linux-sg2042/sound/soc/fsl/fsl_esai.c

984 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Freescale ESAI ALSA SoC Digital Audio Interface (DAI) driver
//
// Copyright (C) 2014 Freescale Semiconductor, Inc.
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <sound/dmaengine_pcm.h>
#include <sound/pcm_params.h>
#include "fsl_esai.h"
#include "imx-pcm.h"
#define FSL_ESAI_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S20_3LE | \
SNDRV_PCM_FMTBIT_S24_LE)
/**
* fsl_esai: ESAI private data
*
* @dma_params_rx: DMA parameters for receive channel
* @dma_params_tx: DMA parameters for transmit channel
* @pdev: platform device pointer
* @regmap: regmap handler
* @coreclk: clock source to access register
* @extalclk: esai clock source to derive HCK, SCK and FS
* @fsysclk: system clock source to derive HCK, SCK and FS
* @spbaclk: SPBA clock (optional, depending on SoC design)
* @fifo_depth: depth of tx/rx FIFO
* @slot_width: width of each DAI slot
* @slots: number of slots
* @hck_rate: clock rate of desired HCKx clock
* @sck_rate: clock rate of desired SCKx clock
* @hck_dir: the direction of HCKx pads
* @sck_div: if using PSR/PM dividers for SCKx clock
* @slave_mode: if fully using DAI slave mode
* @synchronous: if using tx/rx synchronous mode
* @name: driver name
*/
struct fsl_esai {
struct snd_dmaengine_dai_dma_data dma_params_rx;
struct snd_dmaengine_dai_dma_data dma_params_tx;
struct platform_device *pdev;
struct regmap *regmap;
struct clk *coreclk;
struct clk *extalclk;
struct clk *fsysclk;
struct clk *spbaclk;
u32 fifo_depth;
u32 slot_width;
u32 slots;
u32 hck_rate[2];
u32 sck_rate[2];
bool hck_dir[2];
bool sck_div[2];
bool slave_mode;
bool synchronous;
char name[32];
};
static irqreturn_t esai_isr(int irq, void *devid)
{
struct fsl_esai *esai_priv = (struct fsl_esai *)devid;
struct platform_device *pdev = esai_priv->pdev;
u32 esr;
regmap_read(esai_priv->regmap, REG_ESAI_ESR, &esr);
if (esr & ESAI_ESR_TINIT_MASK)
dev_dbg(&pdev->dev, "isr: Transmission Initialized\n");
if (esr & ESAI_ESR_RFF_MASK)
dev_warn(&pdev->dev, "isr: Receiving overrun\n");
if (esr & ESAI_ESR_TFE_MASK)
dev_warn(&pdev->dev, "isr: Transmission underrun\n");
if (esr & ESAI_ESR_TLS_MASK)
dev_dbg(&pdev->dev, "isr: Just transmitted the last slot\n");
if (esr & ESAI_ESR_TDE_MASK)
dev_dbg(&pdev->dev, "isr: Transmission data exception\n");
if (esr & ESAI_ESR_TED_MASK)
dev_dbg(&pdev->dev, "isr: Transmitting even slots\n");
if (esr & ESAI_ESR_TD_MASK)
dev_dbg(&pdev->dev, "isr: Transmitting data\n");
if (esr & ESAI_ESR_RLS_MASK)
dev_dbg(&pdev->dev, "isr: Just received the last slot\n");
if (esr & ESAI_ESR_RDE_MASK)
dev_dbg(&pdev->dev, "isr: Receiving data exception\n");
if (esr & ESAI_ESR_RED_MASK)
dev_dbg(&pdev->dev, "isr: Receiving even slots\n");
if (esr & ESAI_ESR_RD_MASK)
dev_dbg(&pdev->dev, "isr: Receiving data\n");
return IRQ_HANDLED;
}
/**
* This function is used to calculate the divisors of psr, pm, fp and it is
* supposed to be called in set_dai_sysclk() and set_bclk().
