linux-sg2042/drivers/clk/qcom/krait-cc.c

398 lines
9.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
// Copyright (c) 2018, The Linux Foundation. All rights reserved.
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/slab.h>
#include "clk-krait.h"
static unsigned int sec_mux_map[] = {
2,
0,
};
static unsigned int pri_mux_map[] = {
1,
2,
0,
};
/*
* Notifier function for switching the muxes to safe parent
* while the hfpll is getting reprogrammed.
*/
static int krait_notifier_cb(struct notifier_block *nb,
unsigned long event,
void *data)
{
int ret = 0;
struct krait_mux_clk *mux = container_of(nb, struct krait_mux_clk,
clk_nb);
/* Switch to safe parent */
if (event == PRE_RATE_CHANGE) {
mux->old_index = krait_mux_clk_ops.get_parent(&mux->hw);
ret = krait_mux_clk_ops.set_parent(&mux->hw, mux->safe_sel);
mux->reparent = false;
/*
* By the time POST_RATE_CHANGE notifier is called,
* clk framework itself would have changed the parent for the new rate.
* Only otherwise, put back to the old parent.
*/
} else if (event == POST_RATE_CHANGE) {
if (!mux->reparent)
ret = krait_mux_clk_ops.set_parent(&mux->hw,
mux->old_index);
}
return notifier_from_errno(ret);
}
static int krait_notifier_register(struct device *dev, struct clk *clk,
struct krait_mux_clk *mux)
{
int ret = 0;
mux->clk_nb.notifier_call = krait_notifier_cb;
ret = clk_notifier_register(clk, &mux->clk_nb);
if (ret)
dev_err(dev, "failed to register clock notifier: %d\n", ret);
return ret;
}
static int
krait_add_div(struct device *dev, int id, const char *s, unsigned int offset)
{
struct krait_div2_clk *div;
struct clk_init_data init = {
.num_parents = 1,
.ops = &krait_div2_clk_ops,
.flags = CLK_SET_RATE_PARENT,
};
const char *p_names[1];
struct clk *clk;
div = devm_kzalloc(dev, sizeof(*div), GFP_KERNEL);
if (!div)
return -ENOMEM;
div->width = 2;
div->shift = 6;
div->lpl = id >= 0;
div->offset = offset;
div->hw.init = &init;
init.name = kasprintf(GFP_KERNEL, "hfpll%s_div", s);
if (!init.name)
return -ENOMEM;
init.parent_names = p_names;
p_names[0] = kasprintf(GFP_KERNEL, "hfpll%s", s);
if (!p_names[0]) {
kfree(init.name);
return -ENOMEM;
}
clk = devm_clk_register(dev, &div->hw);
kfree(p_names[0]);
kfree(init.name);
return PTR_ERR_OR_ZERO(clk);
}
static int
krait_add_sec_mux(struct device *dev, int id, const char *s,
unsigned int offset, bool unique_aux)
{
int ret;
struct krait_mux_clk *mux;
static const char *sec_mux_list[] = {
"acpu_aux",
"qsb",
};
struct clk_init_data init = {
.parent_names = sec_mux_list,
.num_parents = ARRAY_SIZE(sec_mux_list),
.ops = &krait_mux_clk_ops,
.flags = CLK_SET_RATE_PARENT,
};
struct clk *clk;
mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL);
if (!mux)
return -ENOMEM;
mux->offset = offset;
mux->lpl = id >= 0;
mux->mask = 0x3;
mux->shift = 2;
mux->parent_map = sec_mux_map;
mux->hw.init = &init;
mux->safe_sel = 0;
init.name = kasprintf(GFP_KERNEL, "krait%s_sec_mux", s);
if (!init.name)
return -ENOMEM;
if (unique_aux) {
sec_mux_list[0] = kasprintf(GFP_KERNEL, "acpu%s_aux", s);
if (!sec_mux_list[0]) {
clk = ERR_PTR(-ENOMEM);
goto err_aux;
}
}
clk = devm_clk_register(dev, &mux->hw);
ret = krait_notifier_register(dev, clk, mux);
if (ret)
goto unique_aux;
unique_aux:
if (unique_aux)
kfree(sec_mux_list[0]);
err_aux:
kfree(init.name);
return PTR_ERR_OR_ZERO(clk);
}
static struct clk *
krait_add_pri_mux(struct device *dev, int id, const char *s,
unsigned int offset)
{
int ret;
struct krait_mux_clk *mux;
const char *p_names[3];
struct clk_init_data init = {
.parent_names = p_names,
.num_parents = ARRAY_SIZE(p_names),
.ops = &krait_mux_clk_ops,
.flags = CLK_SET_RATE_PARENT,
};
struct clk *clk;
mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL);
if (!mux)
return ERR_PTR(-ENOMEM);
mux->mask = 0x3;
mux->shift = 0;
mux->offset = offset;
mux->lpl = id >= 0;
mux->parent_map = pri_mux_map;
mux->hw.init = &init;
mux->safe_sel = 2;
init.name = kasprintf(GFP_KERNEL, "krait%s_pri_mux", s);
if (!init.name)
return ERR_PTR(-ENOMEM);
p_names[0] = kasprintf(GFP_KERNEL, "hfpll%s", s);
if (!p_names[0]) {
clk = ERR_PTR(-ENOMEM);
goto err_p0;
}
p_names[1] = kasprintf(GFP_KERNEL, "hfpll%s_div", s);
if (!p_names[1]) {
clk = ERR_PTR(-ENOMEM);
goto err_p1;
}
p_names[2] = kasprintf(GFP_KERNEL, "krait%s_sec_mux", s);
