linux-sg2042/drivers/net/can/kvaser_pciefd.c

1912 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause
/* Copyright (C) 2018 KVASER AB, Sweden. All rights reserved.
* Parts of this driver are based on the following:
* - Kvaser linux pciefd driver (version 5.25)
* - PEAK linux canfd driver
* - Altera Avalon EPCS flash controller driver
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/can/dev.h>
#include <linux/timer.h>
#include <linux/netdevice.h>
#include <linux/crc32.h>
#include <linux/iopoll.h>
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Kvaser AB <support@kvaser.com>");
MODULE_DESCRIPTION("CAN driver for Kvaser CAN/PCIe devices");
#define KVASER_PCIEFD_DRV_NAME "kvaser_pciefd"
#define KVASER_PCIEFD_WAIT_TIMEOUT msecs_to_jiffies(1000)
#define KVASER_PCIEFD_BEC_POLL_FREQ (jiffies + msecs_to_jiffies(200))
#define KVASER_PCIEFD_MAX_ERR_REP 256
#define KVASER_PCIEFD_CAN_TX_MAX_COUNT 17
#define KVASER_PCIEFD_MAX_CAN_CHANNELS 4
#define KVASER_PCIEFD_DMA_COUNT 2
#define KVASER_PCIEFD_DMA_SIZE (4 * 1024)
#define KVASER_PCIEFD_64BIT_DMA_BIT BIT(0)
#define KVASER_PCIEFD_VENDOR 0x1a07
#define KVASER_PCIEFD_4HS_ID 0x0d
#define KVASER_PCIEFD_2HS_ID 0x0e
#define KVASER_PCIEFD_HS_ID 0x0f
#define KVASER_PCIEFD_MINIPCIE_HS_ID 0x10
#define KVASER_PCIEFD_MINIPCIE_2HS_ID 0x11
/* PCIe IRQ registers */
#define KVASER_PCIEFD_IRQ_REG 0x40
#define KVASER_PCIEFD_IEN_REG 0x50
/* DMA map */
#define KVASER_PCIEFD_DMA_MAP_BASE 0x1000
/* Kvaser KCAN CAN controller registers */
#define KVASER_PCIEFD_KCAN0_BASE 0x10000
#define KVASER_PCIEFD_KCAN_BASE_OFFSET 0x1000
#define KVASER_PCIEFD_KCAN_FIFO_REG 0x100
#define KVASER_PCIEFD_KCAN_FIFO_LAST_REG 0x180
#define KVASER_PCIEFD_KCAN_CTRL_REG 0x2c0
#define KVASER_PCIEFD_KCAN_CMD_REG 0x400
#define KVASER_PCIEFD_KCAN_IEN_REG 0x408
#define KVASER_PCIEFD_KCAN_IRQ_REG 0x410
#define KVASER_PCIEFD_KCAN_TX_NPACKETS_REG 0x414
#define KVASER_PCIEFD_KCAN_STAT_REG 0x418
#define KVASER_PCIEFD_KCAN_MODE_REG 0x41c
#define KVASER_PCIEFD_KCAN_BTRN_REG 0x420
#define KVASER_PCIEFD_KCAN_BTRD_REG 0x428
#define KVASER_PCIEFD_KCAN_PWM_REG 0x430
/* Loopback control register */
#define KVASER_PCIEFD_LOOP_REG 0x1f000
/* System identification and information registers */
#define KVASER_PCIEFD_SYSID_BASE 0x1f020
#define KVASER_PCIEFD_SYSID_VERSION_REG (KVASER_PCIEFD_SYSID_BASE + 0x8)
#define KVASER_PCIEFD_SYSID_CANFREQ_REG (KVASER_PCIEFD_SYSID_BASE + 0xc)
#define KVASER_PCIEFD_SYSID_BUSFREQ_REG (KVASER_PCIEFD_SYSID_BASE + 0x10)
#define KVASER_PCIEFD_SYSID_BUILD_REG (KVASER_PCIEFD_SYSID_BASE + 0x14)
/* Shared receive buffer registers */
#define KVASER_PCIEFD_SRB_BASE 0x1f200
#define KVASER_PCIEFD_SRB_CMD_REG (KVASER_PCIEFD_SRB_BASE + 0x200)
#define KVASER_PCIEFD_SRB_IEN_REG (KVASER_PCIEFD_SRB_BASE + 0x204)
#define KVASER_PCIEFD_SRB_IRQ_REG (KVASER_PCIEFD_SRB_BASE + 0x20c)
#define KVASER_PCIEFD_SRB_STAT_REG (KVASER_PCIEFD_SRB_BASE + 0x210)
#define KVASER_PCIEFD_SRB_CTRL_REG (KVASER_PCIEFD_SRB_BASE + 0x218)
/* EPCS flash controller registers */
#define KVASER_PCIEFD_SPI_BASE 0x1fc00
#define KVASER_PCIEFD_SPI_RX_REG KVASER_PCIEFD_SPI_BASE
#define KVASER_PCIEFD_SPI_TX_REG (KVASER_PCIEFD_SPI_BASE + 0x4)
#define KVASER_PCIEFD_SPI_STATUS_REG (KVASER_PCIEFD_SPI_BASE + 0x8)
#define KVASER_PCIEFD_SPI_CTRL_REG (KVASER_PCIEFD_SPI_BASE + 0xc)
#define KVASER_PCIEFD_SPI_SSEL_REG (KVASER_PCIEFD_SPI_BASE + 0x14)
#define KVASER_PCIEFD_IRQ_ALL_MSK 0x1f
#define KVASER_PCIEFD_IRQ_SRB BIT(4)
#define KVASER_PCIEFD_SYSID_NRCHAN_SHIFT 24
#define KVASER_PCIEFD_SYSID_MAJOR_VER_SHIFT 16
#define KVASER_PCIEFD_SYSID_BUILD_VER_SHIFT 1
/* Reset DMA buffer 0, 1 and FIFO offset */
#define KVASER_PCIEFD_SRB_CMD_RDB0 BIT(4)
#define KVASER_PCIEFD_SRB_CMD_RDB1 BIT(5)
#define KVASER_PCIEFD_SRB_CMD_FOR BIT(0)
/* DMA packet done, buffer 0 and 1 */
#define KVASER_PCIEFD_SRB_IRQ_DPD0 BIT(8)
#define KVASER_PCIEFD_SRB_IRQ_DPD1 BIT(9)
/* DMA overflow, buffer 0 and 1 */
#define KVASER_PCIEFD_SRB_IRQ_DOF0 BIT(10)
#define KVASER_PCIEFD_SRB_IRQ_DOF1 BIT(11)
/* DMA underflow, buffer 0 and 1 */
#define KVASER_PCIEFD_SRB_IRQ_DUF0 BIT(12)
#define KVASER_PCIEFD_SRB_IRQ_DUF1 BIT(13)
/* DMA idle */
#define KVASER_PCIEFD_SRB_STAT_DI BIT(15)
/* DMA support */
#define KVASER_PCIEFD_SRB_STAT_DMA BIT(24)
/* DMA Enable */
#define KVASER_PCIEFD_SRB_CTRL_DMA_ENABLE BIT(0)
/* EPCS flash controller definitions */
#define KVASER_PCIEFD_CFG_IMG_SZ (64 * 1024)
#define KVASER_PCIEFD_CFG_IMG_OFFSET (31 * 65536L)
#define KVASER_PCIEFD_CFG_MAX_PARAMS 256
#define KVASER_PCIEFD_CFG_MAGIC 0xcafef00d
#define KVASER_PCIEFD_CFG_PARAM_MAX_SZ 24
#define KVASER_PCIEFD_CFG_SYS_VER 1
#define KVASER_PCIEFD_CFG_PARAM_NR_CHAN 130
#define KVASER_PCIEFD_SPI_TMT BIT(5)
#define KVASER_PCIEFD_SPI_TRDY BIT(6)
#define KVASER_PCIEFD_SPI_RRDY BIT(7)
#define KVASER_PCIEFD_FLASH_ID_EPCS16 0x14
/* Commands for controlling the onboard flash */
#define KVASER_PCIEFD_FLASH_RES_CMD 0xab
#define KVASER_PCIEFD_FLASH_READ_CMD 0x3
#define KVASER_PCIEFD_FLASH_STATUS_CMD 0x5
/* Kvaser KCAN definitions */
#define KVASER_PCIEFD_KCAN_CTRL_EFLUSH (4 << 29)
#define KVASER_PCIEFD_KCAN_CTRL_EFRAME (5 << 29)
#define KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT 16
/* Request status packet */
#define KVASER_PCIEFD_KCAN_CMD_SRQ BIT(0)
/* Abort, flush and reset */
#define KVASER_PCIEFD_KCAN_CMD_AT BIT(1)
/* Tx FIFO unaligned read */
#define KVASER_PCIEFD_KCAN_IRQ_TAR BIT(0)
/* Tx FIFO unaligned end */
#define KVASER_PCIEFD_KCAN_IRQ_TAE BIT(1)
/* Bus parameter protection error */
#define KVASER_PCIEFD_KCAN_IRQ_BPP BIT(2)
/* FDF bit when controller is in classic mode */
#define KVASER_PCIEFD_KCAN_IRQ_FDIC BIT(3)
/* Rx FIFO overflow */
#define KVASER_PCIEFD_KCAN_IRQ_ROF BIT(5)
/* Abort done */
#define KVASER_PCIEFD_KCAN_IRQ_ABD BIT(13)
/* Tx buffer flush done */
#define KVASER_PCIEFD_KCAN_IRQ_TFD BIT(14)
/* Tx FIFO overflow */
#define KVASER_PCIEFD_KCAN_IRQ_TOF BIT(15)
/* Tx FIFO empty */
#define KVASER_PCIEFD_KCAN_IRQ_TE BIT(16)
/* Transmitter unaligned */
#define KVASER_PCIEFD_KCAN_IRQ_TAL BIT(17)
#define KVASER_PCIEFD_KCAN_TX_NPACKETS_MAX_SHIFT 16
#define KVASER_PCIEFD_KCAN_STAT_SEQNO_SHIFT 24
/* Abort request */
#define KVASER_PCIEFD_KCAN_STAT_AR BIT(7)
/* Idle state. Controller in reset mode and no abort or flush pending */
#define KVASER_PCIEFD_KCAN_STAT_IDLE BIT(10)
/* Bus off */
#define KVASER_PCIEFD_KCAN_STAT_BOFF BIT(11)
/* Reset mode request */