*
* @ratio: desired overall ratio for the paticipating dividers
* @usefp: for HCK setting, there is no need to set fp divider
* @fp: bypass other dividers by setting fp directly if fp != 0
* @tx: current setting is for playback or capture
*/
static int fsl_esai_divisor_cal(struct snd_soc_dai *dai, bool tx, u32 ratio,
bool usefp, u32 fp)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
u32 psr, pm = 999, maxfp, prod, sub, savesub, i, j;
maxfp = usefp ? 16 : 1;
if (usefp && fp)
goto out_fp;
if (ratio > 2 * 8 * 256 * maxfp || ratio < 2) {
dev_err(dai->dev, "the ratio is out of range (2 ~ %d)\n",
2 * 8 * 256 * maxfp);
return -EINVAL;
} else if (ratio % 2) {
dev_err(dai->dev, "the raio must be even if using upper divider\n");
return -EINVAL;
}
ratio /= 2;
psr = ratio <= 256 * maxfp ? ESAI_xCCR_xPSR_BYPASS : ESAI_xCCR_xPSR_DIV8;
/* Do not loop-search if PM (1 ~ 256) alone can serve the ratio */
if (ratio <= 256) {
pm = ratio;
fp = 1;
goto out;
}
/* Set the max fluctuation -- 0.1% of the max devisor */
savesub = (psr ? 1 : 8) * 256 * maxfp / 1000;
/* Find the best value for PM */
for (i = 1; i <= 256; i++) {
for (j = 1; j <= maxfp; j++) {
/* PSR (1 or 8) * PM (1 ~ 256) * FP (1 ~ 16) */
prod = (psr ? 1 : 8) * i * j;
if (prod == ratio)
sub = 0;
else if (prod / ratio == 1)
sub = prod - ratio;
else if (ratio / prod == 1)
sub = ratio - prod;
else
continue;
/* Calculate the fraction */
sub = sub * 1000 / ratio;
if (sub < savesub) {
savesub = sub;
pm = i;
fp = j;
}
/* We are lucky */
if (savesub == 0)
goto out;
}
}
if (pm == 999) {
dev_err(dai->dev, "failed to calculate proper divisors\n");
return -EINVAL;
}
out:
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
ESAI_xCCR_xPSR_MASK | ESAI_xCCR_xPM_MASK,
psr | ESAI_xCCR_xPM(pm));
out_fp:
/* Bypass fp if not being required */
if (maxfp <= 1)
return 0;
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
ESAI_xCCR_xFP_MASK, ESAI_xCCR_xFP(fp));
return 0;
}
/**
* This function mainly configures the clock frequency of MCLK (HCKT/HCKR)
*
* @Parameters:
* clk_id: The clock source of HCKT/HCKR
* (Input from outside; output from inside, FSYS or EXTAL)
* freq: The required clock rate of HCKT/HCKR
* dir: The clock direction of HCKT/HCKR
*
* Note: If the direction is input, we do not care about clk_id.
