linux-sg2042/drivers/firmware/efi/cper.c

569 lines
18 KiB
C

/*
* UEFI Common Platform Error Record (CPER) support
*
* Copyright (C) 2010, Intel Corp.
* Author: Huang Ying <ying.huang@intel.com>
*
* CPER is the format used to describe platform hardware error by
* various tables, such as ERST, BERT and HEST etc.
*
* For more information about CPER, please refer to Appendix N of UEFI
* Specification version 2.4.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License version
* 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/time.h>
#include <linux/cper.h>
#include <linux/dmi.h>
#include <linux/acpi.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/printk.h>
#include <linux/bcd.h>
#include <acpi/ghes.h>
#include <ras/ras_event.h>
static char rcd_decode_str[CPER_REC_LEN];
/*
* CPER record ID need to be unique even after reboot, because record
* ID is used as index for ERST storage, while CPER records from
* multiple boot may co-exist in ERST.
*/
u64 cper_next_record_id(void)
{
static atomic64_t seq;
if (!atomic64_read(&seq)) {
time64_t time = ktime_get_real_seconds();
/*
* This code is unlikely to still be needed in year 2106,
* but just in case, let's use a few more bits for timestamps
* after y2038 to be sure they keep increasing monotonically
* for the next few hundred years...
*/
if (time < 0x80000000)
atomic64_set(&seq, (ktime_get_real_seconds()) << 32);
else
atomic64_set(&seq, 0x8000000000000000ull |
ktime_get_real_seconds() << 24);
}
return atomic64_inc_return(&seq);
}
EXPORT_SYMBOL_GPL(cper_next_record_id);
static const char * const severity_strs[] = {
"recoverable",
"fatal",
"corrected",
"info",
};
const char *cper_severity_str(unsigned int severity)
{
return severity < ARRAY_SIZE(severity_strs) ?
severity_strs[severity] : "unknown";
}
EXPORT_SYMBOL_GPL(cper_severity_str);
/*
* cper_print_bits - print strings for set bits
* @pfx: prefix for each line, including log level and prefix string
* @bits: bit mask
* @strs: string array, indexed by bit position
* @strs_size: size of the string array: @strs
*
* For each set bit in @bits, print the corresponding string in @strs.
* If the output length is longer than 80, multiple line will be
* printed, with @pfx is printed at the beginning of each line.
*/
void cper_print_bits(const char *pfx, unsigned int bits,
const char * const strs[], unsigned int strs_size)
{
int i, len = 0;
const char *str;
char buf[84];
for (i = 0; i < strs_size; i++) {
if (!(bits & (1U << i)))
continue;
str = strs[i];
if (!str)
continue;
if (len && len + strlen(str) + 2 > 80) {
printk("%s\n", buf);
len = 0;
}
if (!len)
len = snprintf(buf, sizeof(buf), "%s%s", pfx, str);
else
len += snprintf(buf+len, sizeof(buf)-len, ", %s", str);
}
if (len)
printk("%s\n", buf);
}
static const char * const proc_type_strs[] = {
"IA32/X64",
"IA64",
"ARM",
};
static const char * const proc_isa_strs[] = {
"IA32",
"IA64",
"X64",
"ARM A32/T32",
"ARM A64",
};
const char * const cper_proc_error_type_strs[] = {
"cache error",
"TLB error",
"bus error",
"micro-architectural error",
};
static const char * const proc_op_strs[] = {
"unknown or generic",
"data read",
"data write",
"instruction execution",
};
static const char * const proc_flag_strs[] = {
"restartable",
"precise IP",
"overflow",
"corrected",
};
static void cper_print_proc_generic(const char *pfx,
const struct cper_sec_proc_generic *proc)
{
if (proc->validation_bits & CPER_PROC_VALID_TYPE)
printk("%s""processor_type: %d, %s\n", pfx, proc->proc_type,
proc->proc_type < ARRAY_SIZE(proc_type_strs) ?
proc_type_strs[proc->proc_type] : "unknown");
if (proc->validation_bits & CPER_PROC_VALID_ISA)
printk("%s""processor_isa: %d, %s\n", pfx, proc->proc_isa,
proc->proc_isa < ARRAY_SIZE(proc_isa_strs) ?