#define KVASER_PCIEFD_KCAN_STAT_RMR BIT(14)
/* Controller in reset mode */
#define KVASER_PCIEFD_KCAN_STAT_IRM BIT(15)
/* Controller got one-shot capability */
#define KVASER_PCIEFD_KCAN_STAT_CAP BIT(16)
/* Controller got CAN FD capability */
#define KVASER_PCIEFD_KCAN_STAT_FD BIT(19)
#define KVASER_PCIEFD_KCAN_STAT_BUS_OFF_MSK (KVASER_PCIEFD_KCAN_STAT_AR | \
KVASER_PCIEFD_KCAN_STAT_BOFF | KVASER_PCIEFD_KCAN_STAT_RMR | \
KVASER_PCIEFD_KCAN_STAT_IRM)
/* Reset mode */
#define KVASER_PCIEFD_KCAN_MODE_RM BIT(8)
/* Listen only mode */
#define KVASER_PCIEFD_KCAN_MODE_LOM BIT(9)
/* Error packet enable */
#define KVASER_PCIEFD_KCAN_MODE_EPEN BIT(12)
/* CAN FD non-ISO */
#define KVASER_PCIEFD_KCAN_MODE_NIFDEN BIT(15)
/* Acknowledgment packet type */
#define KVASER_PCIEFD_KCAN_MODE_APT BIT(20)
/* Active error flag enable. Clear to force error passive */
#define KVASER_PCIEFD_KCAN_MODE_EEN BIT(23)
/* Classic CAN mode */
#define KVASER_PCIEFD_KCAN_MODE_CCM BIT(31)
#define KVASER_PCIEFD_KCAN_BTRN_SJW_SHIFT 13
#define KVASER_PCIEFD_KCAN_BTRN_TSEG1_SHIFT 17
#define KVASER_PCIEFD_KCAN_BTRN_TSEG2_SHIFT 26
#define KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT 16
/* Kvaser KCAN packet types */
#define KVASER_PCIEFD_PACK_TYPE_DATA 0
#define KVASER_PCIEFD_PACK_TYPE_ACK 1
#define KVASER_PCIEFD_PACK_TYPE_TXRQ 2
#define KVASER_PCIEFD_PACK_TYPE_ERROR 3
#define KVASER_PCIEFD_PACK_TYPE_EFLUSH_ACK 4
#define KVASER_PCIEFD_PACK_TYPE_EFRAME_ACK 5
#define KVASER_PCIEFD_PACK_TYPE_ACK_DATA 6
#define KVASER_PCIEFD_PACK_TYPE_STATUS 8
#define KVASER_PCIEFD_PACK_TYPE_BUS_LOAD 9
/* Kvaser KCAN packet common definitions */
#define KVASER_PCIEFD_PACKET_SEQ_MSK 0xff
#define KVASER_PCIEFD_PACKET_CHID_SHIFT 25
#define KVASER_PCIEFD_PACKET_TYPE_SHIFT 28
/* Kvaser KCAN TDATA and RDATA first word */
#define KVASER_PCIEFD_RPACKET_IDE BIT(30)
#define KVASER_PCIEFD_RPACKET_RTR BIT(29)
/* Kvaser KCAN TDATA and RDATA second word */
#define KVASER_PCIEFD_RPACKET_ESI BIT(13)
#define KVASER_PCIEFD_RPACKET_BRS BIT(14)
#define KVASER_PCIEFD_RPACKET_FDF BIT(15)
#define KVASER_PCIEFD_RPACKET_DLC_SHIFT 8
/* Kvaser KCAN TDATA second word */
#define KVASER_PCIEFD_TPACKET_SMS BIT(16)
#define KVASER_PCIEFD_TPACKET_AREQ BIT(31)
/* Kvaser KCAN APACKET */
#define KVASER_PCIEFD_APACKET_FLU BIT(8)
#define KVASER_PCIEFD_APACKET_CT BIT(9)
#define KVASER_PCIEFD_APACKET_ABL BIT(10)
#define KVASER_PCIEFD_APACKET_NACK BIT(11)
/* Kvaser KCAN SPACK first word */
#define KVASER_PCIEFD_SPACK_RXERR_SHIFT 8
#define KVASER_PCIEFD_SPACK_BOFF BIT(16)
#define KVASER_PCIEFD_SPACK_IDET BIT(20)
#define KVASER_PCIEFD_SPACK_IRM BIT(21)
#define KVASER_PCIEFD_SPACK_RMCD BIT(22)
/* Kvaser KCAN SPACK second word */
#define KVASER_PCIEFD_SPACK_AUTO BIT(21)
#define KVASER_PCIEFD_SPACK_EWLR BIT(23)
#define KVASER_PCIEFD_SPACK_EPLR BIT(24)
struct kvaser_pciefd;
struct kvaser_pciefd_can {
struct can_priv can;
struct kvaser_pciefd *kv_pcie;
void __iomem *reg_base;
struct can_berr_counter bec;
u8 cmd_seq;
int err_rep_cnt;
int echo_idx;
spinlock_t lock; /* Locks sensitive registers (e.g. MODE) */
spinlock_t echo_lock; /* Locks the message echo buffer */
struct timer_list bec_poll_timer;
struct completion start_comp, flush_comp;
};
struct kvaser_pciefd {
struct pci_dev *pci;
void __iomem *reg_base;
struct kvaser_pciefd_can *can[KVASER_PCIEFD_MAX_CAN_CHANNELS];
void *dma_data[KVASER_PCIEFD_DMA_COUNT];
u8 nr_channels;
u32 bus_freq;
u32 freq;
u32 freq_to_ticks_div;
};
struct kvaser_pciefd_rx_packet {
u32 header[2];
u64 timestamp;
};
struct kvaser_pciefd_tx_packet {
u32 header[2];
u8 data[64];
};
static const struct can_bittiming_const kvaser_pciefd_bittiming_const = {
.name = KVASER_PCIEFD_DRV_NAME,
.tseg1_min = 1,
.tseg1_max = 255,
.tseg2_min = 1,
.tseg2_max = 32,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 4096,
.brp_inc = 1,
};
struct kvaser_pciefd_cfg_param {
__le32 magic;
__le32 nr;
__le32 len;
u8 data[KVASER_PCIEFD_CFG_PARAM_MAX_SZ];
};
struct kvaser_pciefd_cfg_img {
__le32 version;
__le32 magic;
__le32 crc;
struct kvaser_pciefd_cfg_param params[KVASER_PCIEFD_CFG_MAX_PARAMS];
};
static struct pci_device_id kvaser_pciefd_id_table[] = {
{ PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_4HS_ID), },
{ PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_2HS_ID), },
{ PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_HS_ID), },
{ PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_MINIPCIE_HS_ID), },
{ PCI_DEVICE(KVASER_PCIEFD_VENDOR, KVASER_PCIEFD_MINIPCIE_2HS_ID), },
{ 0,},
};
MODULE_DEVICE_TABLE(pci, kvaser_pciefd_id_table);
/* Onboard flash memory functions */
static int kvaser_pciefd_spi_wait_loop(struct kvaser_pciefd *pcie, int msk)
{
u32 res;
int ret;
ret = readl_poll_timeout(pcie->reg_base + KVASER_PCIEFD_SPI_STATUS_REG,
res, res & msk, 0, 10);
return ret;
}
static int kvaser_pciefd_spi_cmd(struct kvaser_pciefd *pcie, const u8 *tx,
u32 tx_len, u8 *rx, u32 rx_len)
{
int c;
iowrite32(BIT(0), pcie->reg_base + KVASER_PCIEFD_SPI_SSEL_REG);
iowrite32(BIT(10), pcie->reg_base + KVASER_PCIEFD_SPI_CTRL_REG);
ioread32(pcie->reg_base + KVASER_PCIEFD_SPI_RX_REG);
c = tx_len;
while (c--) {
if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_TRDY))
return -EIO;
iowrite32(*tx++, pcie->reg_base + KVASER_PCIEFD_SPI_TX_REG);
if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_RRDY))
return -EIO;
ioread32(pcie->reg_base + KVASER_PCIEFD_SPI_RX_REG);
}
c = rx_len;
while (c-- > 0) {
if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_TRDY))
return -EIO;
iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SPI_TX_REG);
if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_RRDY))
return -EIO;
*rx++ = ioread32(pcie->reg_base + KVASER_PCIEFD_SPI_RX_REG);
}
if (kvaser_pciefd_spi_wait_loop(pcie, KVASER_PCIEFD_SPI_TMT))
return -EIO;
iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SPI_CTRL_REG);
if (c != -1) {
dev_err(&pcie->pci->dev, "Flash SPI transfer failed\n");
return -EIO;
}
return 0;
}
static int kvaser_pciefd_cfg_read_and_verify(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_cfg_img *img)
{
int offset = KVASER_PCIEFD_CFG_IMG_OFFSET;
int res, crc;
u8 *crc_buff;
u8 cmd[] = {
KVASER_PCIEFD_FLASH_READ_CMD,
(u8)((offset >> 16) & 0xff),
(u8)((offset >> 8) & 0xff),
(u8)(offset & 0xff)
};
res = kvaser_pciefd_spi_cmd(pcie, cmd, ARRAY_SIZE(cmd), (u8 *)img,
KVASER_PCIEFD_CFG_IMG_SZ);
if (res)
return res;