*/
static int fsl_esai_set_dai_sysclk(struct snd_soc_dai *dai, int clk_id,
unsigned int freq, int dir)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
struct clk *clksrc = esai_priv->extalclk;
bool tx = clk_id <= ESAI_HCKT_EXTAL;
bool in = dir == SND_SOC_CLOCK_IN;
u32 ratio, ecr = 0;
unsigned long clk_rate;
int ret;
if (freq == 0) {
dev_err(dai->dev, "%sput freq of HCK%c should not be 0Hz\n",
in ? "in" : "out", tx ? 'T' : 'R');
return -EINVAL;
}
/* Bypass divider settings if the requirement doesn't change */
if (freq == esai_priv->hck_rate[tx] && dir == esai_priv->hck_dir[tx])
return 0;
/* sck_div can be only bypassed if ETO/ERO=0 and SNC_SOC_CLOCK_OUT */
esai_priv->sck_div[tx] = true;
/* Set the direction of HCKT/HCKR pins */
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCCR(tx),
ESAI_xCCR_xHCKD, in ? 0 : ESAI_xCCR_xHCKD);
if (in)
goto out;
switch (clk_id) {
case ESAI_HCKT_FSYS:
case ESAI_HCKR_FSYS:
clksrc = esai_priv->fsysclk;
break;
case ESAI_HCKT_EXTAL:
ecr |= ESAI_ECR_ETI;
/* fall through */
case ESAI_HCKR_EXTAL:
ecr |= ESAI_ECR_ERI;
break;
default:
return -EINVAL;
}
if (IS_ERR(clksrc)) {
dev_err(dai->dev, "no assigned %s clock\n",
clk_id % 2 ? "extal" : "fsys");
return PTR_ERR(clksrc);
}
clk_rate = clk_get_rate(clksrc);
ratio = clk_rate / freq;
if (ratio * freq > clk_rate)
ret = ratio * freq - clk_rate;
else if (ratio * freq < clk_rate)
ret = clk_rate - ratio * freq;
else
ret = 0;
/* Block if clock source can not be divided into the required rate */
if (ret != 0 && clk_rate / ret < 1000) {
dev_err(dai->dev, "failed to derive required HCK%c rate\n",
tx ? 'T' : 'R');
return -EINVAL;
}
/* Only EXTAL source can be output directly without using PSR and PM */
if (ratio == 1 && clksrc == esai_priv->extalclk) {
/* Bypass all the dividers if not being needed */
ecr |= tx ? ESAI_ECR_ETO : ESAI_ECR_ERO;
goto out;
} else if (ratio < 2) {
/* The ratio should be no less than 2 if using other sources */
dev_err(dai->dev, "failed to derive required HCK%c rate\n",
tx ? 'T' : 'R');
return -EINVAL;
}
ret = fsl_esai_divisor_cal(dai, tx, ratio, false, 0);
if (ret)
return ret;
esai_priv->sck_div[tx] = false;
out:
esai_priv->hck_dir[tx] = dir;
esai_priv->hck_rate[tx] = freq;
regmap_update_bits(esai_priv->regmap, REG_ESAI_ECR,
tx ? ESAI_ECR_ETI | ESAI_ECR_ETO :
ESAI_ECR_ERI | ESAI_ECR_ERO, ecr);
return 0;
}
/**
* This function configures the related dividers according to the bclk rate
*/
static int fsl_esai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
u32 hck_rate = esai_priv->hck_rate[tx];
u32 sub, ratio = hck_rate / freq;
int ret;
/* Don't apply for fully slave mode or unchanged bclk */
if (esai_priv->slave_mode || esai_priv->sck_rate[tx] == freq)
return 0;
if (ratio * freq > hck_rate)
sub = ratio * freq - hck_rate;
else if (ratio * freq < hck_rate)
sub = hck_rate - ratio * freq;
else
sub = 0;
/* Block if clock source can not be divided into the required rate */
if (sub != 0 && hck_rate / sub < 1000) {
dev_err(dai->dev, "failed to derive required SCK%c rate\n",
tx ? 'T' : 'R');
return -EINVAL;
}
/* The ratio should be contented by FP alone if bypassing PM and PSR */
if (!esai_priv->sck_div[tx] && (ratio > 16 || ratio == 0)) {
dev_err(dai->dev, "the ratio is out of range (1 ~ 16)\n");
return -EINVAL;
}
ret = fsl_esai_divisor_cal(dai, tx, ratio, true,
esai_priv->sck_div[tx] ? 0 : ratio);
if (ret)
return ret;
/* Save current bclk rate */
esai_priv->sck_rate[tx] = freq;
return 0;
}
static int fsl_esai_set_dai_tdm_slot(struct snd_soc_dai *dai, u32 tx_mask,