proc_isa_strs[proc->proc_isa] : "unknown");
if (proc->validation_bits & CPER_PROC_VALID_ERROR_TYPE) {
printk("%s""error_type: 0x%02x\n", pfx, proc->proc_error_type);
cper_print_bits(pfx, proc->proc_error_type,
cper_proc_error_type_strs,
ARRAY_SIZE(cper_proc_error_type_strs));
}
if (proc->validation_bits & CPER_PROC_VALID_OPERATION)
printk("%s""operation: %d, %s\n", pfx, proc->operation,
proc->operation < ARRAY_SIZE(proc_op_strs) ?
proc_op_strs[proc->operation] : "unknown");
if (proc->validation_bits & CPER_PROC_VALID_FLAGS) {
printk("%s""flags: 0x%02x\n", pfx, proc->flags);
cper_print_bits(pfx, proc->flags, proc_flag_strs,
ARRAY_SIZE(proc_flag_strs));
}
if (proc->validation_bits & CPER_PROC_VALID_LEVEL)
printk("%s""level: %d\n", pfx, proc->level);
if (proc->validation_bits & CPER_PROC_VALID_VERSION)
printk("%s""version_info: 0x%016llx\n", pfx, proc->cpu_version);
if (proc->validation_bits & CPER_PROC_VALID_ID)
printk("%s""processor_id: 0x%016llx\n", pfx, proc->proc_id);
if (proc->validation_bits & CPER_PROC_VALID_TARGET_ADDRESS)
printk("%s""target_address: 0x%016llx\n",
pfx, proc->target_addr);
if (proc->validation_bits & CPER_PROC_VALID_REQUESTOR_ID)
printk("%s""requestor_id: 0x%016llx\n",
pfx, proc->requestor_id);
if (proc->validation_bits & CPER_PROC_VALID_RESPONDER_ID)
printk("%s""responder_id: 0x%016llx\n",
pfx, proc->responder_id);
if (proc->validation_bits & CPER_PROC_VALID_IP)
printk("%s""IP: 0x%016llx\n", pfx, proc->ip);
}
static const char * const mem_err_type_strs[] = {
"unknown",
"no error",
"single-bit ECC",
"multi-bit ECC",
"single-symbol chipkill ECC",
"multi-symbol chipkill ECC",
"master abort",
"target abort",
"parity error",
"watchdog timeout",
"invalid address",
"mirror Broken",
"memory sparing",
"scrub corrected error",
"scrub uncorrected error",
"physical memory map-out event",
};
const char *cper_mem_err_type_str(unsigned int etype)
{
return etype < ARRAY_SIZE(mem_err_type_strs) ?
mem_err_type_strs[etype] : "unknown";
}
EXPORT_SYMBOL_GPL(cper_mem_err_type_str);
static int cper_mem_err_location(struct cper_mem_err_compact *mem, char *msg)
{
u32 len, n;
if (!msg)
return 0;
n = 0;
len = CPER_REC_LEN - 1;
if (mem->validation_bits & CPER_MEM_VALID_NODE)
n += scnprintf(msg + n, len - n, "node: %d ", mem->node);
if (mem->validation_bits & CPER_MEM_VALID_CARD)
n += scnprintf(msg + n, len - n, "card: %d ", mem->card);
if (mem->validation_bits & CPER_MEM_VALID_MODULE)
n += scnprintf(msg + n, len - n, "module: %d ", mem->module);
if (mem->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
n += scnprintf(msg + n, len - n, "rank: %d ", mem->rank);
if (mem->validation_bits & CPER_MEM_VALID_BANK)
n += scnprintf(msg + n, len - n, "bank: %d ", mem->bank);
if (mem->validation_bits & CPER_MEM_VALID_DEVICE)
n += scnprintf(msg + n, len - n, "device: %d ", mem->device);
if (mem->validation_bits & CPER_MEM_VALID_ROW)
n += scnprintf(msg + n, len - n, "row: %d ", mem->row);
if (mem->validation_bits & CPER_MEM_VALID_COLUMN)
n += scnprintf(msg + n, len - n, "column: %d ", mem->column);
if (mem->validation_bits & CPER_MEM_VALID_BIT_POSITION)
n += scnprintf(msg + n, len - n, "bit_position: %d ",
mem->bit_pos);
if (mem->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
n += scnprintf(msg + n, len - n, "requestor_id: 0x%016llx ",
mem->requestor_id);
if (mem->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