crc_buff = (u8 *)img->params;
if (le32_to_cpu(img->version) != KVASER_PCIEFD_CFG_SYS_VER) {
dev_err(&pcie->pci->dev,
"Config flash corrupted, version number is wrong\n");
return -ENODEV;
}
if (le32_to_cpu(img->magic) != KVASER_PCIEFD_CFG_MAGIC) {
dev_err(&pcie->pci->dev,
"Config flash corrupted, magic number is wrong\n");
return -ENODEV;
}
crc = ~crc32_be(0xffffffff, crc_buff, sizeof(img->params));
if (le32_to_cpu(img->crc) != crc) {
dev_err(&pcie->pci->dev,
"Stored CRC does not match flash image contents\n");
return -EIO;
}
return 0;
}
static void kvaser_pciefd_cfg_read_params(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_cfg_img *img)
{
struct kvaser_pciefd_cfg_param *param;
param = &img->params[KVASER_PCIEFD_CFG_PARAM_NR_CHAN];
memcpy(&pcie->nr_channels, param->data, le32_to_cpu(param->len));
}
static int kvaser_pciefd_read_cfg(struct kvaser_pciefd *pcie)
{
int res;
struct kvaser_pciefd_cfg_img *img;
/* Read electronic signature */
u8 cmd[] = {KVASER_PCIEFD_FLASH_RES_CMD, 0, 0, 0};
res = kvaser_pciefd_spi_cmd(pcie, cmd, ARRAY_SIZE(cmd), cmd, 1);
if (res)
return -EIO;
img = kmalloc(KVASER_PCIEFD_CFG_IMG_SZ, GFP_KERNEL);
if (!img)
return -ENOMEM;
if (cmd[0] != KVASER_PCIEFD_FLASH_ID_EPCS16) {
dev_err(&pcie->pci->dev,
"Flash id is 0x%x instead of expected EPCS16 (0x%x)\n",
cmd[0], KVASER_PCIEFD_FLASH_ID_EPCS16);
res = -ENODEV;
goto image_free;
}
cmd[0] = KVASER_PCIEFD_FLASH_STATUS_CMD;
res = kvaser_pciefd_spi_cmd(pcie, cmd, 1, cmd, 1);
if (res) {
goto image_free;
} else if (cmd[0] & 1) {
res = -EIO;
/* No write is ever done, the WIP should never be set */
dev_err(&pcie->pci->dev, "Unexpected WIP bit set in flash\n");
goto image_free;
}
res = kvaser_pciefd_cfg_read_and_verify(pcie, img);
if (res) {
res = -EIO;
goto image_free;
}
kvaser_pciefd_cfg_read_params(pcie, img);
image_free:
kfree(img);
return res;
}
static void kvaser_pciefd_request_status(struct kvaser_pciefd_can *can)
{
u32 cmd;
cmd = KVASER_PCIEFD_KCAN_CMD_SRQ;
cmd |= ++can->cmd_seq << KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT;
iowrite32(cmd, can->reg_base + KVASER_PCIEFD_KCAN_CMD_REG);
}
static void kvaser_pciefd_enable_err_gen(struct kvaser_pciefd_can *can)
{
u32 mode;
unsigned long irq;
spin_lock_irqsave(&can->lock, irq);
mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
if (!(mode & KVASER_PCIEFD_KCAN_MODE_EPEN)) {
mode |= KVASER_PCIEFD_KCAN_MODE_EPEN;
iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
}
spin_unlock_irqrestore(&can->lock, irq);
}
static void kvaser_pciefd_disable_err_gen(struct kvaser_pciefd_can *can)
{
u32 mode;
unsigned long irq;
spin_lock_irqsave(&can->lock, irq);
mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
mode &= ~KVASER_PCIEFD_KCAN_MODE_EPEN;
iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
spin_unlock_irqrestore(&can->lock, irq);
}
static int kvaser_pciefd_set_tx_irq(struct kvaser_pciefd_can *can)
{
u32 msk;
msk = KVASER_PCIEFD_KCAN_IRQ_TE | KVASER_PCIEFD_KCAN_IRQ_ROF |
KVASER_PCIEFD_KCAN_IRQ_TOF | KVASER_PCIEFD_KCAN_IRQ_ABD |
KVASER_PCIEFD_KCAN_IRQ_TAE | KVASER_PCIEFD_KCAN_IRQ_TAL |
KVASER_PCIEFD_KCAN_IRQ_FDIC | KVASER_PCIEFD_KCAN_IRQ_BPP |
KVASER_PCIEFD_KCAN_IRQ_TAR | KVASER_PCIEFD_KCAN_IRQ_TFD;
iowrite32(msk, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
return 0;
}
static void kvaser_pciefd_setup_controller(struct kvaser_pciefd_can *can)
{
u32 mode;
unsigned long irq;
spin_lock_irqsave(&can->lock, irq);
mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
if (can->can.ctrlmode & CAN_CTRLMODE_FD) {
mode &= ~KVASER_PCIEFD_KCAN_MODE_CCM;
if (can->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
mode |= KVASER_PCIEFD_KCAN_MODE_NIFDEN;
else
mode &= ~KVASER_PCIEFD_KCAN_MODE_NIFDEN;
} else {
mode |= KVASER_PCIEFD_KCAN_MODE_CCM;
mode &= ~KVASER_PCIEFD_KCAN_MODE_NIFDEN;
}
if (can->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
mode |= KVASER_PCIEFD_KCAN_MODE_LOM;
mode |= KVASER_PCIEFD_KCAN_MODE_EEN;
mode |= KVASER_PCIEFD_KCAN_MODE_EPEN;
/* Use ACK packet type */
mode &= ~KVASER_PCIEFD_KCAN_MODE_APT;
mode &= ~KVASER_PCIEFD_KCAN_MODE_RM;
iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
spin_unlock_irqrestore(&can->lock, irq);
}
static void kvaser_pciefd_start_controller_flush(struct kvaser_pciefd_can *can)
{
u32 status;
unsigned long irq;
spin_lock_irqsave(&can->lock, irq);
iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG);
iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD | KVASER_PCIEFD_KCAN_IRQ_TFD,
can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
status = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_STAT_REG);
if (status & KVASER_PCIEFD_KCAN_STAT_IDLE) {
u32 cmd;
/* If controller is already idle, run abort, flush and reset */
cmd = KVASER_PCIEFD_KCAN_CMD_AT;
cmd |= ++can->cmd_seq << KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT;
iowrite32(cmd, can->reg_base + KVASER_PCIEFD_KCAN_CMD_REG);
} else if (!(status & KVASER_PCIEFD_KCAN_STAT_RMR)) {
u32 mode;
/* Put controller in reset mode */
mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
mode |= KVASER_PCIEFD_KCAN_MODE_RM;
iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
}
spin_unlock_irqrestore(&can->lock, irq);
}
static int kvaser_pciefd_bus_on(struct kvaser_pciefd_can *can)
{
u32 mode;
unsigned long irq;
del_timer(&can->bec_poll_timer);
if (!completion_done(&can->flush_comp))
kvaser_pciefd_start_controller_flush(can);
if (!wait_for_completion_timeout(&can->flush_comp,
KVASER_PCIEFD_WAIT_TIMEOUT)) {
netdev_err(can->can.dev, "Timeout during bus on flush\n");
return -ETIMEDOUT;
}
spin_lock_irqsave(&can->lock, irq);
iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG);
iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD | KVASER_PCIEFD_KCAN_IRQ_TFD,
can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
mode &= ~KVASER_PCIEFD_KCAN_MODE_RM;
iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
spin_unlock_irqrestore(&can->lock, irq);
if (!wait_for_completion_timeout(&can->start_comp,
KVASER_PCIEFD_WAIT_TIMEOUT)) {
netdev_err(can->can.dev, "Timeout during bus on reset\n");
return -ETIMEDOUT;
}
/* Reset interrupt handling */
iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG);
kvaser_pciefd_set_tx_irq(can);
kvaser_pciefd_setup_controller(can);
can->can.state = CAN_STATE_ERROR_ACTIVE;
netif_wake_queue(can->can.dev);
can->bec.txerr = 0;
can->bec.rxerr = 0;
can->err_rep_cnt = 0;
return 0;
}
