linux-sg2042/drivers/crypto/inside-secure/safexcel_cipher.c

2306 lines
64 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*/
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <crypto/aead.h>
#include <crypto/aes.h>
#include <crypto/authenc.h>
#include <crypto/ctr.h>
#include <crypto/internal/des.h>
#include <crypto/gcm.h>
#include <crypto/ghash.h>
#include <crypto/sha.h>
#include <crypto/xts.h>
#include <crypto/skcipher.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include "safexcel.h"
enum safexcel_cipher_direction {
SAFEXCEL_ENCRYPT,
SAFEXCEL_DECRYPT,
};
enum safexcel_cipher_alg {
SAFEXCEL_DES,
SAFEXCEL_3DES,
SAFEXCEL_AES,
};
struct safexcel_cipher_ctx {
struct safexcel_context base;
struct safexcel_crypto_priv *priv;
u32 mode;
enum safexcel_cipher_alg alg;
bool aead;
int xcm; /* 0=authenc, 1=GCM, 2 reserved for CCM */
__le32 key[16];
u32 nonce;
unsigned int key_len, xts;
/* All the below is AEAD specific */
u32 hash_alg;
u32 state_sz;
u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)];
u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)];
struct crypto_cipher *hkaes;
};
struct safexcel_cipher_req {
enum safexcel_cipher_direction direction;
/* Number of result descriptors associated to the request */
unsigned int rdescs;
bool needs_inv;
int nr_src, nr_dst;
};
static void safexcel_cipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc)
{
u32 block_sz = 0;
if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) {
cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
/* 32 bit nonce */
cdesc->control_data.token[0] = ctx->nonce;
/* 64 bit IV part */
memcpy(&cdesc->control_data.token[1], iv, 8);
/* 32 bit counter, start at 1 (big endian!) */
cdesc->control_data.token[3] = cpu_to_be32(1);
return;
} else if (ctx->xcm == EIP197_XCM_MODE_GCM) {
cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
/* 96 bit IV part */
memcpy(&cdesc->control_data.token[0], iv, 12);
/* 32 bit counter, start at 1 (big endian!) */
cdesc->control_data.token[3] = cpu_to_be32(1);
return;
} else if (ctx->xcm == EIP197_XCM_MODE_CCM) {
cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
/* Variable length IV part */
memcpy(&cdesc->control_data.token[0], iv, 15 - iv[0]);
/* Start variable length counter at 0 */
memset((u8 *)&cdesc->control_data.token[0] + 15 - iv[0],
0, iv[0] + 1);
return;
}
if (ctx->mode != CONTEXT_CONTROL_CRYPTO_MODE_ECB) {
switch (ctx->alg) {
case SAFEXCEL_DES:
block_sz = DES_BLOCK_SIZE;
cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
break;
case SAFEXCEL_3DES:
block_sz = DES3_EDE_BLOCK_SIZE;
cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD;
break;
case SAFEXCEL_AES:
block_sz = AES_BLOCK_SIZE;
cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD;
break;
}
memcpy(cdesc->control_data.token, iv, block_sz);
}
}
static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc,
u32 length)
{
struct safexcel_token *token;
safexcel_cipher_token(ctx, iv, cdesc);
/* skip over worst case IV of 4 dwords, no need to be exact */
token = (struct safexcel_token *)(cdesc->control_data.token + 4);
token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[0].packet_length = length;
token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET |
EIP197_TOKEN_STAT_LAST_HASH;
token[0].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_CRYPTO |
EIP197_TOKEN_INS_TYPE_OUTPUT;
}
static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv,
struct safexcel_command_desc *cdesc,
enum safexcel_cipher_direction direction,
u32 cryptlen, u32 assoclen, u32 digestsize)
{
struct safexcel_token *token;
safexcel_cipher_token(ctx, iv, cdesc);
if (direction == SAFEXCEL_ENCRYPT) {
/* align end of instruction sequence to end of token */