u32 rx_mask, int slots, int slot_width)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMA,
ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(tx_mask));
regmap_update_bits(esai_priv->regmap, REG_ESAI_TSMB,
ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(tx_mask));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(slots));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMA,
ESAI_xSMA_xS_MASK, ESAI_xSMA_xS(rx_mask));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RSMB,
ESAI_xSMB_xS_MASK, ESAI_xSMB_xS(rx_mask));
esai_priv->slot_width = slot_width;
esai_priv->slots = slots;
return 0;
}
static int fsl_esai_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
u32 xcr = 0, xccr = 0, mask;
/* DAI mode */
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
/* Data on rising edge of bclk, frame low, 1clk before data */
xcr |= ESAI_xCR_xFSR;
xccr |= ESAI_xCCR_xFSP | ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_LEFT_J:
/* Data on rising edge of bclk, frame high */
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_RIGHT_J:
/* Data on rising edge of bclk, frame high, right aligned */
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCR_xWA;
break;
case SND_SOC_DAIFMT_DSP_A:
/* Data on rising edge of bclk, frame high, 1clk before data */
xcr |= ESAI_xCR_xFSL | ESAI_xCR_xFSR;
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_DSP_B:
/* Data on rising edge of bclk, frame high */
xcr |= ESAI_xCR_xFSL;
xccr |= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
default:
return -EINVAL;
}
/* DAI clock inversion */
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
/* Nothing to do for both normal cases */
break;
case SND_SOC_DAIFMT_IB_NF:
/* Invert bit clock */
xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP;
break;
case SND_SOC_DAIFMT_NB_IF:
/* Invert frame clock */
xccr ^= ESAI_xCCR_xFSP;
break;
case SND_SOC_DAIFMT_IB_IF:
/* Invert both clocks */
xccr ^= ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP;
break;
default:
return -EINVAL;
}
esai_priv->slave_mode = false;
/* DAI clock master masks */
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
esai_priv->slave_mode = true;
break;
case SND_SOC_DAIFMT_CBS_CFM:
xccr |= ESAI_xCCR_xCKD;
break;
case SND_SOC_DAIFMT_CBM_CFS:
xccr |= ESAI_xCCR_xFSD;
break;
case SND_SOC_DAIFMT_CBS_CFS:
xccr |= ESAI_xCCR_xFSD | ESAI_xCCR_xCKD;
break;
default:
return -EINVAL;
}
mask = ESAI_xCR_xFSL | ESAI_xCR_xFSR;
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCR, mask, xcr);
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCR, mask, xcr);
mask = ESAI_xCCR_xCKP | ESAI_xCCR_xHCKP | ESAI_xCCR_xFSP |
ESAI_xCCR_xFSD | ESAI_xCCR_xCKD | ESAI_xCR_xWA;
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR, mask, xccr);
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR, mask, xccr);
return 0;
}
static int fsl_esai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
int ret;
/*
* Some platforms might use the same bit to gate all three or two of
* clocks, so keep all clocks open/close at the same time for safety
*/
ret = clk_prepare_enable(esai_priv->coreclk);
if (ret)
return ret;
if (!IS_ERR(esai_priv->spbaclk)) {
ret = clk_prepare_enable(esai_priv->spbaclk);
if (ret)
goto err_spbaclk;
}
if (!IS_ERR(esai_priv->extalclk)) {
ret = clk_prepare_enable(esai_priv->extalclk);
if (ret)
goto err_extalck;
}
if (!IS_ERR(esai_priv->fsysclk)) {
ret = clk_prepare_enable(esai_priv->fsysclk);
if (ret)
goto err_fsysclk;
}
if (!dai->active) {
/* Set synchronous mode */
regmap_update_bits(esai_priv->regmap, REG_ESAI_SAICR,
ESAI_SAICR_SYNC, esai_priv->synchronous ?