n += scnprintf(msg + n, len - n, "responder_id: 0x%016llx ",
mem->responder_id);
if (mem->validation_bits & CPER_MEM_VALID_TARGET_ID)
scnprintf(msg + n, len - n, "target_id: 0x%016llx ",
mem->target_id);
msg[n] = '\0';
return n;
}
static int cper_dimm_err_location(struct cper_mem_err_compact *mem, char *msg)
{
u32 len, n;
const char *bank = NULL, *device = NULL;
if (!msg || !(mem->validation_bits & CPER_MEM_VALID_MODULE_HANDLE))
return 0;
n = 0;
len = CPER_REC_LEN - 1;
dmi_memdev_name(mem->mem_dev_handle, &bank, &device);
if (bank && device)
n = snprintf(msg, len, "DIMM location: %s %s ", bank, device);
else
n = snprintf(msg, len,
"DIMM location: not present. DMI handle: 0x%.4x ",
mem->mem_dev_handle);
msg[n] = '\0';
return n;
}
void cper_mem_err_pack(const struct cper_sec_mem_err *mem,
struct cper_mem_err_compact *cmem)
{
cmem->validation_bits = mem->validation_bits;
cmem->node = mem->node;
cmem->card = mem->card;
cmem->module = mem->module;
cmem->bank = mem->bank;
cmem->device = mem->device;
cmem->row = mem->row;
cmem->column = mem->column;
cmem->bit_pos = mem->bit_pos;
cmem->requestor_id = mem->requestor_id;
cmem->responder_id = mem->responder_id;
cmem->target_id = mem->target_id;
cmem->rank = mem->rank;
cmem->mem_array_handle = mem->mem_array_handle;
cmem->mem_dev_handle = mem->mem_dev_handle;
}
const char *cper_mem_err_unpack(struct trace_seq *p,
struct cper_mem_err_compact *cmem)
{
const char *ret = trace_seq_buffer_ptr(p);
if (cper_mem_err_location(cmem, rcd_decode_str))
trace_seq_printf(p, "%s", rcd_decode_str);
if (cper_dimm_err_location(cmem, rcd_decode_str))
trace_seq_printf(p, "%s", rcd_decode_str);
trace_seq_putc(p, '\0');
return ret;
}
static void cper_print_mem(const char *pfx, const struct cper_sec_mem_err *mem,
int len)
{
struct cper_mem_err_compact cmem;
/* Don't trust UEFI 2.1/2.2 structure with bad validation bits */
if (len == sizeof(struct cper_sec_mem_err_old) &&
(mem->validation_bits & ~(CPER_MEM_VALID_RANK_NUMBER - 1))) {
pr_err(FW_WARN "valid bits set for fields beyond structure\n");
return;
}
if (mem->validation_bits & CPER_MEM_VALID_ERROR_STATUS)
printk("%s""error_status: 0x%016llx\n", pfx, mem->error_status);
if (mem->validation_bits & CPER_MEM_VALID_PA)
printk("%s""physical_address: 0x%016llx\n",
pfx, mem->physical_addr);
if (mem->validation_bits & CPER_MEM_VALID_PA_MASK)
printk("%s""physical_address_mask: 0x%016llx\n",
pfx, mem->physical_addr_mask);
cper_mem_err_pack(mem, &cmem);
if (cper_mem_err_location(&cmem, rcd_decode_str))
printk("%s%s\n", pfx, rcd_decode_str);
if (mem->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
u8 etype = mem->error_type;
printk("%s""error_type: %d, %s\n", pfx, etype,
cper_mem_err_type_str(etype));
}
if (cper_dimm_err_location(&cmem, rcd_decode_str))
printk("%s%s\n", pfx, rcd_decode_str);
}
static const char * const pcie_port_type_strs[] = {
"PCIe end point",
"legacy PCI end point",
"unknown",
"unknown",
"root port",
"upstream switch port",
"downstream switch port",
"PCIe to PCI/PCI-X bridge",
"PCI/PCI-X to PCIe bridge",
"root complex integrated endpoint device",
"root complex event collector",
};
static void cper_print_pcie(const char *pfx, const struct cper_sec_pcie *pcie,
const struct acpi_hest_generic_data *gdata)
{
if (pcie->validation_bits & CPER_PCIE_VALID_PORT_TYPE)
printk("%s""port_type: %d, %s\n", pfx, pcie->port_type,
pcie->port_type < ARRAY_SIZE(pcie_port_type_strs) ?