token = (struct safexcel_token *)(cdesc->control_data.token +
EIP197_MAX_TOKENS - 13);
token[12].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[12].packet_length = digestsize;
token[12].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[12].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
} else {
cryptlen -= digestsize;
/* align end of instruction sequence to end of token */
token = (struct safexcel_token *)(cdesc->control_data.token +
EIP197_MAX_TOKENS - 14);
token[12].opcode = EIP197_TOKEN_OPCODE_RETRIEVE;
token[12].packet_length = digestsize;
token[12].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[12].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
token[13].opcode = EIP197_TOKEN_OPCODE_VERIFY;
token[13].packet_length = digestsize |
EIP197_TOKEN_HASH_RESULT_VERIFY;
token[13].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[13].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT;
}
token[6].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[6].packet_length = assoclen;
if (likely(cryptlen)) {
token[6].instructions = EIP197_TOKEN_INS_TYPE_HASH;
token[10].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[10].packet_length = cryptlen;
token[10].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[10].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_CRYPTO |
EIP197_TOKEN_INS_TYPE_HASH |
EIP197_TOKEN_INS_TYPE_OUTPUT;
} else if (ctx->xcm != EIP197_XCM_MODE_CCM) {
token[6].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[6].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_HASH;
}
if (!ctx->xcm)
return;
token[8].opcode = EIP197_TOKEN_OPCODE_INSERT_REMRES;
token[8].packet_length = 0;
token[8].instructions = AES_BLOCK_SIZE;
token[9].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[9].packet_length = AES_BLOCK_SIZE;
token[9].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
EIP197_TOKEN_INS_TYPE_CRYPTO;
if (ctx->xcm == EIP197_XCM_MODE_GCM) {
token[6].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_HASH;
} else {
u8 *cbcmaciv = (u8 *)&token[1];
u32 *aadlen = (u32 *)&token[5];
/* Construct IV block B0 for the CBC-MAC */
token[0].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[0].packet_length = AES_BLOCK_SIZE +
((assoclen > 0) << 1);
token[0].instructions = EIP197_TOKEN_INS_ORIGIN_TOKEN |
EIP197_TOKEN_INS_TYPE_HASH;
/* Variable length IV part */
memcpy(cbcmaciv, iv, 15 - iv[0]);
/* fixup flags byte */
cbcmaciv[0] |= ((assoclen > 0) << 6) | ((digestsize - 2) << 2);
/* Clear upper bytes of variable message length to 0 */
memset(cbcmaciv + 15 - iv[0], 0, iv[0] - 1);
/* insert lower 2 bytes of message length */
cbcmaciv[14] = cryptlen >> 8;
cbcmaciv[15] = cryptlen & 255;
if (assoclen) {
*aadlen = cpu_to_le32(cpu_to_be16(assoclen));
assoclen += 2;
}
token[6].instructions = EIP197_TOKEN_INS_TYPE_HASH;
/* Align AAD data towards hash engine */
token[7].opcode = EIP197_TOKEN_OPCODE_INSERT;
assoclen &= 15;
token[7].packet_length = assoclen ? 16 - assoclen : 0;
if (likely(cryptlen)) {
token[7].instructions = EIP197_TOKEN_INS_TYPE_HASH;
/* Align crypto data towards hash engine */
token[10].stat = 0;
token[11].opcode = EIP197_TOKEN_OPCODE_INSERT;
cryptlen &= 15;
token[11].packet_length = cryptlen ? 16 - cryptlen : 0;
token[11].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[11].instructions = EIP197_TOKEN_INS_TYPE_HASH;
} else {
token[7].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[7].instructions = EIP197_TOKEN_INS_LAST |
EIP197_TOKEN_INS_TYPE_HASH;
}
}
}
static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
int ret, i;
ret = aes_expandkey(&aes, key, len);
if (ret) {
