linux-sg2042/arch/h8300/kernel/setup.c

252 lines
5.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* linux/arch/h8300/kernel/setup.c
*
* Copyright (C) 2001-2014 Yoshinori Sato <ysato@users.sourceforge.jp>
*/
/*
* This file handles the architecture-dependent parts of system setup
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/console.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/of_fdt.h>
#include <linux/of_platform.h>
#include <linux/of_address.h>
#include <linux/clk-provider.h>
#include <linux/memblock.h>
#include <linux/screen_info.h>
#include <linux/clocksource.h>
#include <asm/setup.h>
#include <asm/irq.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
#include <asm/page.h>
#if defined(CONFIG_CPU_H8300H)
#define CPU "H8/300H"
#elif defined(CONFIG_CPU_H8S)
#define CPU "H8S"
#else
#define CPU "Unknown"
#endif
unsigned long memory_start;
unsigned long memory_end;
EXPORT_SYMBOL(memory_end);
static unsigned long freq;
extern char __dtb_start[];
#ifdef CONFIG_VT
struct screen_info screen_info;
#endif
char __initdata command_line[COMMAND_LINE_SIZE];
void sim_console_register(void);
void __init h8300_fdt_init(void *fdt, char *bootargs)
{
if (!fdt)
fdt = __dtb_start;
else
strcpy(command_line, bootargs);
early_init_dt_scan(fdt);
memblock_allow_resize();
}
static void __init bootmem_init(void)
{
int bootmap_size;
unsigned long ram_start_pfn;
unsigned long free_ram_start_pfn;
unsigned long ram_end_pfn;
struct memblock_region *region;
memory_end = memory_start = 0;
/* Find main memory where is the kernel */
for_each_memblock(memory, region) {
memory_start = region->base;
memory_end = region->base + region->size;
}
if (!memory_end)
panic("No memory!");
ram_start_pfn = PFN_UP(memory_start);
/* free_ram_start_pfn is first page after kernel */
free_ram_start_pfn = PFN_UP(__pa(_end));
ram_end_pfn = PFN_DOWN(memblock_end_of_DRAM());
max_pfn = ram_end_pfn;
/*
* give all the memory to the bootmap allocator, tell it to put the
* boot mem_map at the start of memory
*/
bootmap_size = init_bootmem_node(NODE_DATA(0),
free_ram_start_pfn,
0,
ram_end_pfn);
/*
* free the usable memory, we have to make sure we do not free
* the bootmem bitmap so we then reserve it after freeing it :-)
*/
free_bootmem(PFN_PHYS(free_ram_start_pfn),
(ram_end_pfn - free_ram_start_pfn) << PAGE_SHIFT);
reserve_bootmem(PFN_PHYS(free_ram_start_pfn), bootmap_size,
BOOTMEM_DEFAULT);
for_each_memblock(reserved, region) {
reserve_bootmem(region->base, region->size, BOOTMEM_DEFAULT);
}
}
void __init setup_arch(char **cmdline_p)
{
unflatten_and_copy_device_tree();
init_mm.start_code = (unsigned long) _stext;
init_mm.end_code = (unsigned long) _etext;
init_mm.end_data = (unsigned long) _edata;
init_mm.brk = (unsigned long) 0;
pr_notice("\r\n\nuClinux " CPU "\n");
pr_notice("Flat model support (C) 1998,1999 Kenneth Albanowski, D. Jeff Dionne\n");
if (*command_line)
strcpy(boot_command_line, command_line);
*cmdline_p = boot_command_line;
parse_early_param();
bootmem_init();
/*
* get kmalloc into gear
*/
paging_init();
}
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
char *cpu;
cpu = CPU;
seq_printf(m, "CPU:\t\t%s\n"
"Clock:\t\t%lu.%1luMHz\n"
"BogoMips:\t%lu.%02lu\n"
"Calibration:\t%lu loops\n",
cpu,
freq/1000, freq%1000,
(loops_per_jiffy*HZ)/500000,
((loops_per_jiffy*HZ)/5000)%100,
(loops_per_jiffy*HZ));
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
return *pos < num_possible_cpus() ?
((void *) 0x12345678) : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
static int __init device_probe(void)
{
of_platform_populate(NULL, NULL, NULL, NULL);
return 0;
}
device_initcall(device_probe);
#if defined(CONFIG_CPU_H8300H)
#define get_wait(base, addr) ({ \
int baddr; \
baddr = ((addr) / 0x200000 * 2); \
w *= (readw((base) + 2) & (3 << baddr)) + 1; \
})
#endif
#if defined(CONFIG_CPU_H8S)
#define get_wait(base, addr) ({ \
int baddr; \
baddr = ((addr) / 0x200000 * 16); \
w *= (readl((base) + 2) & (7 << baddr)) + 1; \
})
#endif
static __init int access_timing(void)
{
struct device_node *bsc;
void __iomem *base;
unsigned long addr = (unsigned long)&__delay;
int bit = 1 << (addr / 0x200000);
int w;
bsc = of_find_compatible_node(NULL, NULL, "renesas,h8300-bsc");
base = of_iomap(bsc, 0);
w = (readb(base + 0) & bit)?2:1;
if (readb(base + 1) & bit)
w *= get_wait(base, addr);
else
w *= 2;
return w * 3 / 2;
}
void __init calibrate_delay(void)
{
struct device_node *cpu;
int freq;
cpu = of_find_compatible_node(NULL, NULL, "renesas,h8300");
of_property_read_s32(cpu, "clock-frequency", &freq);
loops_per_jiffy = freq / HZ / (access_timing() * 2);
pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
loops_per_jiffy / (500000 / HZ),
(loops_per_jiffy / (5000 / HZ)) % 100, loops_per_jiffy);
}
void __init time_init(void)
{
of_clk_init(NULL);
timer_probe();
}