARGB1555:
case DRM_FORMAT_ABGR1555:
case DRM_FORMAT_RGBA5551:
case DRM_FORMAT_BGRA5551:
case DRM_FORMAT_RGB565:
case DRM_FORMAT_BGR565:
case DRM_FORMAT_RGB888:
case DRM_FORMAT_BGR888:
case DRM_FORMAT_ARGB4444:
case DRM_FORMAT_XRGB8888:
case DRM_FORMAT_XBGR8888:
case DRM_FORMAT_RGBX8888:
case DRM_FORMAT_BGRX8888:
case DRM_FORMAT_ARGB8888:
case DRM_FORMAT_ABGR8888:
case DRM_FORMAT_RGBA8888:
case DRM_FORMAT_BGRA8888:
return IPUV3_COLORSPACE_RGB;
case DRM_FORMAT_YUYV:
case DRM_FORMAT_UYVY:
case DRM_FORMAT_YUV420:
case DRM_FORMAT_YVU420:
case DRM_FORMAT_YUV422:
case DRM_FORMAT_YVU422:
case DRM_FORMAT_NV12:
case DRM_FORMAT_NV21:
case DRM_FORMAT_NV16:
case DRM_FORMAT_NV61:
return IPUV3_COLORSPACE_YUV;
default:
return IPUV3_COLORSPACE_UNKNOWN;
}
}
EXPORT_SYMBOL_GPL(ipu_drm_fourcc_to_colorspace);
enum ipu_color_space ipu_pixelformat_to_colorspace(u32 pixelformat)
{
switch (pixelformat) {
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
case V4L2_PIX_FMT_YUV422P:
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
return IPUV3_COLORSPACE_YUV;
case V4L2_PIX_FMT_RGB32:
case V4L2_PIX_FMT_BGR32:
case V4L2_PIX_FMT_RGB24:
case V4L2_PIX_FMT_BGR24:
case V4L2_PIX_FMT_RGB565:
return IPUV3_COLORSPACE_RGB;
default:
return IPUV3_COLORSPACE_UNKNOWN;
}
}
EXPORT_SYMBOL_GPL(ipu_pixelformat_to_colorspace);
bool ipu_pixelformat_is_planar(u32 pixelformat)
{
switch (pixelformat) {
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
case V4L2_PIX_FMT_YUV422P:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(ipu_pixelformat_is_planar);
enum ipu_color_space ipu_mbus_code_to_colorspace(u32 mbus_code)
{
switch (mbus_code & 0xf000) {
case 0x1000:
return IPUV3_COLORSPACE_RGB;
case 0x2000:
return IPUV3_COLORSPACE_YUV;
default:
return IPUV3_COLORSPACE_UNKNOWN;
}
}
EXPORT_SYMBOL_GPL(ipu_mbus_code_to_colorspace);
int ipu_stride_to_bytes(u32 pixel_stride, u32 pixelformat)
{
switch (pixelformat) {
case V4L2_PIX_FMT_YUV420:
case V4L2_PIX_FMT_YVU420:
case V4L2_PIX_FMT_YUV422P:
case V4L2_PIX_FMT_NV12:
case V4L2_PIX_FMT_NV21:
case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61:
/*
* for the planar YUV formats, the stride passed to
* cpmem must be the stride in bytes of the Y plane.
* And all the planar YUV formats have an 8-bit
* Y component.
*/
return (8 * pixel_stride) >> 3;
case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_UYVY:
return (16 * pixel_stride) >> 3;
case V4L2_PIX_FMT_BGR24:
case V4L2_PIX_FMT_RGB24:
return (24 * pixel_stride) >> 3;
case V4L2_PIX_FMT_BGR32:
case V4L2_PIX_FMT_RGB32:
return (32 * pixel_stride) >> 3;
default:
break;
}
return -EINVAL;
}
EXPORT_SYMBOL_GPL(ipu_stride_to_bytes);
int ipu_degrees_to_rot_mode(enum ipu_rotate_mode *mode, int degrees,
bool hflip, bool vflip)
{
u32 r90, vf, hf;
switch (degrees) {
case 0:
vf = hf = r90 = 0;
break;
case 90:
vf = hf = 0;
r90 = 1;
break;
case 180:
vf = hf = 1;
r90 = 0;
break;
case 270:
vf = hf = r90 = 1;
break;
default:
return -EINVAL;
}
hf ^= (u32)hflip;
vf ^= (u32)vflip;
*mode = (enum ipu_rotate_mode)((r90 << 2) | (hf << 1) | vf);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_degrees_to_rot_mode);
int ipu_rot_mode_to_degrees(int *degrees, enum ipu_rotate_mode mode,
bool hflip, bool vflip)
{
u32 r90, vf, hf;
r90 = ((u32)mode >> 2) & 0x1;
hf = ((u32)mode >> 1) & 0x1;
vf = ((u32)mode >> 0) & 0x1;
hf ^= (u32)hflip;
vf ^= (u32)vflip;
switch ((enum ipu_rotate_mode)((r90 << 2) | (hf << 1) | vf)) {
case IPU_ROTATE_NONE:
*degrees = 0;
break;
case IPU_ROTATE_90_RIGHT:
*degrees = 90;
break;
case IPU_ROTATE_180:
*degrees = 180;
break;
case IPU_ROTATE_90_LEFT:
*degrees = 270;
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(ipu_rot_mode_to_degrees);
struct ipuv3_channel *ipu_idmac_get(struct ipu_soc *ipu, unsigned num)
{
struct ipuv3_channel *channel;
dev_dbg(ipu->dev, "%s %d\n", __func__, num);
if (num > 63)
return ERR_PTR(-ENODEV);
mutex_lock(&ipu->channel_lock);
channel = &ipu->channel[num];
if (channel->busy) {
channel = ERR_PTR(-EBUSY);
goto out;
}
channel->busy = true;
channel->num = num;
out:
mutex_unlock(&ipu->channel_lock);
return channel;
}
EXPORT_SYMBOL_GPL(ipu_idmac_get);
void ipu_idmac_put(struct ipuv3_channel *channel)
{
struct ipu_soc *ipu = channel->ipu;
dev_dbg(ipu->dev, "%s %d\n", __func__, channel->num);
mutex_lock(&ipu->channel_lock);
channel->busy = false;
mutex_unlock(&ipu->channel_lock);
}
EXPORT_SYMBOL_GPL(ipu_idmac_put);
#define idma_mask(ch) (1 << ((ch) & 0x1f))
/*
* This is an undocumented feature, a write one to a channel bit in
* IPU_CHA_CUR_BUF and IPU_CHA_TRIPLE_CUR_BUF will reset the channel's
* internal current buffer pointer so that transfers start from buffer
* 0 on the next channel enable (that's the theory anyway, the imx6 TRM
* only says these are read-only registers). This operation is required
* for channel linking to work correctly, for instance video capture
* pipelines that carry out image rotations will fail after the first
* streaming unless this function is called for each channel before
* re-enabling the channels.