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < len / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < len / sizeof(u32); i++)
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
ctx->key_len = len;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_aead_setkey(struct crypto_aead *ctfm, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_ahash_export_state istate, ostate;
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_authenc_keys keys;
struct crypto_aes_ctx aes;
int err = -EINVAL;
if (crypto_authenc_extractkeys(&keys, key, len) != 0)
goto badkey;
if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) {
/* Minimum keysize is minimum AES key size + nonce size */
if (keys.enckeylen < (AES_MIN_KEY_SIZE +
CTR_RFC3686_NONCE_SIZE))
goto badkey;
/* last 4 bytes of key are the nonce! */
ctx->nonce = *(u32 *)(keys.enckey + keys.enckeylen -
CTR_RFC3686_NONCE_SIZE);
/* exclude the nonce here */
keys.enckeylen -= CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD;
}
/* Encryption key */
switch (ctx->alg) {
case SAFEXCEL_3DES:
err = verify_aead_des3_key(ctfm, keys.enckey, keys.enckeylen);
if (unlikely(err))
goto badkey_expflags;
break;
case SAFEXCEL_AES:
err = aes_expandkey(&aes, keys.enckey, keys.enckeylen);
if (unlikely(err))
goto badkey;
break;
default:
dev_err(priv->dev, "aead: unsupported cipher algorithm\n");
goto badkey;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
memcmp(ctx->key, keys.enckey, keys.enckeylen))
ctx->base.needs_inv = true;
/* Auth key */
switch (ctx->hash_alg) {
case CONTEXT_CONTROL_CRYPTO_ALG_SHA1:
if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA224:
if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA256:
if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA384:
if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
case CONTEXT_CONTROL_CRYPTO_ALG_SHA512:
if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey,
keys.authkeylen, &istate, &ostate))
goto badkey;
break;
default:
dev_err(priv->dev, "aead: unsupported hash algorithm\n");
goto badkey;
}
crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) &
CRYPTO_TFM_RES_MASK);
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma &&
(memcmp(ctx->ipad, istate.state, ctx->state_sz) ||
memcmp(ctx->opad, ostate.state, ctx->state_sz)))
ctx->base.needs_inv = true;
/* Now copy the keys into the context */
memcpy(ctx->key, keys.enckey, keys.enckeylen);
ctx->key_len = keys.enckeylen;
memcpy(ctx->ipad, &istate.state, ctx->state_sz);
memcpy(ctx->opad, &ostate.state, ctx->state_sz);
memzero_explicit(&keys, sizeof(keys));
return 0;
badkey:
crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
badkey_expflags:
memzero_explicit(&keys, sizeof(keys));
return err;
}
static int safexcel_context_control(struct safexcel_cipher_ctx *ctx,
struct crypto_async_request *async,
struct safexcel_cipher_req *sreq,
struct safexcel_command_desc *cdesc)
{
struct safexcel_crypto_priv *priv = ctx->priv;
int ctrl_size = ctx->key_len / sizeof(u32);
cdesc->control_data.control1 = ctx->mode;
if (ctx->aead) {
/* Take in account the ipad+opad digests */
if (ctx->xcm) {
ctrl_size += ctx->state_sz / sizeof(u32);
cdesc->control_data.control0 =
CONTEXT_CONTROL_KEY_EN |
CONTEXT_CONTROL_DIGEST_XCM |
ctx->hash_alg |
CONTEXT_CONTROL_SIZE(ctrl_size);
} else {
ctrl_size += ctx->state_sz / sizeof(u32) * 2;
cdesc->control_data.control0 =
CONTEXT_CONTROL_KEY_EN |
CONTEXT_CONTROL_DIGEST_HMAC |
ctx->hash_alg |
CONTEXT_CONTROL_SIZE(ctrl_size);
}
if (sreq->direction == SAFEXCEL_ENCRYPT)
cdesc->control_data.control0 |=
(ctx->xcm == EIP197_XCM_MODE_CCM) ?
CONTEXT_CONTROL_TYPE_HASH_ENCRYPT_OUT :
CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT;
else
cdesc->control_data.control0 |=
(ctx->xcm == EIP197_XCM_MODE_CCM) ?