pcie_port_type_strs[pcie->port_type] : "unknown");
if (pcie->validation_bits & CPER_PCIE_VALID_VERSION)
printk("%s""version: %d.%d\n", pfx,
pcie->version.major, pcie->version.minor);
if (pcie->validation_bits & CPER_PCIE_VALID_COMMAND_STATUS)
printk("%s""command: 0x%04x, status: 0x%04x\n", pfx,
pcie->command, pcie->status);
if (pcie->validation_bits & CPER_PCIE_VALID_DEVICE_ID) {
const __u8 *p;
printk("%s""device_id: %04x:%02x:%02x.%x\n", pfx,
pcie->device_id.segment, pcie->device_id.bus,
pcie->device_id.device, pcie->device_id.function);
printk("%s""slot: %d\n", pfx,
pcie->device_id.slot >> CPER_PCIE_SLOT_SHIFT);
printk("%s""secondary_bus: 0x%02x\n", pfx,
pcie->device_id.secondary_bus);
printk("%s""vendor_id: 0x%04x, device_id: 0x%04x\n", pfx,
pcie->device_id.vendor_id, pcie->device_id.device_id);
p = pcie->device_id.class_code;
printk("%s""class_code: %02x%02x%02x\n", pfx, p[0], p[1], p[2]);
}
if (pcie->validation_bits & CPER_PCIE_VALID_SERIAL_NUMBER)
printk("%s""serial number: 0x%04x, 0x%04x\n", pfx,
pcie->serial_number.lower, pcie->serial_number.upper);
if (pcie->validation_bits & CPER_PCIE_VALID_BRIDGE_CONTROL_STATUS)
printk(
"%s""bridge: secondary_status: 0x%04x, control: 0x%04x\n",
pfx, pcie->bridge.secondary_status, pcie->bridge.control);
}
static void cper_print_tstamp(const char *pfx,
struct acpi_hest_generic_data_v300 *gdata)
{
__u8 hour, min, sec, day, mon, year, century, *timestamp;
if (gdata->validation_bits & ACPI_HEST_GEN_VALID_TIMESTAMP) {
timestamp = (__u8 *)&(gdata->time_stamp);
sec = bcd2bin(timestamp[0]);
min = bcd2bin(timestamp[1]);
hour = bcd2bin(timestamp[2]);
day = bcd2bin(timestamp[4]);
mon = bcd2bin(timestamp[5]);
year = bcd2bin(timestamp[6]);
century = bcd2bin(timestamp[7]);
printk("%s%ststamp: %02d%02d-%02d-%02d %02d:%02d:%02d\n", pfx,
(timestamp[3] & 0x1 ? "precise " : "imprecise "),
century, year, mon, day, hour, min, sec);
}
}
static void
cper_estatus_print_section(const char *pfx, struct acpi_hest_generic_data *gdata,
int sec_no)
{
guid_t *sec_type = (guid_t *)gdata->section_type;
__u16 severity;
char newpfx[64];
if (acpi_hest_get_version(gdata) >= 3)
cper_print_tstamp(pfx, (struct acpi_hest_generic_data_v300 *)gdata);
severity = gdata->error_severity;
printk("%s""Error %d, type: %s\n", pfx, sec_no,
cper_severity_str(severity));
if (gdata->validation_bits & CPER_SEC_VALID_FRU_ID)
printk("%s""fru_id: %pUl\n", pfx, gdata->fru_id);
if (gdata->validation_bits & CPER_SEC_VALID_FRU_TEXT)
printk("%s""fru_text: %.20s\n", pfx, gdata->fru_text);
snprintf(newpfx, sizeof(newpfx), "%s ", pfx);
if (guid_equal(sec_type, &CPER_SEC_PROC_GENERIC)) {
struct cper_sec_proc_generic *proc_err = acpi_hest_get_payload(gdata);
printk("%s""section_type: general processor error\n", newpfx);
if (gdata->error_data_length >= sizeof(*proc_err))
cper_print_proc_generic(newpfx, proc_err);
else
goto err_section_too_small;
} else if (guid_equal(sec_type, &CPER_SEC_PLATFORM_MEM)) {
struct cper_sec_mem_err *mem_err = acpi_hest_get_payload(gdata);
printk("%s""section_type: memory error\n", newpfx);