*/
static void __ipu_idmac_reset_current_buffer(struct ipuv3_channel *channel)
{
struct ipu_soc *ipu = channel->ipu;
unsigned int chno = channel->num;
ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_CUR_BUF(chno));
}
void ipu_idmac_set_double_buffer(struct ipuv3_channel *channel,
bool doublebuffer)
{
struct ipu_soc *ipu = channel->ipu;
unsigned long flags;
u32 reg;
spin_lock_irqsave(&ipu->lock, flags);
reg = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(channel->num));
if (doublebuffer)
reg |= idma_mask(channel->num);
else
reg &= ~idma_mask(channel->num);
ipu_cm_write(ipu, reg, IPU_CHA_DB_MODE_SEL(channel->num));
__ipu_idmac_reset_current_buffer(channel);
spin_unlock_irqrestore(&ipu->lock, flags);
}
EXPORT_SYMBOL_GPL(ipu_idmac_set_double_buffer);
static const struct {
int chnum;
u32 reg;
int shift;
} idmac_lock_en_info[] = {
{ .chnum = 5, .reg = IDMAC_CH_LOCK_EN_1, .shift = 0, },
{ .chnum = 11, .reg = IDMAC_CH_LOCK_EN_1, .shift = 2, },
{ .chnum = 12, .reg = IDMAC_CH_LOCK_EN_1, .shift = 4, },
{ .chnum = 14, .reg = IDMAC_CH_LOCK_EN_1, .shift = 6, },
{ .chnum = 15, .reg = IDMAC_CH_LOCK_EN_1, .shift = 8, },
{ .chnum = 20, .reg = IDMAC_CH_LOCK_EN_1, .shift = 10, },
{ .chnum = 21, .reg = IDMAC_CH_LOCK_EN_1, .shift = 12, },
{ .chnum = 22, .reg = IDMAC_CH_LOCK_EN_1, .shift = 14, },
{ .chnum = 23, .reg = IDMAC_CH_LOCK_EN_1, .shift = 16, },
{ .chnum = 27, .reg = IDMAC_CH_LOCK_EN_1, .shift = 18, },
{ .chnum = 28, .reg = IDMAC_CH_LOCK_EN_1, .shift = 20, },
{ .chnum = 45, .reg = IDMAC_CH_LOCK_EN_2, .shift = 0, },
{ .chnum = 46, .reg = IDMAC_CH_LOCK_EN_2, .shift = 2, },
{ .chnum = 47, .reg = IDMAC_CH_LOCK_EN_2, .shift = 4, },
{ .chnum = 48, .reg = IDMAC_CH_LOCK_EN_2, .shift = 6, },
{ .chnum = 49, .reg = IDMAC_CH_LOCK_EN_2, .shift = 8, },
{ .chnum = 50, .reg = IDMAC_CH_LOCK_EN_2, .shift = 10, },
};
int ipu_idmac_lock_enable(struct ipuv3_channel *channel, int num_bursts)
{
struct ipu_soc *ipu = channel->ipu;
unsigned long flags;
u32 bursts, regval;
int i;
switch (num_bursts) {
case 0:
case 1:
bursts = 0x00; /* locking disabled */
break;
case 2:
bursts = 0x01;
break;
case 4:
bursts = 0x02;
break;
case 8:
bursts = 0x03;
break;
default:
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(idmac_lock_en_info); i++) {
if (channel->num == idmac_lock_en_info[i].chnum)
break;
}
if (i >= ARRAY_SIZE(idmac_lock_en_info))
return -EINVAL;
spin_lock_irqsave(&ipu->lock, flags);
regval = ipu_idmac_read(ipu, idmac_lock_en_info[i].reg);
regval &= ~(0x03 << idmac_lock_en_info[i].shift);
regval |= (bursts << idmac_lock_en_info[i].shift);
ipu_idmac_write(ipu, regval, idmac_lock_en_info[i].reg);
spin_unlock_irqrestore(&ipu->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_idmac_lock_enable);
int ipu_module_enable(struct ipu_soc *ipu, u32 mask)
{
unsigned long lock_flags;
u32 val;
spin_lock_irqsave(&ipu->lock, lock_flags);
val = ipu_cm_read(ipu, IPU_DISP_GEN);
if (mask & IPU_CONF_DI0_EN)
val |= IPU_DI0_COUNTER_RELEASE;
if (mask & IPU_CONF_DI1_EN)
val |= IPU_DI1_COUNTER_RELEASE;
ipu_cm_write(ipu, val, IPU_DISP_GEN);
val = ipu_cm_read(ipu, IPU_CONF);
val |= mask;
ipu_cm_write(ipu, val, IPU_CONF);
spin_unlock_irqrestore(&ipu->lock, lock_flags);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_module_enable);
int ipu_module_disable(struct ipu_soc *ipu, u32 mask)
{
unsigned long lock_flags;