static void kvaser_pciefd_pwm_stop(struct kvaser_pciefd_can *can)
{
u8 top;
u32 pwm_ctrl;
unsigned long irq;
spin_lock_irqsave(&can->lock, irq);
pwm_ctrl = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG);
top = (pwm_ctrl >> KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT) & 0xff;
/* Set duty cycle to zero */
pwm_ctrl |= top;
iowrite32(pwm_ctrl, can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG);
spin_unlock_irqrestore(&can->lock, irq);
}
static void kvaser_pciefd_pwm_start(struct kvaser_pciefd_can *can)
{
int top, trigger;
u32 pwm_ctrl;
unsigned long irq;
kvaser_pciefd_pwm_stop(can);
spin_lock_irqsave(&can->lock, irq);
/* Set frequency to 500 KHz*/
top = can->kv_pcie->bus_freq / (2 * 500000) - 1;
pwm_ctrl = top & 0xff;
pwm_ctrl |= (top & 0xff) << KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT;
iowrite32(pwm_ctrl, can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG);
/* Set duty cycle to 95 */
trigger = (100 * top - 95 * (top + 1) + 50) / 100;
pwm_ctrl = trigger & 0xff;
pwm_ctrl |= (top & 0xff) << KVASER_PCIEFD_KCAN_PWM_TOP_SHIFT;
iowrite32(pwm_ctrl, can->reg_base + KVASER_PCIEFD_KCAN_PWM_REG);
spin_unlock_irqrestore(&can->lock, irq);
}
static int kvaser_pciefd_open(struct net_device *netdev)
{
int err;
struct kvaser_pciefd_can *can = netdev_priv(netdev);
err = open_candev(netdev);
if (err)
return err;
err = kvaser_pciefd_bus_on(can);
if (err)
return err;
return 0;
}
static int kvaser_pciefd_stop(struct net_device *netdev)
{
struct kvaser_pciefd_can *can = netdev_priv(netdev);
int ret = 0;
/* Don't interrupt ongoing flush */
if (!completion_done(&can->flush_comp))
kvaser_pciefd_start_controller_flush(can);
if (!wait_for_completion_timeout(&can->flush_comp,
KVASER_PCIEFD_WAIT_TIMEOUT)) {
netdev_err(can->can.dev, "Timeout during stop\n");
ret = -ETIMEDOUT;
} else {
iowrite32(0, can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
del_timer(&can->bec_poll_timer);
}
close_candev(netdev);
return ret;
}
static int kvaser_pciefd_prepare_tx_packet(struct kvaser_pciefd_tx_packet *p,
struct kvaser_pciefd_can *can,
struct sk_buff *skb)
{
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
int packet_size;
int seq = can->echo_idx;
memset(p, 0, sizeof(*p));
if (can->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
p->header[1] |= KVASER_PCIEFD_TPACKET_SMS;
if (cf->can_id & CAN_RTR_FLAG)
p->header[0] |= KVASER_PCIEFD_RPACKET_RTR;
if (cf->can_id & CAN_EFF_FLAG)
p->header[0] |= KVASER_PCIEFD_RPACKET_IDE;
p->header[0] |= cf->can_id & CAN_EFF_MASK;
p->header[1] |= can_len2dlc(cf->len) << KVASER_PCIEFD_RPACKET_DLC_SHIFT;
p->header[1] |= KVASER_PCIEFD_TPACKET_AREQ;
if (can_is_canfd_skb(skb)) {
p->header[1] |= KVASER_PCIEFD_RPACKET_FDF;
if (cf->flags & CANFD_BRS)
p->header[1] |= KVASER_PCIEFD_RPACKET_BRS;
if (cf->flags & CANFD_ESI)
p->header[1] |= KVASER_PCIEFD_RPACKET_ESI;
}
p->header[1] |= seq & KVASER_PCIEFD_PACKET_SEQ_MSK;
packet_size = cf->len;
memcpy(p->data, cf->data, packet_size);
return DIV_ROUND_UP(packet_size, 4);
}
static netdev_tx_t kvaser_pciefd_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct kvaser_pciefd_can *can = netdev_priv(netdev);
unsigned long irq_flags;
struct kvaser_pciefd_tx_packet packet;
int nwords;
u8 count;
if (can_dropped_invalid_skb(netdev, skb))
return NETDEV_TX_OK;
nwords = kvaser_pciefd_prepare_tx_packet(&packet, can, skb);
spin_lock_irqsave(&can->echo_lock, irq_flags);
/* Prepare and save echo skb in internal slot */
can_put_echo_skb(skb, netdev, can->echo_idx);
/* Move echo index to the next slot */
can->echo_idx = (can->echo_idx + 1) % can->can.echo_skb_max;
/* Write header to fifo */
iowrite32(packet.header[0],
can->reg_base + KVASER_PCIEFD_KCAN_FIFO_REG);
iowrite32(packet.header[1],
can->reg_base + KVASER_PCIEFD_KCAN_FIFO_REG);
if (nwords) {
u32 data_last = ((u32 *)packet.data)[nwords - 1];
/* Write data to fifo, except last word */
iowrite32_rep(can->reg_base +
KVASER_PCIEFD_KCAN_FIFO_REG, packet.data,
nwords - 1);
/* Write last word to end of fifo */
__raw_writel(data_last, can->reg_base +
KVASER_PCIEFD_KCAN_FIFO_LAST_REG);
} else {
/* Complete write to fifo */
__raw_writel(0, can->reg_base +
KVASER_PCIEFD_KCAN_FIFO_LAST_REG);
}
count = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_TX_NPACKETS_REG);
/* No room for a new message, stop the queue until at least one
* successful transmit
*/
if (count >= KVASER_PCIEFD_CAN_TX_MAX_COUNT ||
can->can.echo_skb[can->echo_idx])
netif_stop_queue(netdev);
spin_unlock_irqrestore(&can->echo_lock, irq_flags);
return NETDEV_TX_OK;
}
static int kvaser_pciefd_set_bittiming(struct kvaser_pciefd_can *can, bool data)
{
u32 mode, test, btrn;
unsigned long irq_flags;
int ret;
struct can_bittiming *bt;
if (data)
bt = &can->can.data_bittiming;
else
bt = &can->can.bittiming;
btrn = ((bt->phase_seg2 - 1) & 0x1f) <<
KVASER_PCIEFD_KCAN_BTRN_TSEG2_SHIFT |
(((bt->prop_seg + bt->phase_seg1) - 1) & 0x1ff) <<
KVASER_PCIEFD_KCAN_BTRN_TSEG1_SHIFT |
((bt->sjw - 1) & 0xf) << KVASER_PCIEFD_KCAN_BTRN_SJW_SHIFT |
((bt->brp - 1) & 0x1fff);
spin_lock_irqsave(&can->lock, irq_flags);
mode = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
/* Put the circuit in reset mode */
iowrite32(mode | KVASER_PCIEFD_KCAN_MODE_RM,
can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
/* Can only set bittiming if in reset mode */
ret = readl_poll_timeout(can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG,
test, test & KVASER_PCIEFD_KCAN_MODE_RM,
0, 10);
if (ret) {
spin_unlock_irqrestore(&can->lock, irq_flags);
return -EBUSY;
}
if (data)
iowrite32(btrn, can->reg_base + KVASER_PCIEFD_KCAN_BTRD_REG);
else
iowrite32(btrn, can->reg_base + KVASER_PCIEFD_KCAN_BTRN_REG);
/* Restore previous reset mode status */
iowrite32(mode, can->reg_base + KVASER_PCIEFD_KCAN_MODE_REG);
spin_unlock_irqrestore(&can->lock, irq_flags);
return 0;
}
static int kvaser_pciefd_set_nominal_bittiming(struct net_device *ndev)
{
return kvaser_pciefd_set_bittiming(netdev_priv(ndev), false);
}
static int kvaser_pciefd_set_data_bittiming(struct net_device *ndev)
{
return kvaser_pciefd_set_bittiming(netdev_priv(ndev), true);
}
static int kvaser_pciefd_set_mode(struct net_device *ndev, enum can_mode mode)
{
struct kvaser_pciefd_can *can = netdev_priv(ndev);
int ret = 0;
switch (mode) {
case CAN_MODE_START:
if (!can->can.restart_ms)
ret = kvaser_pciefd_bus_on(can);
break;
default:
return -EOPNOTSUPP;
}
return ret;
