linux-sg2042/arch/alpha/kernel/sys_eb64p.c

256 lines
5.9 KiB
C

/*
* linux/arch/alpha/kernel/sys_eb64p.c
*
* Copyright (C) 1995 David A Rusling
* Copyright (C) 1996 Jay A Estabrook
* Copyright (C) 1998, 1999 Richard Henderson
*
* Code supporting the EB64+ and EB66.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/ptrace.h>
#include <asm/system.h>
#include <asm/dma.h>
#include <asm/irq.h>
#include <asm/mmu_context.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/core_apecs.h>
#include <asm/core_lca.h>
#include <asm/hwrpb.h>
#include <asm/tlbflush.h>
#include "proto.h"
#include "irq_impl.h"
#include "pci_impl.h"
#include "machvec_impl.h"
/* Note mask bit is true for DISABLED irqs. */
static unsigned int cached_irq_mask = -1;
static inline void
eb64p_update_irq_hw(unsigned int irq, unsigned long mask)
{
outb(mask >> (irq >= 24 ? 24 : 16), (irq >= 24 ? 0x27 : 0x26));
}
static inline void
eb64p_enable_irq(unsigned int irq)
{
eb64p_update_irq_hw(irq, cached_irq_mask &= ~(1 << irq));
}
static void
eb64p_disable_irq(unsigned int irq)
{
eb64p_update_irq_hw(irq, cached_irq_mask |= 1 << irq);
}
static unsigned int
eb64p_startup_irq(unsigned int irq)
{
eb64p_enable_irq(irq);
return 0; /* never anything pending */
}
static void
eb64p_end_irq(unsigned int irq)
{
if (!(irq_desc[irq].status & (IRQ_DISABLED|IRQ_INPROGRESS)))
eb64p_enable_irq(irq);
}
static struct hw_interrupt_type eb64p_irq_type = {
.typename = "EB64P",
.startup = eb64p_startup_irq,
.shutdown = eb64p_disable_irq,
.enable = eb64p_enable_irq,
.disable = eb64p_disable_irq,
.ack = eb64p_disable_irq,
.end = eb64p_end_irq,
};
static void
eb64p_device_interrupt(unsigned long vector)
{
unsigned long pld;
unsigned int i;
/* Read the interrupt summary registers */
pld = inb(0x26) | (inb(0x27) << 8);
/*
* Now, for every possible bit set, work through
* them and call the appropriate interrupt handler.
*/
while (pld) {
i = ffz(~pld);
pld &= pld - 1; /* clear least bit set */
if (i == 5) {
isa_device_interrupt(vector);
} else {
handle_irq(16 + i);
}
}
}
static void __init
eb64p_init_irq(void)
{
long i;
#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_CABRIOLET)
/*
* CABRIO SRM may not set variation correctly, so here we test
* the high word of the interrupt summary register for the RAZ
* bits, and hope that a true EB64+ would read all ones...
*/
if (inw(0x806) != 0xffff) {
extern struct alpha_machine_vector cabriolet_mv;
printk("Detected Cabriolet: correcting HWRPB.\n");
hwrpb->sys_variation |= 2L << 10;
hwrpb_update_checksum(hwrpb);
alpha_mv = cabriolet_mv;
alpha_mv.init_irq();
return;
}
#endif /* GENERIC */
outb(0xff, 0x26);
outb(0xff, 0x27);
init_i8259a_irqs();
for (i = 16; i < 32; ++i) {
irq_desc[i].status = IRQ_DISABLED | IRQ_LEVEL;
irq_desc[i].chip = &eb64p_irq_type;
}
common_init_isa_dma();
setup_irq(16+5, &isa_cascade_irqaction);
}
/*
* PCI Fixup configuration.
*
* There are two 8 bit external summary registers as follows:
*
* Summary @ 0x26:
* Bit Meaning
* 0 Interrupt Line A from slot 0
* 1 Interrupt Line A from slot 1
* 2 Interrupt Line B from slot 0
* 3 Interrupt Line B from slot 1
* 4 Interrupt Line C from slot 0
* 5 Interrupt line from the two ISA PICs
* 6 Tulip
* 7 NCR SCSI
*
* Summary @ 0x27
* Bit Meaning
* 0 Interrupt Line C from slot 1
* 1 Interrupt Line D from slot 0
* 2 Interrupt Line D from slot 1
* 3 RAZ
* 4 RAZ
* 5 RAZ
* 6 RAZ
* 7 RAZ
*
* The device to slot mapping looks like:
*
* Slot Device
* 5 NCR SCSI controller
* 6 PCI on board slot 0
* 7 PCI on board slot 1
* 8 Intel SIO PCI-ISA bridge chip
* 9 Tulip - DECchip 21040 Ethernet controller
*
*
* This two layered interrupt approach means that we allocate IRQ 16 and
* above for PCI interrupts. The IRQ relates to which bit the interrupt
* comes in on. This makes interrupt processing much easier.
*/
static int __init
eb64p_map_irq(struct pci_dev *dev, u8 slot, u8 pin)
{
static char irq_tab[5][5] __initdata = {
/*INT INTA INTB INTC INTD */
{16+7, 16+7, 16+7, 16+7, 16+7}, /* IdSel 5, slot ?, ?? */
{16+0, 16+0, 16+2, 16+4, 16+9}, /* IdSel 6, slot ?, ?? */
{16+1, 16+1, 16+3, 16+8, 16+10}, /* IdSel 7, slot ?, ?? */
{ -1, -1, -1, -1, -1}, /* IdSel 8, SIO */
{16+6, 16+6, 16+6, 16+6, 16+6}, /* IdSel 9, TULIP */
};
const long min_idsel = 5, max_idsel = 9, irqs_per_slot = 5;
return COMMON_TABLE_LOOKUP;
}
/*
* The System Vector
*/
#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB64P)
struct alpha_machine_vector eb64p_mv __initmv = {
.vector_name = "EB64+",
DO_EV4_MMU,
DO_DEFAULT_RTC,
DO_APECS_IO,
.machine_check = apecs_machine_check,
.max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
.min_io_address = DEFAULT_IO_BASE,
.min_mem_address = APECS_AND_LCA_DEFAULT_MEM_BASE,
.nr_irqs = 32,
.device_interrupt = eb64p_device_interrupt,
.init_arch = apecs_init_arch,
.init_irq = eb64p_init_irq,
.init_rtc = common_init_rtc,
.init_pci = common_init_pci,
.kill_arch = NULL,
.pci_map_irq = eb64p_map_irq,
.pci_swizzle = common_swizzle,
};
ALIAS_MV(eb64p)
#endif
#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB66)
struct alpha_machine_vector eb66_mv __initmv = {
.vector_name = "EB66",
DO_EV4_MMU,
DO_DEFAULT_RTC,
DO_LCA_IO,
.machine_check = lca_machine_check,
.max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS,
.min_io_address = DEFAULT_IO_BASE,
.min_mem_address = APECS_AND_LCA_DEFAULT_MEM_BASE,
.nr_irqs = 32,
.device_interrupt = eb64p_device_interrupt,
.init_arch = lca_init_arch,
.init_irq = eb64p_init_irq,
.init_rtc = common_init_rtc,
.init_pci = common_init_pci,
.pci_map_irq = eb64p_map_irq,
.pci_swizzle = common_swizzle,
};
ALIAS_MV(eb66)
#endif