if (!p_names[2]) {
clk = ERR_PTR(-ENOMEM);
goto err_p2;
}
clk = devm_clk_register(dev, &mux->hw);
ret = krait_notifier_register(dev, clk, mux);
if (ret)
goto err_p3;
err_p3:
kfree(p_names[2]);
err_p2:
kfree(p_names[1]);
err_p1:
kfree(p_names[0]);
err_p0:
kfree(init.name);
return clk;
}
/* id < 0 for L2, otherwise id == physical CPU number */
static struct clk *krait_add_clks(struct device *dev, int id, bool unique_aux)
{
int ret;
unsigned int offset;
void *p = NULL;
const char *s;
struct clk *clk;
if (id >= 0) {
offset = 0x4501 + (0x1000 * id);
s = p = kasprintf(GFP_KERNEL, "%d", id);
if (!s)
return ERR_PTR(-ENOMEM);
} else {
offset = 0x500;
s = "_l2";
}
ret = krait_add_div(dev, id, s, offset);
if (ret) {
clk = ERR_PTR(ret);
goto err;
}
ret = krait_add_sec_mux(dev, id, s, offset, unique_aux);
if (ret) {
clk = ERR_PTR(ret);
goto err;
}
clk = krait_add_pri_mux(dev, id, s, offset);
err:
kfree(p);
return clk;
}
static struct clk *krait_of_get(struct of_phandle_args *clkspec, void *data)
{
unsigned int idx = clkspec->args[0];
struct clk **clks = data;
if (idx >= 5) {
pr_err("%s: invalid clock index %d\n", __func__, idx);
return ERR_PTR(-EINVAL);
}
return clks[idx] ? : ERR_PTR(-ENODEV);
}
static const struct of_device_id krait_cc_match_table[] = {
{ .compatible = "qcom,krait-cc-v1", (void *)1UL },
{ .compatible = "qcom,krait-cc-v2" },
{}
};
MODULE_DEVICE_TABLE(of, krait_cc_match_table);
static int krait_cc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct of_device_id *id;
unsigned long cur_rate, aux_rate;
int cpu;
struct clk *clk;
struct clk **clks;
struct clk *l2_pri_mux_clk;
id = of_match_device(krait_cc_match_table, dev);
if (!id)
return -ENODEV;
/* Rate is 1 because 0 causes problems for __clk_mux_determine_rate */
clk = clk_register_fixed_rate(dev, "qsb", NULL, 0, 1);
if (IS_ERR(clk))
return PTR_ERR(clk);
if (!id->data) {
clk = clk_register_fixed_factor(dev, "acpu_aux",
"gpll0_vote", 0, 1, 2);
if (IS_ERR(clk))
return PTR_ERR(clk);
}
/* Krait configurations have at most 4 CPUs and one L2 */
clks = devm_kcalloc(dev, 5, sizeof(*clks), GFP_KERNEL);
if (!clks)
return -ENOMEM;
for_each_possible_cpu(cpu) {
clk = krait_add_clks(dev, cpu, id->data);
if (IS_ERR(clk))
return PTR_ERR(clk);
clks[cpu] = clk;
}
l2_pri_mux_clk = krait_add_clks(dev, -1, id->data);
if (IS_ERR(l2_pri_mux_clk))
return PTR_ERR(l2_pri_mux_clk);
clks[4] = l2_pri_mux_clk;
/*
* We don't want the CPU or L2 clocks to be turned off at late init
* if CPUFREQ or HOTPLUG configs are disabled. So, bump up the
* refcount of these clocks. Any cpufreq/hotplug manager can assume
* that the clocks have already been prepared and enabled by the time
* they take over.
*/
for_each_online_cpu(cpu) {
clk_prepare_enable(l2_pri_mux_clk);
WARN(clk_prepare_enable(clks[cpu]),
"Unable to turn on CPU%d clock", cpu);
}
/*
* Force reinit of HFPLLs and muxes to overwrite any potential
* incorrect configuration of HFPLLs and muxes by the bootloader.
* While at it, also make sure the cores are running at known rates
* and print the current rate.
*
* The clocks are set to aux clock rate first to make sure the
* secondary mux is not sourcing off of QSB. The rate is then set to
* two different rates to force a HFPLL reinit under all
* circumstances.
*/
cur_rate = clk_get_rate(l2_pri_mux_clk);
aux_rate = 384000000;
if (cur_rate == 1) {
pr_info("L2 @ QSB rate. Forcing new rate.\n");
cur_rate = aux_rate;
}
clk_set_rate(l2_pri_mux_clk, aux_rate);
clk_set_rate(l2_pri_mux_clk, 2);
clk_set_rate(l2_pri_mux_clk, cur_rate);
pr_info("L2 @ %lu KHz\n", clk_get_rate(l2_pri_mux_clk) / 1000);
for_each_possible_cpu(cpu) {
clk = clks[cpu];
cur_rate = clk_get_rate(clk);
if (cur_rate == 1) {
pr_info("CPU%d @ QSB rate. Forcing new rate.\n", cpu);
cur_rate = aux_rate;
}
clk_set_rate(clk, aux_rate);
clk_set_rate(clk, 2);
clk_set_rate(clk, cur_rate);
pr_info("CPU%d @ %lu KHz\n", cpu, clk_get_rate(clk) / 1000);
}
of_clk_add_provider(dev->of_node, krait_of_get, clks);
return 0;
}
static struct platform_driver krait_cc_driver = {
.probe = krait_cc_probe,
.driver = {
.name = "krait-cc",
.of_match_table = krait_cc_match_table,
},
};
module_platform_driver(krait_cc_driver);
MODULE_DESCRIPTION("Krait CPU Clock Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:krait-cc");