}
static int kvaser_pciefd_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
struct kvaser_pciefd_can *can = netdev_priv(ndev);
bec->rxerr = can->bec.rxerr;
bec->txerr = can->bec.txerr;
return 0;
}
static void kvaser_pciefd_bec_poll_timer(struct timer_list *data)
{
struct kvaser_pciefd_can *can = from_timer(can, data, bec_poll_timer);
kvaser_pciefd_enable_err_gen(can);
kvaser_pciefd_request_status(can);
can->err_rep_cnt = 0;
}
static const struct net_device_ops kvaser_pciefd_netdev_ops = {
.ndo_open = kvaser_pciefd_open,
.ndo_stop = kvaser_pciefd_stop,
.ndo_start_xmit = kvaser_pciefd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static int kvaser_pciefd_setup_can_ctrls(struct kvaser_pciefd *pcie)
{
int i;
for (i = 0; i < pcie->nr_channels; i++) {
struct net_device *netdev;
struct kvaser_pciefd_can *can;
u32 status, tx_npackets;
netdev = alloc_candev(sizeof(struct kvaser_pciefd_can),
KVASER_PCIEFD_CAN_TX_MAX_COUNT);
if (!netdev)
return -ENOMEM;
can = netdev_priv(netdev);
netdev->netdev_ops = &kvaser_pciefd_netdev_ops;
can->reg_base = pcie->reg_base + KVASER_PCIEFD_KCAN0_BASE +
i * KVASER_PCIEFD_KCAN_BASE_OFFSET;
can->kv_pcie = pcie;
can->cmd_seq = 0;
can->err_rep_cnt = 0;
can->bec.txerr = 0;
can->bec.rxerr = 0;
init_completion(&can->start_comp);
init_completion(&can->flush_comp);
timer_setup(&can->bec_poll_timer, kvaser_pciefd_bec_poll_timer,
0);
tx_npackets = ioread32(can->reg_base +
KVASER_PCIEFD_KCAN_TX_NPACKETS_REG);
if (((tx_npackets >> KVASER_PCIEFD_KCAN_TX_NPACKETS_MAX_SHIFT) &
0xff) < KVASER_PCIEFD_CAN_TX_MAX_COUNT) {
dev_err(&pcie->pci->dev,
"Max Tx count is smaller than expected\n");
free_candev(netdev);
return -ENODEV;
}
can->can.clock.freq = pcie->freq;
can->can.echo_skb_max = KVASER_PCIEFD_CAN_TX_MAX_COUNT;
can->echo_idx = 0;
spin_lock_init(&can->echo_lock);
spin_lock_init(&can->lock);
can->can.bittiming_const = &kvaser_pciefd_bittiming_const;
can->can.data_bittiming_const = &kvaser_pciefd_bittiming_const;
can->can.do_set_bittiming = kvaser_pciefd_set_nominal_bittiming;
can->can.do_set_data_bittiming =
kvaser_pciefd_set_data_bittiming;
can->can.do_set_mode = kvaser_pciefd_set_mode;
can->can.do_get_berr_counter = kvaser_pciefd_get_berr_counter;
can->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_FD |
CAN_CTRLMODE_FD_NON_ISO;
status = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_STAT_REG);
if (!(status & KVASER_PCIEFD_KCAN_STAT_FD)) {
dev_err(&pcie->pci->dev,
"CAN FD not supported as expected %d\n", i);
free_candev(netdev);
return -ENODEV;
}
if (status & KVASER_PCIEFD_KCAN_STAT_CAP)
can->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
netdev->flags |= IFF_ECHO;
SET_NETDEV_DEV(netdev, &pcie->pci->dev);
iowrite32(-1, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG);
iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD |
KVASER_PCIEFD_KCAN_IRQ_TFD,
can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
pcie->can[i] = can;
kvaser_pciefd_pwm_start(can);
}
return 0;
}
static int kvaser_pciefd_reg_candev(struct kvaser_pciefd *pcie)
{
int i;
for (i = 0; i < pcie->nr_channels; i++) {
int err = register_candev(pcie->can[i]->can.dev);
if (err) {
int j;
/* Unregister all successfully registered devices. */
for (j = 0; j < i; j++)
unregister_candev(pcie->can[j]->can.dev);
return err;
}
}
return 0;
}
static void kvaser_pciefd_write_dma_map(struct kvaser_pciefd *pcie,
dma_addr_t addr, int offset)
{
u32 word1, word2;
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
word1 = addr | KVASER_PCIEFD_64BIT_DMA_BIT;
word2 = addr >> 32;
#else
word1 = addr;
word2 = 0;
#endif
iowrite32(word1, pcie->reg_base + offset);
iowrite32(word2, pcie->reg_base + offset + 4);
}
static int kvaser_pciefd_setup_dma(struct kvaser_pciefd *pcie)
{
int i;
u32 srb_status;
dma_addr_t dma_addr[KVASER_PCIEFD_DMA_COUNT];
/* Disable the DMA */
iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG);
for (i = 0; i < KVASER_PCIEFD_DMA_COUNT; i++) {
unsigned int offset = KVASER_PCIEFD_DMA_MAP_BASE + 8 * i;
pcie->dma_data[i] =
dmam_alloc_coherent(&pcie->pci->dev,
KVASER_PCIEFD_DMA_SIZE,
&dma_addr[i],
GFP_KERNEL);
if (!pcie->dma_data[i] || !dma_addr[i]) {
dev_err(&pcie->pci->dev, "Rx dma_alloc(%u) failure\n",
KVASER_PCIEFD_DMA_SIZE);
return -ENOMEM;
}
kvaser_pciefd_write_dma_map(pcie, dma_addr[i], offset);
}
/* Reset Rx FIFO, and both DMA buffers */
iowrite32(KVASER_PCIEFD_SRB_CMD_FOR | KVASER_PCIEFD_SRB_CMD_RDB0 |
KVASER_PCIEFD_SRB_CMD_RDB1,
pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG);
srb_status = ioread32(pcie->reg_base + KVASER_PCIEFD_SRB_STAT_REG);
if (!(srb_status & KVASER_PCIEFD_SRB_STAT_DI)) {
dev_err(&pcie->pci->dev, "DMA not idle before enabling\n");
return -EIO;
}
/* Enable the DMA */
iowrite32(KVASER_PCIEFD_SRB_CTRL_DMA_ENABLE,
pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG);
return 0;
}
static int kvaser_pciefd_setup_board(struct kvaser_pciefd *pcie)
{
u32 sysid, srb_status, build;
u8 sysid_nr_chan;
int ret;
ret = kvaser_pciefd_read_cfg(pcie);
if (ret)
return ret;
sysid = ioread32(pcie->reg_base + KVASER_PCIEFD_SYSID_VERSION_REG);
sysid_nr_chan = (sysid >> KVASER_PCIEFD_SYSID_NRCHAN_SHIFT) & 0xff;
if (pcie->nr_channels != sysid_nr_chan) {
dev_err(&pcie->pci->dev,
"Number of channels does not match: %u vs %u\n",
pcie->nr_channels,
sysid_nr_chan);
return -ENODEV;
}
if (pcie->nr_channels > KVASER_PCIEFD_MAX_CAN_CHANNELS)
pcie->nr_channels = KVASER_PCIEFD_MAX_CAN_CHANNELS;
build = ioread32(pcie->reg_base + KVASER_PCIEFD_SYSID_BUILD_REG);
dev_dbg(&pcie->pci->dev, "Version %u.%u.%u\n",
(sysid >> KVASER_PCIEFD_SYSID_MAJOR_VER_SHIFT) & 0xff,
sysid & 0xff,
(build >> KVASER_PCIEFD_SYSID_BUILD_VER_SHIFT) & 0x7fff);
srb_status = ioread32(pcie->reg_base + KVASER_PCIEFD_SRB_STAT_REG);
if (!(srb_status & KVASER_PCIEFD_SRB_STAT_DMA)) {
dev_err(&pcie->pci->dev,
"Hardware without DMA is not supported\n");
return -ENODEV;
}
pcie->bus_freq = ioread32(pcie->reg_base +
KVASER_PCIEFD_SYSID_BUSFREQ_REG);
pcie->freq = ioread32(pcie->reg_base + KVASER_PCIEFD_SYSID_CANFREQ_REG);
pcie->freq_to_ticks_div = pcie->freq / 1000000;
if (pcie->freq_to_ticks_div == 0)
pcie->freq_to_ticks_div = 1;
/* Turn off all loopback functionality */
iowrite32(0, pcie->reg_base + KVASER_PCIEFD_LOOP_REG);
return ret;
}
static int kvaser_pciefd_handle_data_packet(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_rx_packet *p,
__le32 *data)
{
struct sk_buff *skb;