u32 val;
spin_lock_irqsave(&ipu->lock, lock_flags);
val = ipu_cm_read(ipu, IPU_CONF);
val &= ~mask;
ipu_cm_write(ipu, val, IPU_CONF);
val = ipu_cm_read(ipu, IPU_DISP_GEN);
if (mask & IPU_CONF_DI0_EN)
val &= ~IPU_DI0_COUNTER_RELEASE;
if (mask & IPU_CONF_DI1_EN)
val &= ~IPU_DI1_COUNTER_RELEASE;
ipu_cm_write(ipu, val, IPU_DISP_GEN);
spin_unlock_irqrestore(&ipu->lock, lock_flags);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_module_disable);
int ipu_idmac_get_current_buffer(struct ipuv3_channel *channel)
{
struct ipu_soc *ipu = channel->ipu;
unsigned int chno = channel->num;
return (ipu_cm_read(ipu, IPU_CHA_CUR_BUF(chno)) & idma_mask(chno)) ? 1 : 0;
}
EXPORT_SYMBOL_GPL(ipu_idmac_get_current_buffer);
bool ipu_idmac_buffer_is_ready(struct ipuv3_channel *channel, u32 buf_num)
{
struct ipu_soc *ipu = channel->ipu;
unsigned long flags;
u32 reg = 0;
spin_lock_irqsave(&ipu->lock, flags);
switch (buf_num) {
case 0:
reg = ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(channel->num));
break;
case 1:
reg = ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(channel->num));
break;
case 2:
reg = ipu_cm_read(ipu, IPU_CHA_BUF2_RDY(channel->num));
break;
}
spin_unlock_irqrestore(&ipu->lock, flags);
return ((reg & idma_mask(channel->num)) != 0);
}
EXPORT_SYMBOL_GPL(ipu_idmac_buffer_is_ready);
void ipu_idmac_select_buffer(struct ipuv3_channel *channel, u32 buf_num)
{
struct ipu_soc *ipu = channel->ipu;
unsigned int chno = channel->num;
unsigned long flags;
spin_lock_irqsave(&ipu->lock, flags);
/* Mark buffer as ready. */
if (buf_num == 0)
ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF0_RDY(chno));
else
ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF1_RDY(chno));
spin_unlock_irqrestore(&ipu->lock, flags);
}
EXPORT_SYMBOL_GPL(ipu_idmac_select_buffer);
void ipu_idmac_clear_buffer(struct ipuv3_channel *channel, u32 buf_num)
{
struct ipu_soc *ipu = channel->ipu;
unsigned int chno = channel->num;
unsigned long flags;
spin_lock_irqsave(&ipu->lock, flags);
ipu_cm_write(ipu, 0xF0300000, IPU_GPR); /* write one to clear */
switch (buf_num) {
case 0:
ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF0_RDY(chno));
break;
case 1:
ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF1_RDY(chno));
break;
case 2:
ipu_cm_write(ipu, idma_mask(chno), IPU_CHA_BUF2_RDY(chno));
break;
default:
break;
}
ipu_cm_write(ipu, 0x0, IPU_GPR); /* write one to set */
spin_unlock_irqrestore(&ipu->lock, flags);
}
EXPORT_SYMBOL_GPL(ipu_idmac_clear_buffer);
int ipu_idmac_enable_channel(struct ipuv3_channel *channel)
{
struct ipu_soc *ipu = channel->ipu;
u32 val;
unsigned long flags;
spin_lock_irqsave(&ipu->lock, flags);
val = ipu_idmac_read(ipu, IDMAC_CHA_EN(channel->num));
val |= idma_mask(channel->num);
ipu_idmac_write(ipu, val, IDMAC_CHA_EN(channel->num));
spin_unlock_irqrestore(&ipu->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_idmac_enable_channel);
bool ipu_idmac_channel_busy(struct ipu_soc *ipu, unsigned int chno)
{
return (ipu_idmac_read(ipu, IDMAC_CHA_BUSY(chno)) & idma_mask(chno));
}
EXPORT_SYMBOL_GPL(ipu_idmac_channel_busy);
int ipu_idmac_wait_busy(struct ipuv3_channel *channel, int ms)
{
struct ipu_soc *ipu = channel->ipu;
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(ms);
while (ipu_idmac_read(ipu, IDMAC_CHA_BUSY(channel->num)) &