ESAI_SAICR_SYNC : 0);
/* Set a default slot number -- 2 */
regmap_update_bits(esai_priv->regmap, REG_ESAI_TCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
regmap_update_bits(esai_priv->regmap, REG_ESAI_RCCR,
ESAI_xCCR_xDC_MASK, ESAI_xCCR_xDC(2));
}
return 0;
err_fsysclk:
if (!IS_ERR(esai_priv->extalclk))
clk_disable_unprepare(esai_priv->extalclk);
err_extalck:
if (!IS_ERR(esai_priv->spbaclk))
clk_disable_unprepare(esai_priv->spbaclk);
err_spbaclk:
clk_disable_unprepare(esai_priv->coreclk);
return ret;
}
static int fsl_esai_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
u32 width = params_width(params);
u32 channels = params_channels(params);
u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
u32 slot_width = width;
u32 bclk, mask, val;
int ret;
/* Override slot_width if being specifically set */
if (esai_priv->slot_width)
slot_width = esai_priv->slot_width;
bclk = params_rate(params) * slot_width * esai_priv->slots;
ret = fsl_esai_set_bclk(dai, tx, bclk);
if (ret)
return ret;
/* Use Normal mode to support monaural audio */
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
ESAI_xCR_xMOD_MASK, params_channels(params) > 1 ?
ESAI_xCR_xMOD_NETWORK : 0);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFR_MASK, ESAI_xFCR_xFR);
mask = ESAI_xFCR_xFR_MASK | ESAI_xFCR_xWA_MASK | ESAI_xFCR_xFWM_MASK |
(tx ? ESAI_xFCR_TE_MASK | ESAI_xFCR_TIEN : ESAI_xFCR_RE_MASK);
val = ESAI_xFCR_xWA(width) | ESAI_xFCR_xFWM(esai_priv->fifo_depth) |
(tx ? ESAI_xFCR_TE(pins) | ESAI_xFCR_TIEN : ESAI_xFCR_RE(pins));
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx), mask, val);
mask = ESAI_xCR_xSWS_MASK | (tx ? ESAI_xCR_PADC : 0);
val = ESAI_xCR_xSWS(slot_width, width) | (tx ? ESAI_xCR_PADC : 0);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx), mask, val);
/* Remove ESAI personal reset by configuring ESAI_PCRC and ESAI_PRRC */
regmap_update_bits(esai_priv->regmap, REG_ESAI_PRRC,
ESAI_PRRC_PDC_MASK, ESAI_PRRC_PDC(ESAI_GPIO));
regmap_update_bits(esai_priv->regmap, REG_ESAI_PCRC,
ESAI_PCRC_PC_MASK, ESAI_PCRC_PC(ESAI_GPIO));
return 0;
}
static void fsl_esai_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
if (!IS_ERR(esai_priv->fsysclk))
clk_disable_unprepare(esai_priv->fsysclk);
if (!IS_ERR(esai_priv->extalclk))
clk_disable_unprepare(esai_priv->extalclk);
if (!IS_ERR(esai_priv->spbaclk))
clk_disable_unprepare(esai_priv->spbaclk);
clk_disable_unprepare(esai_priv->coreclk);
}
static int fsl_esai_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
u8 i, channels = substream->runtime->channels;
u32 pins = DIV_ROUND_UP(channels, esai_priv->slots);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFEN_MASK, ESAI_xFCR_xFEN);
/* Write initial words reqiured by ESAI as normal procedure */
for (i = 0; tx && i < channels; i++)
regmap_write(esai_priv->regmap, REG_ESAI_ETDR, 0x0);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK,