if (gdata->error_data_length >=
sizeof(struct cper_sec_mem_err_old))
cper_print_mem(newpfx, mem_err,
gdata->error_data_length);
else
goto err_section_too_small;
} else if (guid_equal(sec_type, &CPER_SEC_PCIE)) {
struct cper_sec_pcie *pcie = acpi_hest_get_payload(gdata);
printk("%s""section_type: PCIe error\n", newpfx);
if (gdata->error_data_length >= sizeof(*pcie))
cper_print_pcie(newpfx, pcie, gdata);
else
goto err_section_too_small;
#if defined(CONFIG_ARM64) || defined(CONFIG_ARM)
} else if (guid_equal(sec_type, &CPER_SEC_PROC_ARM)) {
struct cper_sec_proc_arm *arm_err = acpi_hest_get_payload(gdata);
printk("%ssection_type: ARM processor error\n", newpfx);
if (gdata->error_data_length >= sizeof(*arm_err))
cper_print_proc_arm(newpfx, arm_err);
else
goto err_section_too_small;
#endif
#if defined(CONFIG_UEFI_CPER_X86)
} else if (guid_equal(sec_type, &CPER_SEC_PROC_IA)) {
struct cper_sec_proc_ia *ia_err = acpi_hest_get_payload(gdata);
printk("%ssection_type: IA32/X64 processor error\n", newpfx);
if (gdata->error_data_length >= sizeof(*ia_err))
cper_print_proc_ia(newpfx, ia_err);
else
goto err_section_too_small;
#endif
} else {
const void *err = acpi_hest_get_payload(gdata);
printk("%ssection type: unknown, %pUl\n", newpfx, sec_type);
printk("%ssection length: %#x\n", newpfx,
gdata->error_data_length);
print_hex_dump(newpfx, "", DUMP_PREFIX_OFFSET, 16, 4, err,
gdata->error_data_length, true);
}
return;
err_section_too_small:
pr_err(FW_WARN "error section length is too small\n");
}
void cper_estatus_print(const char *pfx,
const struct acpi_hest_generic_status *estatus)
{
struct acpi_hest_generic_data *gdata;
int sec_no = 0;
char newpfx[64];
__u16 severity;
severity = estatus->error_severity;
if (severity == CPER_SEV_CORRECTED)
printk("%s%s\n", pfx,
"It has been corrected by h/w "
"and requires no further action");
printk("%s""event severity: %s\n", pfx, cper_severity_str(severity));
snprintf(newpfx, sizeof(newpfx), "%s ", pfx);
apei_estatus_for_each_section(estatus, gdata) {
cper_estatus_print_section(newpfx, gdata, sec_no);
sec_no++;
}
}
EXPORT_SYMBOL_GPL(cper_estatus_print);
int cper_estatus_check_header(const struct acpi_hest_generic_status *estatus)
{
if (estatus->data_length &&
estatus->data_length < sizeof(struct acpi_hest_generic_data))
return -EINVAL;
if (estatus->raw_data_length &&
estatus->raw_data_offset < sizeof(*estatus) + estatus->data_length)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(cper_estatus_check_header);
int cper_estatus_check(const struct acpi_hest_generic_status *estatus)
{
struct acpi_hest_generic_data *gdata;
unsigned int data_len, gedata_len;
int rc;
rc = cper_estatus_check_header(estatus);
if (rc)
return rc;
data_len = estatus->data_length;
apei_estatus_for_each_section(estatus, gdata) {
gedata_len = acpi_hest_get_error_length(gdata);
if (gedata_len > data_len - acpi_hest_get_size(gdata))
return -EINVAL;
data_len -= acpi_hest_get_record_size(gdata);
}
if (data_len)
return -EINVAL;
return 0;
}
EXPORT_SYMBOL_GPL(cper_estatus_check);