idma_mask(channel->num)) {
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
cpu_relax();
}
return 0;
}
EXPORT_SYMBOL_GPL(ipu_idmac_wait_busy);
int ipu_wait_interrupt(struct ipu_soc *ipu, int irq, int ms)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(ms);
ipu_cm_write(ipu, BIT(irq % 32), IPU_INT_STAT(irq / 32));
while (!(ipu_cm_read(ipu, IPU_INT_STAT(irq / 32) & BIT(irq % 32)))) {
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
cpu_relax();
}
return 0;
}
EXPORT_SYMBOL_GPL(ipu_wait_interrupt);
int ipu_idmac_disable_channel(struct ipuv3_channel *channel)
{
struct ipu_soc *ipu = channel->ipu;
u32 val;
unsigned long flags;
spin_lock_irqsave(&ipu->lock, flags);
/* Disable DMA channel(s) */
val = ipu_idmac_read(ipu, IDMAC_CHA_EN(channel->num));
val &= ~idma_mask(channel->num);
ipu_idmac_write(ipu, val, IDMAC_CHA_EN(channel->num));
__ipu_idmac_reset_current_buffer(channel);
/* Set channel buffers NOT to be ready */
ipu_cm_write(ipu, 0xf0000000, IPU_GPR); /* write one to clear */
if (ipu_cm_read(ipu, IPU_CHA_BUF0_RDY(channel->num)) &
idma_mask(channel->num)) {
ipu_cm_write(ipu, idma_mask(channel->num),
IPU_CHA_BUF0_RDY(channel->num));
}
if (ipu_cm_read(ipu, IPU_CHA_BUF1_RDY(channel->num)) &
idma_mask(channel->num)) {
ipu_cm_write(ipu, idma_mask(channel->num),
IPU_CHA_BUF1_RDY(channel->num));
}
ipu_cm_write(ipu, 0x0, IPU_GPR); /* write one to set */
/* Reset the double buffer */
val = ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(channel->num));
val &= ~idma_mask(channel->num);
ipu_cm_write(ipu, val, IPU_CHA_DB_MODE_SEL(channel->num));
spin_unlock_irqrestore(&ipu->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(ipu_idmac_disable_channel);
/*
* The imx6 rev. D TRM says that enabling the WM feature will increase
* a channel's priority. Refer to Table 36-8 Calculated priority value.
* The sub-module that is the sink or source for the channel must enable
* watermark signal for this to take effect (SMFC_WM for instance).
*/
void ipu_idmac_enable_watermark(struct ipuv3_channel *channel, bool enable)
{
struct ipu_soc *ipu = channel->ipu;
unsigned long flags;
u32 val;
spin_lock_irqsave(&ipu->lock, flags);
val = ipu_idmac_read(ipu, IDMAC_WM_EN(channel->num));
if (enable)
val |= 1 << (channel->num % 32);
else
val &= ~(1 << (channel->num % 32));
ipu_idmac_write(ipu, val, IDMAC_WM_EN(channel->num));
spin_unlock_irqrestore(&ipu->lock, flags);
}
EXPORT_SYMBOL_GPL(ipu_idmac_enable_watermark);
static int ipu_memory_reset(struct ipu_soc *ipu)
{
unsigned long timeout;
ipu_cm_write(ipu, 0x807FFFFF, IPU_MEM_RST);
timeout = jiffies + msecs_to_jiffies(1000);
while (ipu_cm_read(ipu, IPU_MEM_RST) & 0x80000000) {
if (time_after(jiffies, timeout))
return -ETIME;
cpu_relax();
}
return 0;
}
/*
* Set the source mux for the given CSI. Selects either parallel or
* MIPI CSI2 sources.
*/
void ipu_set_csi_src_mux(struct ipu_soc *ipu, int csi_id, bool mipi_csi2)
{
unsigned long flags;
u32 val, mask;
mask = (csi_id == 1) ? IPU_CONF_CSI1_DATA_SOURCE :
IPU_CONF_CSI0_DATA_SOURCE;
spin_lock_irqsave(&ipu->lock, flags);
val = ipu_cm_read(ipu, IPU_CONF);
if (mipi_csi2)
val |= mask;
else
val &= ~mask;
ipu_cm_write(ipu, val, IPU_CONF);
spin_unlock_irqrestore(&ipu->lock, flags);
}
EXPORT_SYMBOL_GPL(ipu_set_csi_src_mux);
/*
* Set the source mux for the IC. Selects either CSI[01] or the VDI.