tx ? ESAI_xCR_TE(pins) : ESAI_xCR_RE(pins));
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
regmap_update_bits(esai_priv->regmap, REG_ESAI_xCR(tx),
tx ? ESAI_xCR_TE_MASK : ESAI_xCR_RE_MASK, 0);
/* Disable and reset FIFO */
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFR | ESAI_xFCR_xFEN, ESAI_xFCR_xFR);
regmap_update_bits(esai_priv->regmap, REG_ESAI_xFCR(tx),
ESAI_xFCR_xFR, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static const struct snd_soc_dai_ops fsl_esai_dai_ops = {
.startup = fsl_esai_startup,
.shutdown = fsl_esai_shutdown,
.trigger = fsl_esai_trigger,
.hw_params = fsl_esai_hw_params,
.set_sysclk = fsl_esai_set_dai_sysclk,
.set_fmt = fsl_esai_set_dai_fmt,
.set_tdm_slot = fsl_esai_set_dai_tdm_slot,
};
static int fsl_esai_dai_probe(struct snd_soc_dai *dai)
{
struct fsl_esai *esai_priv = snd_soc_dai_get_drvdata(dai);
snd_soc_dai_init_dma_data(dai, &esai_priv->dma_params_tx,
&esai_priv->dma_params_rx);
return 0;
}
static struct snd_soc_dai_driver fsl_esai_dai = {
.probe = fsl_esai_dai_probe,
.playback = {
.stream_name = "CPU-Playback",
.channels_min = 1,
.channels_max = 12,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = FSL_ESAI_FORMATS,
},
.capture = {
.stream_name = "CPU-Capture",
.channels_min = 1,
.channels_max = 8,
.rates = SNDRV_PCM_RATE_8000_192000,
.formats = FSL_ESAI_FORMATS,
},
.ops = &fsl_esai_dai_ops,
};
static const struct snd_soc_component_driver fsl_esai_component = {
.name = "fsl-esai",
};
static const struct reg_default fsl_esai_reg_defaults[] = {
{REG_ESAI_ETDR, 0x00000000},
{REG_ESAI_ECR, 0x00000000},
{REG_ESAI_TFCR, 0x00000000},
{REG_ESAI_RFCR, 0x00000000},
{REG_ESAI_TX0, 0x00000000},
{REG_ESAI_TX1, 0x00000000},
{REG_ESAI_TX2, 0x00000000},
{REG_ESAI_TX3, 0x00000000},
{REG_ESAI_TX4, 0x00000000},
{REG_ESAI_TX5, 0x00000000},
{REG_ESAI_TSR, 0x00000000},
{REG_ESAI_SAICR, 0x00000000},
{REG_ESAI_TCR, 0x00000000},
{REG_ESAI_TCCR, 0x00000000},
{REG_ESAI_RCR, 0x00000000},
{REG_ESAI_RCCR, 0x00000000},
{REG_ESAI_TSMA, 0x0000ffff},
{REG_ESAI_TSMB, 0x0000ffff},
{REG_ESAI_RSMA, 0x0000ffff},
{REG_ESAI_RSMB, 0x0000ffff},
{REG_ESAI_PRRC, 0x00000000},
{REG_ESAI_PCRC, 0x00000000},
};
static bool fsl_esai_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ESAI_ERDR:
case REG_ESAI_ECR:
case REG_ESAI_ESR:
case REG_ESAI_TFCR:
case REG_ESAI_TFSR:
case REG_ESAI_RFCR:
case REG_ESAI_RFSR:
case REG_ESAI_RX0:
case REG_ESAI_RX1:
case REG_ESAI_RX2:
case REG_ESAI_RX3:
case REG_ESAI_SAISR:
case REG_ESAI_SAICR:
case REG_ESAI_TCR:
case REG_ESAI_TCCR:
case REG_ESAI_RCR:
case REG_ESAI_RCCR:
case REG_ESAI_TSMA:
case REG_ESAI_TSMB:
case REG_ESAI_RSMA:
case REG_ESAI_RSMB:
case REG_ESAI_PRRC:
case REG_ESAI_PCRC:
return true;
default:
return false;
}
}
static bool fsl_esai_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ESAI_ERDR:
case REG_ESAI_ESR:
case REG_ESAI_TFSR:
case REG_ESAI_RFSR:
case REG_ESAI_RX0:
case REG_ESAI_RX1:
case REG_ESAI_RX2:
case REG_ESAI_RX3:
case REG_ESAI_SAISR:
return true;
default:
return false;
}
}
static bool fsl_esai_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case REG_ESAI_ETDR:
case REG_ESAI_ECR:
case REG_ESAI_TFCR:
case REG_ESAI_RFCR:
case REG_ESAI_TX0:
case REG_ESAI_TX1:
case REG_ESAI_TX2:
case REG_ESAI_TX3:
case REG_ESAI_TX4:
case REG_ESAI_TX5:
case REG_ESAI_TSR:
case REG_ESAI_SAICR:
case REG_ESAI_TCR:
case REG_ESAI_TCCR:
case REG_ESAI_RCR:
case REG_ESAI_RCCR:
case REG_ESAI_TSMA:
case REG_ESAI_TSMB:
case REG_ESAI_RSMA:
case REG_ESAI_RSMB:
case REG_ESAI_PRRC:
case REG_ESAI_PCRC:
return true;
default:
return false;
}
}
static const struct regmap_config fsl_esai_regmap_config = {
.reg_bits = 32,
.reg_stride = 4,
.val_bits = 32,
.max_register = REG_ESAI_PCRC,
.reg_defaults = fsl_esai_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(fsl_esai_reg_defaults),
.readable_reg = fsl_esai_readable_reg,
.volatile_reg = fsl_esai_volatile_reg,
.writeable_reg = fsl_esai_writeable_reg,
.cache_type = REGCACHE_FLAT,
};
static int fsl_esai_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct fsl_esai *esai_priv;
struct resource *res;
const __be32 *iprop;
void __iomem *regs;
int irq, ret;
esai_priv = devm_kzalloc(&pdev->dev, sizeof(*esai_priv), GFP_KERNEL);
if (!esai_priv)
return -ENOMEM;
esai_priv->pdev = pdev;
snprintf(esai_priv->name, sizeof(esai_priv->name), "%pOFn", np);
/* Get the addresses and IRQ */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(regs))
return PTR_ERR(regs);
esai_priv->regmap = devm_regmap_init_mmio_clk(&pdev->dev,
"core", regs, &fsl_esai_regmap_config);
if (IS_ERR(esai_priv->regmap)) {
dev_err(&pdev->dev, "failed to init regmap: %ld\n",
PTR_ERR(esai_priv->regmap));
return PTR_ERR(esai_priv->regmap);
}
esai_priv->coreclk = devm_clk_get(&pdev->dev, "core");
if (IS_ERR(esai_priv->coreclk)) {
dev_err(&pdev->dev, "failed to get core clock: %ld\n",
PTR_ERR(esai_priv->coreclk));
return PTR_ERR(esai_priv->coreclk);
}
esai_priv->extalclk = devm_clk_get(&pdev->dev, "extal");
if (IS_ERR(esai_priv->extalclk))
dev_warn(&pdev->dev, "failed to get extal clock: %ld\n",
PTR_ERR(esai_priv->extalclk));
esai_priv->fsysclk = devm_clk_get(&pdev->dev, "fsys");
if (IS_ERR(esai_priv->fsysclk))
dev_warn(&pdev->dev, "failed to get fsys clock: %ld\n",
PTR_ERR(esai_priv->fsysclk));
esai_priv->spbaclk = devm_clk_get(&pdev->dev, "spba");
if (IS_ERR(esai_priv->spbaclk))
dev_warn(&pdev->dev, "failed to get spba clock: %ld\n",
PTR_ERR(esai_priv->spbaclk));
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq for node %s\n", pdev->name);
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, esai_isr, 0,
esai_priv->name, esai_priv);
if (ret) {
dev_err(&pdev->dev, "failed to claim irq %u\n", irq);
return ret;
}
/* Set a default slot number */
esai_priv->slots = 2;
/* Set a default master/slave state */
esai_priv->slave_mode = true;