struct canfd_frame *cf;
struct can_priv *priv;
struct net_device_stats *stats;
struct skb_shared_hwtstamps *shhwtstamps;
u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7;
if (ch_id >= pcie->nr_channels)
return -EIO;
priv = &pcie->can[ch_id]->can;
stats = &priv->dev->stats;
if (p->header[1] & KVASER_PCIEFD_RPACKET_FDF) {
skb = alloc_canfd_skb(priv->dev, &cf);
if (!skb) {
stats->rx_dropped++;
return -ENOMEM;
}
if (p->header[1] & KVASER_PCIEFD_RPACKET_BRS)
cf->flags |= CANFD_BRS;
if (p->header[1] & KVASER_PCIEFD_RPACKET_ESI)
cf->flags |= CANFD_ESI;
} else {
skb = alloc_can_skb(priv->dev, (struct can_frame **)&cf);
if (!skb) {
stats->rx_dropped++;
return -ENOMEM;
}
}
cf->can_id = p->header[0] & CAN_EFF_MASK;
if (p->header[0] & KVASER_PCIEFD_RPACKET_IDE)
cf->can_id |= CAN_EFF_FLAG;
cf->len = can_dlc2len(p->header[1] >> KVASER_PCIEFD_RPACKET_DLC_SHIFT);
if (p->header[0] & KVASER_PCIEFD_RPACKET_RTR)
cf->can_id |= CAN_RTR_FLAG;
else
memcpy(cf->data, data, cf->len);
shhwtstamps = skb_hwtstamps(skb);
shhwtstamps->hwtstamp =
ns_to_ktime(div_u64(p->timestamp * 1000,
pcie->freq_to_ticks_div));
stats->rx_bytes += cf->len;
stats->rx_packets++;
return netif_rx(skb);
}
static void kvaser_pciefd_change_state(struct kvaser_pciefd_can *can,
struct can_frame *cf,
enum can_state new_state,
enum can_state tx_state,
enum can_state rx_state)
{
can_change_state(can->can.dev, cf, tx_state, rx_state);
if (new_state == CAN_STATE_BUS_OFF) {
struct net_device *ndev = can->can.dev;
unsigned long irq_flags;
spin_lock_irqsave(&can->lock, irq_flags);
netif_stop_queue(can->can.dev);
spin_unlock_irqrestore(&can->lock, irq_flags);
/* Prevent CAN controller from auto recover from bus off */
if (!can->can.restart_ms) {
kvaser_pciefd_start_controller_flush(can);
can_bus_off(ndev);
}
}
}
static void kvaser_pciefd_packet_to_state(struct kvaser_pciefd_rx_packet *p,
struct can_berr_counter *bec,
enum can_state *new_state,
enum can_state *tx_state,
enum can_state *rx_state)
{
if (p->header[0] & KVASER_PCIEFD_SPACK_BOFF ||
p->header[0] & KVASER_PCIEFD_SPACK_IRM)
*new_state = CAN_STATE_BUS_OFF;
else if (bec->txerr >= 255 || bec->rxerr >= 255)
*new_state = CAN_STATE_BUS_OFF;
else if (p->header[1] & KVASER_PCIEFD_SPACK_EPLR)
*new_state = CAN_STATE_ERROR_PASSIVE;
else if (bec->txerr >= 128 || bec->rxerr >= 128)
*new_state = CAN_STATE_ERROR_PASSIVE;
else if (p->header[1] & KVASER_PCIEFD_SPACK_EWLR)
*new_state = CAN_STATE_ERROR_WARNING;
else if (bec->txerr >= 96 || bec->rxerr >= 96)
*new_state = CAN_STATE_ERROR_WARNING;
else
*new_state = CAN_STATE_ERROR_ACTIVE;
*tx_state = bec->txerr >= bec->rxerr ? *new_state : 0;
*rx_state = bec->txerr <= bec->rxerr ? *new_state : 0;
}
static int kvaser_pciefd_rx_error_frame(struct kvaser_pciefd_can *can,
struct kvaser_pciefd_rx_packet *p)
{
struct can_berr_counter bec;
enum can_state old_state, new_state, tx_state, rx_state;
struct net_device *ndev = can->can.dev;
struct sk_buff *skb;
struct can_frame *cf = NULL;
struct skb_shared_hwtstamps *shhwtstamps;
struct net_device_stats *stats = &ndev->stats;
old_state = can->can.state;
bec.txerr = p->header[0] & 0xff;
bec.rxerr = (p->header[0] >> KVASER_PCIEFD_SPACK_RXERR_SHIFT) & 0xff;
kvaser_pciefd_packet_to_state(p, &bec, &new_state, &tx_state,
&rx_state);
skb = alloc_can_err_skb(ndev, &cf);
if (new_state != old_state) {
kvaser_pciefd_change_state(can, cf, new_state, tx_state,
rx_state);
if (old_state == CAN_STATE_BUS_OFF &&
new_state == CAN_STATE_ERROR_ACTIVE &&
can->can.restart_ms) {
can->can.can_stats.restarts++;
if (skb)
cf->can_id |= CAN_ERR_RESTARTED;
}
}
can->err_rep_cnt++;
can->can.can_stats.bus_error++;
stats->rx_errors++;
can->bec.txerr = bec.txerr;
can->bec.rxerr = bec.rxerr;
if (!skb) {
stats->rx_dropped++;
return -ENOMEM;
}
shhwtstamps = skb_hwtstamps(skb);
shhwtstamps->hwtstamp =
ns_to_ktime(div_u64(p->timestamp * 1000,
can->kv_pcie->freq_to_ticks_div));
cf->can_id |= CAN_ERR_BUSERROR;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
return 0;
}
static int kvaser_pciefd_handle_error_packet(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_rx_packet *p)
{
struct kvaser_pciefd_can *can;
u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7;
if (ch_id >= pcie->nr_channels)
return -EIO;
can = pcie->can[ch_id];
kvaser_pciefd_rx_error_frame(can, p);
if (can->err_rep_cnt >= KVASER_PCIEFD_MAX_ERR_REP)
/* Do not report more errors, until bec_poll_timer expires */
kvaser_pciefd_disable_err_gen(can);
/* Start polling the error counters */
mod_timer(&can->bec_poll_timer, KVASER_PCIEFD_BEC_POLL_FREQ);
return 0;
}
static int kvaser_pciefd_handle_status_resp(struct kvaser_pciefd_can *can,
struct kvaser_pciefd_rx_packet *p)
{
struct can_berr_counter bec;
enum can_state old_state, new_state, tx_state, rx_state;
old_state = can->can.state;
bec.txerr = p->header[0] & 0xff;
bec.rxerr = (p->header[0] >> KVASER_PCIEFD_SPACK_RXERR_SHIFT) & 0xff;
kvaser_pciefd_packet_to_state(p, &bec, &new_state, &tx_state,
&rx_state);
if (new_state != old_state) {
struct net_device *ndev = can->can.dev;
struct sk_buff *skb;
struct can_frame *cf;
struct skb_shared_hwtstamps *shhwtstamps;
skb = alloc_can_err_skb(ndev, &cf);
if (!skb) {
struct net_device_stats *stats = &ndev->stats;
stats->rx_dropped++;
return -ENOMEM;
}
kvaser_pciefd_change_state(can, cf, new_state, tx_state,
rx_state);
if (old_state == CAN_STATE_BUS_OFF &&
new_state == CAN_STATE_ERROR_ACTIVE &&
can->can.restart_ms) {
can->can.can_stats.restarts++;
cf->can_id |= CAN_ERR_RESTARTED;
}
shhwtstamps = skb_hwtstamps(skb);
shhwtstamps->hwtstamp =
ns_to_ktime(div_u64(p->timestamp * 1000,
can->kv_pcie->freq_to_ticks_div));
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
netif_rx(skb);
}
can->bec.txerr = bec.txerr;
can->bec.rxerr = bec.rxerr;
/* Check if we need to poll the error counters */
if (bec.txerr || bec.rxerr)
mod_timer(&can->bec_poll_timer, KVASER_PCIEFD_BEC_POLL_FREQ);
return 0;
}
static int kvaser_pciefd_handle_status_packet(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_rx_packet *p)
{
struct kvaser_pciefd_can *can;
u8 cmdseq;
u32 status;
u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7;
if (ch_id >= pcie->nr_channels)
return -EIO;
can = pcie->can[ch_id];
status = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_STAT_REG);
cmdseq = (status >> KVASER_PCIEFD_KCAN_STAT_SEQNO_SHIFT) & 0xff;
/* Reset done, start abort and flush */