CONTEXT_CONTROL_TYPE_DECRYPT_HASH_IN :
CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN;
} else {
if (sreq->direction == SAFEXCEL_ENCRYPT)
cdesc->control_data.control0 =
CONTEXT_CONTROL_TYPE_CRYPTO_OUT |
CONTEXT_CONTROL_KEY_EN |
CONTEXT_CONTROL_SIZE(ctrl_size);
else
cdesc->control_data.control0 =
CONTEXT_CONTROL_TYPE_CRYPTO_IN |
CONTEXT_CONTROL_KEY_EN |
CONTEXT_CONTROL_SIZE(ctrl_size);
}
if (ctx->alg == SAFEXCEL_DES) {
cdesc->control_data.control0 |=
CONTEXT_CONTROL_CRYPTO_ALG_DES;
} else if (ctx->alg == SAFEXCEL_3DES) {
cdesc->control_data.control0 |=
CONTEXT_CONTROL_CRYPTO_ALG_3DES;
} else if (ctx->alg == SAFEXCEL_AES) {
switch (ctx->key_len >> ctx->xts) {
case AES_KEYSIZE_128:
cdesc->control_data.control0 |=
CONTEXT_CONTROL_CRYPTO_ALG_AES128;
break;
case AES_KEYSIZE_192:
cdesc->control_data.control0 |=
CONTEXT_CONTROL_CRYPTO_ALG_AES192;
break;
case AES_KEYSIZE_256:
cdesc->control_data.control0 |=
CONTEXT_CONTROL_CRYPTO_ALG_AES256;
break;
default:
dev_err(priv->dev, "aes keysize not supported: %u\n",
ctx->key_len >> ctx->xts);
return -EINVAL;
}
}
return 0;
}
static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring,
struct crypto_async_request *async,
struct scatterlist *src,
struct scatterlist *dst,
unsigned int cryptlen,
struct safexcel_cipher_req *sreq,
bool *should_complete, int *ret)
{
struct skcipher_request *areq = skcipher_request_cast(async);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq);
struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(skcipher);
struct safexcel_result_desc *rdesc;
int ndesc = 0;
*ret = 0;
if (unlikely(!sreq->rdescs))
return 0;
while (sreq->rdescs--) {
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"cipher: result: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
break;
}
if (likely(!*ret))
*ret = safexcel_rdesc_check_errors(priv, rdesc);
ndesc++;
}
safexcel_complete(priv, ring);
if (src == dst) {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
}
/*
* Update IV in req from last crypto output word for CBC modes
*/
if ((!ctx->aead) && (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) &&
(sreq->direction == SAFEXCEL_ENCRYPT)) {
/* For encrypt take the last output word */
sg_pcopy_to_buffer(dst, sreq->nr_dst, areq->iv,
crypto_skcipher_ivsize(skcipher),
(cryptlen -
crypto_skcipher_ivsize(skcipher)));
}
*should_complete = true;
return ndesc;
}
static int safexcel_send_req(struct crypto_async_request *base, int ring,
struct safexcel_cipher_req *sreq,
struct scatterlist *src, struct scatterlist *dst,
unsigned int cryptlen, unsigned int assoclen,
unsigned int digestsize, u8 *iv, int *commands,
int *results)
{
struct skcipher_request *areq = skcipher_request_cast(base);
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct safexcel_command_desc *cdesc;
struct safexcel_command_desc *first_cdesc = NULL;
struct safexcel_result_desc *rdesc, *first_rdesc = NULL;
struct scatterlist *sg;
unsigned int totlen;
unsigned int totlen_src = cryptlen + assoclen;
unsigned int totlen_dst = totlen_src;
int n_cdesc = 0, n_rdesc = 0;
int queued, i, ret = 0;
bool first = true;
sreq->nr_src = sg_nents_for_len(src, totlen_src);
if (ctx->aead) {
/*
* AEAD has auth tag appended to output for encrypt and
* removed from the output for decrypt!