/* Determine the FIFO depth */
iprop = of_get_property(np, "fsl,fifo-depth", NULL);
if (iprop)
esai_priv->fifo_depth = be32_to_cpup(iprop);
else
esai_priv->fifo_depth = 64;
esai_priv->dma_params_tx.maxburst = 16;
esai_priv->dma_params_rx.maxburst = 16;
esai_priv->dma_params_tx.addr = res->start + REG_ESAI_ETDR;
esai_priv->dma_params_rx.addr = res->start + REG_ESAI_ERDR;
esai_priv->synchronous =
of_property_read_bool(np, "fsl,esai-synchronous");
/* Implement full symmetry for synchronous mode */
if (esai_priv->synchronous) {
fsl_esai_dai.symmetric_rates = 1;
fsl_esai_dai.symmetric_channels = 1;
fsl_esai_dai.symmetric_samplebits = 1;
}
dev_set_drvdata(&pdev->dev, esai_priv);
/* Reset ESAI unit */
ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ERST);
if (ret) {
dev_err(&pdev->dev, "failed to reset ESAI: %d\n", ret);
return ret;
}
/*
* We need to enable ESAI so as to access some of its registers.
* Otherwise, we would fail to dump regmap from user space.
*/
ret = regmap_write(esai_priv->regmap, REG_ESAI_ECR, ESAI_ECR_ESAIEN);
if (ret) {
dev_err(&pdev->dev, "failed to enable ESAI: %d\n", ret);
return ret;
}
ret = devm_snd_soc_register_component(&pdev->dev, &fsl_esai_component,
&fsl_esai_dai, 1);
if (ret) {
dev_err(&pdev->dev, "failed to register DAI: %d\n", ret);
return ret;
}
ret = imx_pcm_dma_init(pdev, IMX_ESAI_DMABUF_SIZE);
if (ret)
dev_err(&pdev->dev, "failed to init imx pcm dma: %d\n", ret);
return ret;
}
static const struct of_device_id fsl_esai_dt_ids[] = {
{ .compatible = "fsl,imx35-esai", },
{ .compatible = "fsl,vf610-esai", },
{}
};
MODULE_DEVICE_TABLE(of, fsl_esai_dt_ids);
#ifdef CONFIG_PM_SLEEP
static int fsl_esai_suspend(struct device *dev)
{
struct fsl_esai *esai = dev_get_drvdata(dev);
regcache_cache_only(esai->regmap, true);
regcache_mark_dirty(esai->regmap);
return 0;
}
static int fsl_esai_resume(struct device *dev)
{
struct fsl_esai *esai = dev_get_drvdata(dev);
int ret;
regcache_cache_only(esai->regmap, false);
/* FIFO reset for safety */
regmap_update_bits(esai->regmap, REG_ESAI_TFCR,
ESAI_xFCR_xFR, ESAI_xFCR_xFR);
regmap_update_bits(esai->regmap, REG_ESAI_RFCR,
ESAI_xFCR_xFR, ESAI_xFCR_xFR);
ret = regcache_sync(esai->regmap);
if (ret)
return ret;
/* FIFO reset done */
regmap_update_bits(esai->regmap, REG_ESAI_TFCR, ESAI_xFCR_xFR, 0);
regmap_update_bits(esai->regmap, REG_ESAI_RFCR, ESAI_xFCR_xFR, 0);
return 0;
}
#endif /* CONFIG_PM_SLEEP */
static const struct dev_pm_ops fsl_esai_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(fsl_esai_suspend, fsl_esai_resume)
};
static struct platform_driver fsl_esai_driver = {
.probe = fsl_esai_probe,
.driver = {
.name = "fsl-esai-dai",
.pm = &fsl_esai_pm_ops,
.of_match_table = fsl_esai_dt_ids,
},
};
module_platform_driver(fsl_esai_driver);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("Freescale ESAI CPU DAI driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:fsl-esai-dai");