if (p->header[0] & KVASER_PCIEFD_SPACK_IRM &&
p->header[0] & KVASER_PCIEFD_SPACK_RMCD &&
p->header[1] & KVASER_PCIEFD_SPACK_AUTO &&
cmdseq == (p->header[1] & KVASER_PCIEFD_PACKET_SEQ_MSK) &&
status & KVASER_PCIEFD_KCAN_STAT_IDLE) {
u32 cmd;
iowrite32(KVASER_PCIEFD_KCAN_IRQ_ABD,
can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG);
cmd = KVASER_PCIEFD_KCAN_CMD_AT;
cmd |= ++can->cmd_seq << KVASER_PCIEFD_KCAN_CMD_SEQ_SHIFT;
iowrite32(cmd, can->reg_base + KVASER_PCIEFD_KCAN_CMD_REG);
iowrite32(KVASER_PCIEFD_KCAN_IRQ_TFD,
can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
} else if (p->header[0] & KVASER_PCIEFD_SPACK_IDET &&
p->header[0] & KVASER_PCIEFD_SPACK_IRM &&
cmdseq == (p->header[1] & KVASER_PCIEFD_PACKET_SEQ_MSK) &&
status & KVASER_PCIEFD_KCAN_STAT_IDLE) {
/* Reset detected, send end of flush if no packet are in FIFO */
u8 count = ioread32(can->reg_base +
KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff;
if (!count)
iowrite32(KVASER_PCIEFD_KCAN_CTRL_EFLUSH,
can->reg_base + KVASER_PCIEFD_KCAN_CTRL_REG);
} else if (!(p->header[1] & KVASER_PCIEFD_SPACK_AUTO) &&
cmdseq == (p->header[1] & KVASER_PCIEFD_PACKET_SEQ_MSK)) {
/* Response to status request received */
kvaser_pciefd_handle_status_resp(can, p);
if (can->can.state != CAN_STATE_BUS_OFF &&
can->can.state != CAN_STATE_ERROR_ACTIVE) {
mod_timer(&can->bec_poll_timer,
KVASER_PCIEFD_BEC_POLL_FREQ);
}
} else if (p->header[0] & KVASER_PCIEFD_SPACK_RMCD &&
!(status & KVASER_PCIEFD_KCAN_STAT_BUS_OFF_MSK)) {
/* Reset to bus on detected */
if (!completion_done(&can->start_comp))
complete(&can->start_comp);
}
return 0;
}
static int kvaser_pciefd_handle_eack_packet(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_rx_packet *p)
{
struct kvaser_pciefd_can *can;
u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7;
if (ch_id >= pcie->nr_channels)
return -EIO;
can = pcie->can[ch_id];
/* If this is the last flushed packet, send end of flush */
if (p->header[0] & KVASER_PCIEFD_APACKET_FLU) {
u8 count = ioread32(can->reg_base +
KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff;
if (count == 0)
iowrite32(KVASER_PCIEFD_KCAN_CTRL_EFLUSH,
can->reg_base + KVASER_PCIEFD_KCAN_CTRL_REG);
} else {
int echo_idx = p->header[0] & KVASER_PCIEFD_PACKET_SEQ_MSK;
int dlc = can_get_echo_skb(can->can.dev, echo_idx);
struct net_device_stats *stats = &can->can.dev->stats;
stats->tx_bytes += dlc;
stats->tx_packets++;
if (netif_queue_stopped(can->can.dev))
netif_wake_queue(can->can.dev);
}
return 0;
}
static void kvaser_pciefd_handle_nack_packet(struct kvaser_pciefd_can *can,
struct kvaser_pciefd_rx_packet *p)
{
struct sk_buff *skb;
struct net_device_stats *stats = &can->can.dev->stats;
struct can_frame *cf;
skb = alloc_can_err_skb(can->can.dev, &cf);
stats->tx_errors++;
if (p->header[0] & KVASER_PCIEFD_APACKET_ABL) {
if (skb)
cf->can_id |= CAN_ERR_LOSTARB;
can->can.can_stats.arbitration_lost++;
} else if (skb) {
cf->can_id |= CAN_ERR_ACK;
}
if (skb) {
cf->can_id |= CAN_ERR_BUSERROR;
stats->rx_bytes += cf->can_dlc;
stats->rx_packets++;
netif_rx(skb);
} else {
stats->rx_dropped++;
netdev_warn(can->can.dev, "No memory left for err_skb\n");
}
}
static int kvaser_pciefd_handle_ack_packet(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_rx_packet *p)
{
struct kvaser_pciefd_can *can;
bool one_shot_fail = false;
u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7;
if (ch_id >= pcie->nr_channels)
return -EIO;
can = pcie->can[ch_id];
/* Ignore control packet ACK */
if (p->header[0] & KVASER_PCIEFD_APACKET_CT)
return 0;
if (p->header[0] & KVASER_PCIEFD_APACKET_NACK) {
kvaser_pciefd_handle_nack_packet(can, p);
one_shot_fail = true;
}
if (p->header[0] & KVASER_PCIEFD_APACKET_FLU) {
netdev_dbg(can->can.dev, "Packet was flushed\n");
} else {
int echo_idx = p->header[0] & KVASER_PCIEFD_PACKET_SEQ_MSK;
int dlc = can_get_echo_skb(can->can.dev, echo_idx);
u8 count = ioread32(can->reg_base +
KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff;
if (count < KVASER_PCIEFD_CAN_TX_MAX_COUNT &&
netif_queue_stopped(can->can.dev))
netif_wake_queue(can->can.dev);
if (!one_shot_fail) {
struct net_device_stats *stats = &can->can.dev->stats;
stats->tx_bytes += dlc;
stats->tx_packets++;
}
}
return 0;
}
static int kvaser_pciefd_handle_eflush_packet(struct kvaser_pciefd *pcie,
struct kvaser_pciefd_rx_packet *p)
{
struct kvaser_pciefd_can *can;
u8 ch_id = (p->header[1] >> KVASER_PCIEFD_PACKET_CHID_SHIFT) & 0x7;
if (ch_id >= pcie->nr_channels)
return -EIO;
can = pcie->can[ch_id];
if (!completion_done(&can->flush_comp))
complete(&can->flush_comp);
return 0;
}
static int kvaser_pciefd_read_packet(struct kvaser_pciefd *pcie, int *start_pos,
int dma_buf)
{
__le32 *buffer = pcie->dma_data[dma_buf];
__le64 timestamp;
struct kvaser_pciefd_rx_packet packet;
struct kvaser_pciefd_rx_packet *p = &packet;
u8 type;
int pos = *start_pos;
int size;
int ret = 0;
size = le32_to_cpu(buffer[pos++]);
if (!size) {
*start_pos = 0;
return 0;
}
p->header[0] = le32_to_cpu(buffer[pos++]);
p->header[1] = le32_to_cpu(buffer[pos++]);
/* Read 64-bit timestamp */
memcpy(&timestamp, &buffer[pos], sizeof(__le64));
pos += 2;
p->timestamp = le64_to_cpu(timestamp);
type = (p->header[1] >> KVASER_PCIEFD_PACKET_TYPE_SHIFT) & 0xf;
switch (type) {
case KVASER_PCIEFD_PACK_TYPE_DATA:
ret = kvaser_pciefd_handle_data_packet(pcie, p, &buffer[pos]);
if (!(p->header[0] & KVASER_PCIEFD_RPACKET_RTR)) {
u8 data_len;
data_len = can_dlc2len(p->header[1] >>
KVASER_PCIEFD_RPACKET_DLC_SHIFT);
pos += DIV_ROUND_UP(data_len, 4);
}
break;
case KVASER_PCIEFD_PACK_TYPE_ACK:
ret = kvaser_pciefd_handle_ack_packet(pcie, p);
break;
case KVASER_PCIEFD_PACK_TYPE_STATUS:
ret = kvaser_pciefd_handle_status_packet(pcie, p);
break;
case KVASER_PCIEFD_PACK_TYPE_ERROR:
ret = kvaser_pciefd_handle_error_packet(pcie, p);
break;
case KVASER_PCIEFD_PACK_TYPE_EFRAME_ACK:
ret = kvaser_pciefd_handle_eack_packet(pcie, p);
break;
case KVASER_PCIEFD_PACK_TYPE_EFLUSH_ACK:
ret = kvaser_pciefd_handle_eflush_packet(pcie, p);
break;
case KVASER_PCIEFD_PACK_TYPE_ACK_DATA:
case KVASER_PCIEFD_PACK_TYPE_BUS_LOAD:
case KVASER_PCIEFD_PACK_TYPE_TXRQ:
dev_info(&pcie->pci->dev,
"Received unexpected packet type 0x%08X\n", type);
break;
default:
dev_err(&pcie->pci->dev, "Unknown packet type 0x%08X\n", type);
ret = -EIO;
break;
}
if (ret)
return ret;
/* Position does not point to the end of the package,
* corrupted packet size?