*/
void ipu_set_ic_src_mux(struct ipu_soc *ipu, int csi_id, bool vdi)
{
unsigned long flags;
u32 val;
spin_lock_irqsave(&ipu->lock, flags);
val = ipu_cm_read(ipu, IPU_CONF);
if (vdi) {
val |= IPU_CONF_IC_INPUT;
} else {
val &= ~IPU_CONF_IC_INPUT;
if (csi_id == 1)
val |= IPU_CONF_CSI_SEL;
else
val &= ~IPU_CONF_CSI_SEL;
}
ipu_cm_write(ipu, val, IPU_CONF);
spin_unlock_irqrestore(&ipu->lock, flags);
}
EXPORT_SYMBOL_GPL(ipu_set_ic_src_mux);
struct ipu_devtype {
const char *name;
unsigned long cm_ofs;
unsigned long cpmem_ofs;
unsigned long srm_ofs;
unsigned long tpm_ofs;
unsigned long csi0_ofs;
unsigned long csi1_ofs;
unsigned long ic_ofs;
unsigned long disp0_ofs;
unsigned long disp1_ofs;
unsigned long dc_tmpl_ofs;
unsigned long vdi_ofs;
enum ipuv3_type type;
};
static struct ipu_devtype ipu_type_imx51 = {
.name = "IPUv3EX",
.cm_ofs = 0x1e000000,
.cpmem_ofs = 0x1f000000,
.srm_ofs = 0x1f040000,
.tpm_ofs = 0x1f060000,
.csi0_ofs = 0x1f030000,
.csi1_ofs = 0x1f038000,
.ic_ofs = 0x1e020000,
.disp0_ofs = 0x1e040000,
.disp1_ofs = 0x1e048000,
.dc_tmpl_ofs = 0x1f080000,
.vdi_ofs = 0x1e068000,
.type = IPUV3EX,
};
static struct ipu_devtype ipu_type_imx53 = {
.name = "IPUv3M",
.cm_ofs = 0x06000000,
.cpmem_ofs = 0x07000000,
.srm_ofs = 0x07040000,
.tpm_ofs = 0x07060000,
.csi0_ofs = 0x07030000,
.csi1_ofs = 0x07038000,
.ic_ofs = 0x06020000,
.disp0_ofs = 0x06040000,
.disp1_ofs = 0x06048000,
.dc_tmpl_ofs = 0x07080000,
.vdi_ofs = 0x06068000,
.type = IPUV3M,
};
static struct ipu_devtype ipu_type_imx6q = {
.name = "IPUv3H",
.cm_ofs = 0x00200000,
.cpmem_ofs = 0x00300000,
.srm_ofs = 0x00340000,
.tpm_ofs = 0x00360000,
.csi0_ofs = 0x00230000,
.csi1_ofs = 0x00238000,
.ic_ofs = 0x00220000,
.disp0_ofs = 0x00240000,
.disp1_ofs = 0x00248000,
.dc_tmpl_ofs = 0x00380000,
.vdi_ofs = 0x00268000,
.type = IPUV3H,
};
static const struct of_device_id imx_ipu_dt_ids[] = {
{ .compatible = "fsl,imx51-ipu", .data = &ipu_type_imx51, },
{ .compatible = "fsl,imx53-ipu", .data = &ipu_type_imx53, },
{ .compatible = "fsl,imx6q-ipu", .data = &ipu_type_imx6q, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_ipu_dt_ids);
static int ipu_submodules_init(struct ipu_soc *ipu,
struct platform_device *pdev, unsigned long ipu_base,
struct clk *ipu_clk)
{
char *unit;
int ret;
struct device *dev = &pdev->dev;
const struct ipu_devtype *devtype = ipu->devtype;
ret = ipu_cpmem_init(ipu, dev, ipu_base + devtype->cpmem_ofs);
if (ret) {
unit = "cpmem";
goto err_cpmem;
}
ret = ipu_csi_init(ipu, dev, 0, ipu_base + devtype->csi0_ofs,
IPU_CONF_CSI0_EN, ipu_clk);
if (ret) {
unit = "csi0";
goto err_csi_0;
}
ret = ipu_csi_init(ipu, dev, 1, ipu_base + devtype->csi1_ofs,
IPU_CONF_CSI1_EN, ipu_clk);
if (ret) {
unit = "csi1";
goto err_csi_1;
}
ret = ipu_ic_init(ipu, dev,
ipu_base + devtype->ic_ofs,
ipu_base + devtype->tpm_ofs);
if (ret) {
unit = "ic";
goto err_ic;
}
ret = ipu_di_init(ipu, dev, 0, ipu_base + devtype->disp0_ofs,
IPU_CONF_DI0_EN, ipu_clk);
if (ret) {
unit = "di0";
goto err_di_0;
}
ret = ipu_di_init(ipu, dev, 1, ipu_base + devtype->disp1_ofs,
IPU_CONF_DI1_EN, ipu_clk);
if (ret) {
unit = "di1";
goto err_di_1;
}
ret = ipu_dc_init(ipu, dev, ipu_base + devtype->cm_ofs +
IPU_CM_DC_REG_OFS, ipu_base + devtype->dc_tmpl_ofs);
if (ret) {
unit = "dc_template";
goto err_dc;
}
ret = ipu_dmfc_init(ipu, dev, ipu_base +
devtype->cm_ofs + IPU_CM_DMFC_REG_OFS, ipu_clk);
if (ret) {
unit = "dmfc";
goto err_dmfc;
}
ret = ipu_dp_init(ipu, dev, ipu_base + devtype->srm_ofs);
if (ret) {
unit = "dp";
goto err_dp;
}
ret = ipu_smfc_init(ipu, dev, ipu_base +
devtype->cm_ofs + IPU_CM_SMFC_REG_OFS);
if (ret) {
unit = "smfc";
goto err_smfc;
}
return 0;
err_smfc:
ipu_dp_exit(ipu);
err_dp:
ipu_dmfc_exit(ipu);
err_dmfc:
ipu_dc_exit(ipu);
err_dc:
ipu_di_exit(ipu, 1);
err_di_1:
ipu_di_exit(ipu, 0);
err_di_0:
ipu_ic_exit(ipu);
err_ic:
ipu_csi_exit(ipu, 1);
err_csi_1:
ipu_csi_exit(ipu, 0);
err_csi_0:
ipu_cpmem_exit(ipu);
err_cpmem:
dev_err(&pdev->dev, "init %s failed with %d\n", unit, ret);