*/
if (sreq->direction == SAFEXCEL_DECRYPT)
totlen_dst -= digestsize;
else
totlen_dst += digestsize;
memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32),
ctx->ipad, ctx->state_sz);
if (!ctx->xcm)
memcpy(ctx->base.ctxr->data + (ctx->key_len +
ctx->state_sz) / sizeof(u32), ctx->opad,
ctx->state_sz);
} else if ((ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) &&
(sreq->direction == SAFEXCEL_DECRYPT)) {
/*
* Save IV from last crypto input word for CBC modes in decrypt
* direction. Need to do this first in case of inplace operation
* as it will be overwritten.
*/
sg_pcopy_to_buffer(src, sreq->nr_src, areq->iv,
crypto_skcipher_ivsize(skcipher),
(totlen_src -
crypto_skcipher_ivsize(skcipher)));
}
sreq->nr_dst = sg_nents_for_len(dst, totlen_dst);
/*
* Remember actual input length, source buffer length may be
* updated in case of inline operation below.
*/
totlen = totlen_src;
queued = totlen_src;
if (src == dst) {
sreq->nr_src = max(sreq->nr_src, sreq->nr_dst);
sreq->nr_dst = sreq->nr_src;
if (unlikely((totlen_src || totlen_dst) &&
(sreq->nr_src <= 0))) {
dev_err(priv->dev, "In-place buffer not large enough (need %d bytes)!",
max(totlen_src, totlen_dst));
return -EINVAL;
}
dma_map_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
} else {
if (unlikely(totlen_src && (sreq->nr_src <= 0))) {
dev_err(priv->dev, "Source buffer not large enough (need %d bytes)!",
totlen_src);
return -EINVAL;
}
dma_map_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
if (unlikely(totlen_dst && (sreq->nr_dst <= 0))) {
dev_err(priv->dev, "Dest buffer not large enough (need %d bytes)!",
totlen_dst);
dma_unmap_sg(priv->dev, src, sreq->nr_src,
DMA_TO_DEVICE);
return -EINVAL;
}
dma_map_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
}
memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len);
/* The EIP cannot deal with zero length input packets! */
if (totlen == 0)
totlen = 1;
/* command descriptors */
for_each_sg(src, sg, sreq->nr_src, i) {
int len = sg_dma_len(sg);
/* Do not overflow the request */
if (queued - len < 0)
len = queued;
cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
!(queued - len),
sg_dma_address(sg), len, totlen,
ctx->base.ctxr_dma);
if (IS_ERR(cdesc)) {
/* No space left in the command descriptor ring */
ret = PTR_ERR(cdesc);
goto cdesc_rollback;
}
n_cdesc++;
if (n_cdesc == 1) {
first_cdesc = cdesc;
}
queued -= len;
if (!queued)
break;
}
if (unlikely(!n_cdesc)) {
/*
* Special case: zero length input buffer.
* The engine always needs the 1st command descriptor, however!
*/
first_cdesc = safexcel_add_cdesc(priv, ring, 1, 1, 0, 0, totlen,
ctx->base.ctxr_dma);
n_cdesc = 1;
}
/* Add context control words and token to first command descriptor */
safexcel_context_control(ctx, base, sreq, first_cdesc);
if (ctx->aead)
safexcel_aead_token(ctx, iv, first_cdesc,
sreq->direction, cryptlen,
assoclen, digestsize);
else
safexcel_skcipher_token(ctx, iv, first_cdesc,
cryptlen);
/* result descriptors */
for_each_sg(dst, sg, sreq->nr_dst, i) {
bool last = (i == sreq->nr_dst - 1);
u32 len = sg_dma_len(sg);
/* only allow the part of the buffer we know we need */
if (len > totlen_dst)
len = totlen_dst;
if (unlikely(!len))
break;
totlen_dst -= len;
/* skip over AAD space in buffer - not written */
if (assoclen) {
if (assoclen >= len) {
assoclen -= len;
continue;
}
rdesc = safexcel_add_rdesc(priv, ring, first, last,
sg_dma_address(sg) +
assoclen,
len - assoclen);
assoclen = 0;
} else {
rdesc = safexcel_add_rdesc(priv, ring, first, last,
sg_dma_address(sg),
len);
}
if (IS_ERR(rdesc)) {
/* No space left in the result descriptor ring */
ret = PTR_ERR(rdesc);
goto rdesc_rollback;
}
if (first) {
first_rdesc = rdesc;
first = false;
}
n_rdesc++;
}
if (unlikely(first)) {
/*
* Special case: AEAD decrypt with only AAD data.