*/
if ((*start_pos + size) != pos)
return -EIO;
/* Point to the next packet header, if any */
*start_pos = pos;
return ret;
}
static int kvaser_pciefd_read_buffer(struct kvaser_pciefd *pcie, int dma_buf)
{
int pos = 0;
int res = 0;
do {
res = kvaser_pciefd_read_packet(pcie, &pos, dma_buf);
} while (!res && pos > 0 && pos < KVASER_PCIEFD_DMA_SIZE);
return res;
}
static int kvaser_pciefd_receive_irq(struct kvaser_pciefd *pcie)
{
u32 irq;
irq = ioread32(pcie->reg_base + KVASER_PCIEFD_SRB_IRQ_REG);
if (irq & KVASER_PCIEFD_SRB_IRQ_DPD0) {
kvaser_pciefd_read_buffer(pcie, 0);
/* Reset DMA buffer 0 */
iowrite32(KVASER_PCIEFD_SRB_CMD_RDB0,
pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG);
}
if (irq & KVASER_PCIEFD_SRB_IRQ_DPD1) {
kvaser_pciefd_read_buffer(pcie, 1);
/* Reset DMA buffer 1 */
iowrite32(KVASER_PCIEFD_SRB_CMD_RDB1,
pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG);
}
if (irq & KVASER_PCIEFD_SRB_IRQ_DOF0 ||
irq & KVASER_PCIEFD_SRB_IRQ_DOF1 ||
irq & KVASER_PCIEFD_SRB_IRQ_DUF0 ||
irq & KVASER_PCIEFD_SRB_IRQ_DUF1)
dev_err(&pcie->pci->dev, "DMA IRQ error 0x%08X\n", irq);
iowrite32(irq, pcie->reg_base + KVASER_PCIEFD_SRB_IRQ_REG);
return 0;
}
static int kvaser_pciefd_transmit_irq(struct kvaser_pciefd_can *can)
{
u32 irq = ioread32(can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG);
if (irq & KVASER_PCIEFD_KCAN_IRQ_TOF)
netdev_err(can->can.dev, "Tx FIFO overflow\n");
if (irq & KVASER_PCIEFD_KCAN_IRQ_TFD) {
u8 count = ioread32(can->reg_base +
KVASER_PCIEFD_KCAN_TX_NPACKETS_REG) & 0xff;
if (count == 0)
iowrite32(KVASER_PCIEFD_KCAN_CTRL_EFLUSH,
can->reg_base + KVASER_PCIEFD_KCAN_CTRL_REG);
}
if (irq & KVASER_PCIEFD_KCAN_IRQ_BPP)
netdev_err(can->can.dev,
"Fail to change bittiming, when not in reset mode\n");
if (irq & KVASER_PCIEFD_KCAN_IRQ_FDIC)
netdev_err(can->can.dev, "CAN FD frame in CAN mode\n");
if (irq & KVASER_PCIEFD_KCAN_IRQ_ROF)
netdev_err(can->can.dev, "Rx FIFO overflow\n");
iowrite32(irq, can->reg_base + KVASER_PCIEFD_KCAN_IRQ_REG);
return 0;
}
static irqreturn_t kvaser_pciefd_irq_handler(int irq, void *dev)
{
struct kvaser_pciefd *pcie = (struct kvaser_pciefd *)dev;
u32 board_irq;
int i;
board_irq = ioread32(pcie->reg_base + KVASER_PCIEFD_IRQ_REG);
if (!(board_irq & KVASER_PCIEFD_IRQ_ALL_MSK))
return IRQ_NONE;
if (board_irq & KVASER_PCIEFD_IRQ_SRB)
kvaser_pciefd_receive_irq(pcie);
for (i = 0; i < pcie->nr_channels; i++) {
if (!pcie->can[i]) {
dev_err(&pcie->pci->dev,
"IRQ mask points to unallocated controller\n");
break;
}
/* Check that mask matches channel (i) IRQ mask */
if (board_irq & (1 << i))
kvaser_pciefd_transmit_irq(pcie->can[i]);
}
iowrite32(board_irq, pcie->reg_base + KVASER_PCIEFD_IRQ_REG);
return IRQ_HANDLED;
}
static void kvaser_pciefd_teardown_can_ctrls(struct kvaser_pciefd *pcie)
{
int i;
struct kvaser_pciefd_can *can;
for (i = 0; i < pcie->nr_channels; i++) {
can = pcie->can[i];
if (can) {
iowrite32(0,
can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
kvaser_pciefd_pwm_stop(can);
free_candev(can->can.dev);
}
}
}
static int kvaser_pciefd_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int err;
struct kvaser_pciefd *pcie;
pcie = devm_kzalloc(&pdev->dev, sizeof(*pcie), GFP_KERNEL);
if (!pcie)
return -ENOMEM;
pci_set_drvdata(pdev, pcie);
pcie->pci = pdev;
err = pci_enable_device(pdev);
if (err)
return err;
err = pci_request_regions(pdev, KVASER_PCIEFD_DRV_NAME);
if (err)
goto err_disable_pci;
pcie->reg_base = pci_iomap(pdev, 0, 0);
if (!pcie->reg_base) {
err = -ENOMEM;
goto err_release_regions;
}
err = kvaser_pciefd_setup_board(pcie);
if (err)
goto err_pci_iounmap;
err = kvaser_pciefd_setup_dma(pcie);
if (err)
goto err_pci_iounmap;
pci_set_master(pdev);
err = kvaser_pciefd_setup_can_ctrls(pcie);
if (err)
goto err_teardown_can_ctrls;
iowrite32(KVASER_PCIEFD_SRB_IRQ_DPD0 | KVASER_PCIEFD_SRB_IRQ_DPD1,
pcie->reg_base + KVASER_PCIEFD_SRB_IRQ_REG);
iowrite32(KVASER_PCIEFD_SRB_IRQ_DPD0 | KVASER_PCIEFD_SRB_IRQ_DPD1 |
KVASER_PCIEFD_SRB_IRQ_DOF0 | KVASER_PCIEFD_SRB_IRQ_DOF1 |
KVASER_PCIEFD_SRB_IRQ_DUF0 | KVASER_PCIEFD_SRB_IRQ_DUF1,
pcie->reg_base + KVASER_PCIEFD_SRB_IEN_REG);
/* Reset IRQ handling, expected to be off before */
iowrite32(KVASER_PCIEFD_IRQ_ALL_MSK,
pcie->reg_base + KVASER_PCIEFD_IRQ_REG);
iowrite32(KVASER_PCIEFD_IRQ_ALL_MSK,
pcie->reg_base + KVASER_PCIEFD_IEN_REG);
/* Ready the DMA buffers */
iowrite32(KVASER_PCIEFD_SRB_CMD_RDB0,
pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG);
iowrite32(KVASER_PCIEFD_SRB_CMD_RDB1,
pcie->reg_base + KVASER_PCIEFD_SRB_CMD_REG);
err = request_irq(pcie->pci->irq, kvaser_pciefd_irq_handler,
IRQF_SHARED, KVASER_PCIEFD_DRV_NAME, pcie);
if (err)
goto err_teardown_can_ctrls;
err = kvaser_pciefd_reg_candev(pcie);
if (err)
goto err_free_irq;
return 0;
err_free_irq:
free_irq(pcie->pci->irq, pcie);
err_teardown_can_ctrls:
kvaser_pciefd_teardown_can_ctrls(pcie);
iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG);
pci_clear_master(pdev);
err_pci_iounmap:
pci_iounmap(pdev, pcie->reg_base);
err_release_regions:
pci_release_regions(pdev);
err_disable_pci:
pci_disable_device(pdev);
return err;
}
static void kvaser_pciefd_remove_all_ctrls(struct kvaser_pciefd *pcie)
{
struct kvaser_pciefd_can *can;
int i;
for (i = 0; i < pcie->nr_channels; i++) {
can = pcie->can[i];
if (can) {
iowrite32(0,
can->reg_base + KVASER_PCIEFD_KCAN_IEN_REG);
unregister_candev(can->can.dev);
del_timer(&can->bec_poll_timer);
kvaser_pciefd_pwm_stop(can);
free_candev(can->can.dev);
}
}
}
static void kvaser_pciefd_remove(struct pci_dev *pdev)
{
struct kvaser_pciefd *pcie = pci_get_drvdata(pdev);
kvaser_pciefd_remove_all_ctrls(pcie);
/* Turn off IRQ generation */
iowrite32(0, pcie->reg_base + KVASER_PCIEFD_SRB_CTRL_REG);
iowrite32(KVASER_PCIEFD_IRQ_ALL_MSK,
pcie->reg_base + KVASER_PCIEFD_IRQ_REG);
iowrite32(0, pcie->reg_base + KVASER_PCIEFD_IEN_REG);
free_irq(pcie->pci->irq, pcie);
pci_clear_master(pdev);
pci_iounmap(pdev, pcie->reg_base);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static struct pci_driver kvaser_pciefd = {
.name = KVASER_PCIEFD_DRV_NAME,
.id_table = kvaser_pciefd_id_table,
.probe = kvaser_pciefd_probe,
.remove = kvaser_pciefd_remove,
};
module_pci_driver(kvaser_pciefd)