return ret;
}
static void ipu_irq_handle(struct ipu_soc *ipu, const int *regs, int num_regs)
{
unsigned long status;
int i, bit, irq;
for (i = 0; i < num_regs; i++) {
status = ipu_cm_read(ipu, IPU_INT_STAT(regs[i]));
status &= ipu_cm_read(ipu, IPU_INT_CTRL(regs[i]));
for_each_set_bit(bit, &status, 32) {
irq = irq_linear_revmap(ipu->domain,
regs[i] * 32 + bit);
if (irq)
generic_handle_irq(irq);
}
}
}
static void ipu_irq_handler(struct irq_desc *desc)
{
struct ipu_soc *ipu = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
const int int_reg[] = { 0, 1, 2, 3, 10, 11, 12, 13, 14};
chained_irq_enter(chip, desc);
ipu_irq_handle(ipu, int_reg, ARRAY_SIZE(int_reg));
chained_irq_exit(chip, desc);
}
static void ipu_err_irq_handler(struct irq_desc *desc)
{
struct ipu_soc *ipu = irq_desc_get_handler_data(desc);
struct irq_chip *chip = irq_desc_get_chip(desc);
const int int_reg[] = { 4, 5, 8, 9};
chained_irq_enter(chip, desc);
ipu_irq_handle(ipu, int_reg, ARRAY_SIZE(int_reg));
chained_irq_exit(chip, desc);
}
int ipu_map_irq(struct ipu_soc *ipu, int irq)
{
int virq;
virq = irq_linear_revmap(ipu->domain, irq);
if (!virq)
virq = irq_create_mapping(ipu->domain, irq);
return virq;
}
EXPORT_SYMBOL_GPL(ipu_map_irq);
int ipu_idmac_channel_irq(struct ipu_soc *ipu, struct ipuv3_channel *channel,
enum ipu_channel_irq irq_type)
{
return ipu_map_irq(ipu, irq_type + channel->num);
}
EXPORT_SYMBOL_GPL(ipu_idmac_channel_irq);
static void ipu_submodules_exit(struct ipu_soc *ipu)
{
ipu_smfc_exit(ipu);
ipu_dp_exit(ipu);
ipu_dmfc_exit(ipu);
ipu_dc_exit(ipu);
ipu_di_exit(ipu, 1);
ipu_di_exit(ipu, 0);
ipu_ic_exit(ipu);
ipu_csi_exit(ipu, 1);
ipu_csi_exit(ipu, 0);
ipu_cpmem_exit(ipu);
}
static int platform_remove_devices_fn(struct device *dev, void *unused)
{
struct platform_device *pdev = to_platform_device(dev);
platform_device_unregister(pdev);
return 0;
}
static void platform_device_unregister_children(struct platform_device *pdev)
{
device_for_each_child(&pdev->dev, NULL, platform_remove_devices_fn);
}
struct ipu_platform_reg {
struct ipu_client_platformdata pdata;
const char *name;
};
/* These must be in the order of the corresponding device tree port nodes */
static struct ipu_platform_reg client_reg[] = {
{
.pdata = {
.csi = 0,
.dma[0] = IPUV3_CHANNEL_CSI0,
.dma[1] = -EINVAL,
},
.name = "imx-ipuv3-camera",
}, {
.pdata = {
.csi = 1,
.dma[0] = IPUV3_CHANNEL_CSI1,
.dma[1] = -EINVAL,
},
.name = "imx-ipuv3-camera",
}, {
.pdata = {
.di = 0,
.dc = 5,
.dp = IPU_DP_FLOW_SYNC_BG,
.dma[0] = IPUV3_CHANNEL_MEM_BG_SYNC,
.dma[1] = IPUV3_CHANNEL_MEM_FG_SYNC,
},
.name = "imx-ipuv3-crtc",
}, {
.pdata = {
.di = 1,
.dc = 1,
.dp = -EINVAL,
.dma[0] = IPUV3_CHANNEL_MEM_DC_SYNC,
.dma[1] = -EINVAL,
},
.name = "imx-ipuv3-crtc",
},
};
static DEFINE_MUTEX(ipu_client_id_mutex);
static int ipu_client_id;
static int ipu_add_client_devices(struct ipu_soc *ipu, unsigned long ipu_base)
{
struct device *dev = ipu->dev;
unsigned i;
int id, ret;
mutex_lock(&ipu_client_id_mutex);
id = ipu_client_id;
ipu_client_id += ARRAY_SIZE(client_reg);
mutex_unlock(&ipu_client_id_mutex);
for (i = 0; i < ARRAY_SIZE(client_reg); i++) {
struct ipu_platform_reg *reg = &client_reg[i];
struct platform_device *pdev;
struct device_node *of_node;
/* Associate subdevice with the corresponding port node */
of_node = of_graph_get_port_by_id(dev->of_node, i);
if (!of_node) {
dev_info(dev,
"no port@%d node in %s, not using %s%d\n",
i, dev->of_node->full_name,
(i / 2) ? "DI" : "CSI", i % 2);
continue;
}
pdev = platform_device_alloc(reg->name, id++);
if (!pdev) {
ret = -ENOMEM;
goto err_register;
}
pdev->dev.parent = dev;
reg->pdata.of_node = of_node;
ret = platform_device_add_data(pdev, &reg->pdata,
sizeof(reg->pdata));
if (!ret)
ret = platform_device_add(pdev);
if (ret) {
platform_device_put(pdev);
goto err_register;
}
/*
* Set of_node only after calling platform_device_add. Otherwise
* the platform:imx-ipuv3-crtc modalias won't be used.
*/
pdev->dev.of_node = of_node;
}
return 0;
err_register:
platform_device_unregister_children(to_platform_device(dev));
return ret;
}
static int ipu_irq_init(struct ipu_soc *ipu)
{
struct irq_chip_generic *gc;
struct irq_chip_type *ct;
unsigned long unused[IPU_NUM_IRQS / 32] = {
0x400100d0, 0xffe000fd,
0x400100d0, 0xffe000fd,
0x400100d0, 0xffe000fd,
0x4077ffff, 0xffe7e1fd,
0x23fffffe, 0x8880fff0,
0xf98fe7d0, 0xfff81fff,
0x400100d0, 0xffe000fd,
0x00000000,
};
int ret, i;
ipu->domain = irq_domain_add_linear(ipu->dev->of_node, IPU_NUM_IRQS,
&irq_generic_chip_ops, ipu);
if (!ipu->domain) {
dev_err(ipu->dev, "failed to add irq domain\n");
return -ENODEV;
}
ret = irq_alloc_domain_generic_chips(ipu->domain, 32, 1, "IPU",
handle_level_irq, 0, 0, 0);
if (ret < 0) {
dev_err(ipu->dev, "failed to alloc generic irq chips\n");
irq_domain_remove(ipu->domain);
return ret;
}
for (i = 0; i < IPU_NUM_IRQS; i += 32)
ipu_cm_write(ipu, 0, IPU_INT_CTRL(i / 32));
for (i = 0; i < IPU_NUM_IRQS; i += 32) {
gc = irq_get_domain_generic_chip(ipu->domain, i);
gc->reg_base = ipu->cm_reg;
gc->unused = unused[i / 32];
ct = gc->chip_types;
ct->chip.irq_ack = irq_gc_ack_set_bit;
ct->chip.irq_mask = irq_gc_mask_clr_bit;
ct->chip.irq_unmask = irq_gc_mask_set_bit;
ct->regs.ack = IPU_INT_STAT(i / 32);
ct->regs.mask = IPU_INT_CTRL(i / 32);
}
irq_set_chained_handler_and_data(ipu->irq_sync, ipu_irq_handler, ipu);
irq_set_chained_handler_and_data(ipu->irq_err, ipu_err_irq_handler,
ipu);
return 0;
}
static void ipu_irq_exit(struct ipu_soc *ipu)
{
int i, irq;
irq_set_chained_handler_and_data(ipu->irq_err, NULL, NULL);
irq_set_chained_handler_and_data(ipu->irq_sync, NULL, NULL);
/* TODO: remove irq_domain_generic_chips */
for (i = 0; i < IPU_NUM_IRQS; i++) {
irq = irq_linear_revmap(ipu->domain, i);
if (irq)
irq_dispose_mapping(irq);
}
irq_domain_remove(ipu->domain);
}
void ipu_dump(struct ipu_soc *ipu)
{
int i;
dev_dbg(ipu->dev, "IPU_CONF = \t0x%08X\n",
ipu_cm_read(ipu, IPU_CONF));
dev_dbg(ipu->dev, "IDMAC_CONF = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CONF));
dev_dbg(ipu->dev, "IDMAC_CHA_EN1 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_EN(0)));
dev_dbg(ipu->dev, "IDMAC_CHA_EN2 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_EN(32)));
dev_dbg(ipu->dev, "IDMAC_CHA_PRI1 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_PRI(0)));
dev_dbg(ipu->dev, "IDMAC_CHA_PRI2 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_CHA_PRI(32)));
dev_dbg(ipu->dev, "IDMAC_BAND_EN1 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_BAND_EN(0)));
dev_dbg(ipu->dev, "IDMAC_BAND_EN2 = \t0x%08X\n",
ipu_idmac_read(ipu, IDMAC_BAND_EN(32)));
dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL0 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(0)));
dev_dbg(ipu->dev, "IPU_CHA_DB_MODE_SEL1 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_CHA_DB_MODE_SEL(32)));
dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW1 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_PROC_FLOW1));
dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW2 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_PROC_FLOW2));
dev_dbg(ipu->dev, "IPU_FS_PROC_FLOW3 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_PROC_FLOW3));
dev_dbg(ipu->dev, "IPU_FS_DISP_FLOW1 = \t0x%08X\n",
ipu_cm_read(ipu, IPU_FS_DISP_FLOW1));
for (i = 0; i < 15; i++)
dev_dbg(ipu->dev, "IPU_INT_CTRL(%d) = \t%08X\n", i,
ipu_cm_read(ipu, IPU_INT_CTRL(i)));
}
EXPORT_SYMBOL_GPL(ipu_dump);
static int ipu_probe(struct platform_device *pdev)
{
const struct of_device_id *of_id =
of_match_device(imx_ipu_dt_ids, &pdev->dev);
struct ipu_soc *ipu;
struct resource *res;
unsigned long ipu_base;
int i, ret, irq_sync, irq_err;
const struct ipu_devtype *devtype;
devtype = of_id->data;
irq_sync = platform_get_irq(pdev, 0);
irq_err = platform_get_irq(pdev, 1);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev_dbg(&pdev->dev, "irq_sync: %d irq_err: %d\n",
irq_sync, irq_err);
if (!res || irq_sync < 0 || irq_err < 0)
return -ENODEV;
ipu_base = res->start;
ipu = devm_kzalloc(&pdev->dev, sizeof(*ipu), GFP_KERNEL);
if (!ipu)
return -ENODEV;
for (i = 0; i < 64; i++)
ipu->channel[i].ipu = ipu;
ipu->devtype = devtype;
ipu->ipu_type = devtype->type;
spin_lock_init(&ipu->lock);
mutex_init(&ipu->channel_lock);
dev_dbg(&pdev->dev, "cm_reg: 0x%08lx\n",
ipu_base + devtype->cm_ofs);
dev_dbg(&pdev->dev, "idmac: 0x%08lx\n",
ipu_base + devtype->cm_ofs + IPU_CM_IDMAC_REG_OFS);
dev_dbg(&pdev->dev, "cpmem: 0x%08lx\n",
ipu_base + devtype->cpmem_ofs);
dev_dbg(&pdev->dev, "csi0: 0x%08lx\n",
ipu_base + devtype->csi0_ofs);
dev_dbg(&pdev->dev, "csi1: 0x%08lx\n",
ipu_base + devtype->csi1_ofs);
dev_dbg(&pdev->dev, "ic: 0x%08lx\n",
ipu_base + devtype->ic_ofs);
dev_dbg(&pdev->dev, "disp0: 0x%08lx\n",
ipu_base + devtype->disp0_ofs);
dev_dbg(&pdev->dev, "disp1: 0x%08lx\n",
ipu_base + devtype->disp1_ofs);
dev_dbg(&pdev->dev, "srm: 0x%08lx\n",
ipu_base + devtype->srm_ofs);
dev_dbg(&pdev->dev, "tpm: 0x%08lx\n",
ipu_base + devtype->tpm_ofs);
dev_dbg(&pdev->dev, "dc: 0x%08lx\n",
ipu_base + devtype->cm_ofs + IPU_CM_DC_REG_OFS);
dev_dbg(&pdev->dev, "ic: 0x%08lx\n",
ipu_base + devtype->cm_ofs + IPU_CM_IC_REG_OFS);
dev_dbg(&pdev->dev, "dmfc: 0x%08lx\n",
ipu_base + devtype->cm_ofs + IPU_CM_DMFC_REG_OFS);
dev_dbg(&pdev->dev, "vdi: 0x%08lx\n",
ipu_base + devtype->vdi_ofs);
ipu->cm_reg = devm_ioremap(&pdev->dev,
ipu_base + devtype->cm_ofs, PAGE_SIZE);
ipu->idmac_reg = devm_ioremap(&pdev->dev,
ipu_base + devtype->cm_ofs + IPU_CM_IDMAC_REG_OFS,
PAGE_SIZE);
if (!ipu->cm_reg || !ipu->idmac_reg)
return -ENOMEM;
ipu->clk = devm_clk_get(&pdev->dev, "bus");
if (IS_ERR(ipu->clk)) {
ret = PTR_ERR(ipu->clk);
dev_err(&pdev->dev, "clk_get failed with %d", ret);
return ret;
}
platform_set_drvdata(pdev, ipu);
ret = clk_prepare_enable(ipu->clk);
if (ret) {
dev_err(&pdev->dev, "clk_prepare_enable failed: %d\n", ret);
return ret;
}
ipu->dev = &pdev->dev;
ipu->irq_sync = irq_sync;
ipu->irq_err = irq_err;
ret = device_reset(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "failed to reset: %d\n", ret);
goto out_failed_reset;
}
ret = ipu_memory_reset(ipu);
if (ret)
goto out_failed_reset;
ret = ipu_irq_init(ipu);
if (ret)
goto out_failed_irq;
/* Set MCU_T to divide MCU access window into 2 */
ipu_cm_write(ipu, 0x00400000L | (IPU_MCU_T_DEFAULT << 18),
IPU_DISP_GEN);
ret = ipu_submodules_init(ipu, pdev, ipu_base, ipu->clk);
if (ret)
goto failed_submodules_init;
ret = ipu_add_client_devices(ipu, ipu_base);
if (ret) {
dev_err(&pdev->dev, "adding client devices failed with %d\n",
ret);
goto failed_add_clients;
}
dev_info(&pdev->dev, "%s probed\n", devtype->name);
return 0;
failed_add_clients:
ipu_submodules_exit(ipu);
failed_submodules_init:
ipu_irq_exit(ipu);
out_failed_irq:
out_failed_reset:
clk_disable_unprepare(ipu->clk);
return ret;
}
static int ipu_remove(struct platform_device *pdev)
{
struct ipu_soc *ipu = platform_get_drvdata(pdev);
platform_device_unregister_children(pdev);
ipu_submodules_exit(ipu);
ipu_irq_exit(ipu);
clk_disable_unprepare(ipu->clk);
return 0;
}
static struct platform_driver imx_ipu_driver = {
.driver = {
.name = "imx-ipuv3",
.of_match_table = imx_ipu_dt_ids,
},
.probe = ipu_probe,
.remove = ipu_remove,
};
module_platform_driver(imx_ipu_driver);
MODULE_ALIAS("platform:imx-ipuv3");
MODULE_DESCRIPTION("i.MX IPU v3 driver");
MODULE_AUTHOR("Sascha Hauer <s.hauer@pengutronix.de>");
MODULE_LICENSE("GPL");