* In this case there is NO output data from the engine,
* but the engine still needs a result descriptor!
* Create a dummy one just for catching the result token.
*/
rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
if (IS_ERR(rdesc)) {
/* No space left in the result descriptor ring */
ret = PTR_ERR(rdesc);
goto rdesc_rollback;
}
first_rdesc = rdesc;
n_rdesc = 1;
}
safexcel_rdr_req_set(priv, ring, first_rdesc, base);
*commands = n_cdesc;
*results = n_rdesc;
return 0;
rdesc_rollback:
for (i = 0; i < n_rdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr);
cdesc_rollback:
for (i = 0; i < n_cdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
if (src == dst) {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL);
} else {
dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE);
dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE);
}
return ret;
}
static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
bool *should_complete, int *ret)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_result_desc *rdesc;
int ndesc = 0, enq_ret;
*ret = 0;
if (unlikely(!sreq->rdescs))
return 0;
while (sreq->rdescs--) {
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"cipher: invalidate: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
break;
}
if (likely(!*ret))
*ret = safexcel_rdesc_check_errors(priv, rdesc);
ndesc++;
}
safexcel_complete(priv, ring);
if (ctx->base.exit_inv) {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
*should_complete = true;
return ndesc;
}
ring = safexcel_select_ring(priv);
ctx->base.ring = ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (enq_ret != -EINPROGRESS)
*ret = enq_ret;
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
*should_complete = false;
return ndesc;
}
static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct skcipher_request *req = skcipher_request_cast(async);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
int err;
if (sreq->needs_inv) {
sreq->needs_inv = false;
err = safexcel_handle_inv_result(priv, ring, async, sreq,
should_complete, ret);
} else {
err = safexcel_handle_req_result(priv, ring, async, req->src,
req->dst, req->cryptlen, sreq,
should_complete, ret);
}
return err;
}
static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct aead_request *req = aead_request_cast(async);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
int err;
if (sreq->needs_inv) {
sreq->needs_inv = false;
err = safexcel_handle_inv_result(priv, ring, async, sreq,
should_complete, ret);
} else {
err = safexcel_handle_req_result(priv, ring, async, req->src,
req->dst,
req->cryptlen + crypto_aead_authsize(tfm),
sreq, should_complete, ret);
}
return err;
}
static int safexcel_cipher_send_inv(struct crypto_async_request *base,
int ring, int *commands, int *results)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring);
if (unlikely(ret))
return ret;
*commands = 1;
*results = 1;
return 0;
}
static int safexcel_skcipher_send(struct crypto_async_request *async, int ring,
int *commands, int *results)
{
struct skcipher_request *req = skcipher_request_cast(async);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
if (sreq->needs_inv) {
ret = safexcel_cipher_send_inv(async, ring, commands, results);
} else {
struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
u8 input_iv[AES_BLOCK_SIZE];
/*
* Save input IV in case of CBC decrypt mode
* Will be overwritten with output IV prior to use!
*/
memcpy(input_iv, req->iv, crypto_skcipher_ivsize(skcipher));
ret = safexcel_send_req(async, ring, sreq, req->src,
req->dst, req->cryptlen, 0, 0, input_iv,
commands, results);
}
sreq->rdescs = *results;
return ret;
}
static int safexcel_aead_send(struct crypto_async_request *async, int ring,
int *commands, int *results)
{
struct aead_request *req = aead_request_cast(async);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv);
if (sreq->needs_inv)
ret = safexcel_cipher_send_inv(async, ring, commands, results);
else
ret = safexcel_send_req(async, ring, sreq, req->src, req->dst,
req->cryptlen, req->assoclen,
crypto_aead_authsize(tfm), req->iv,
commands, results);
sreq->rdescs = *results;
return ret;
}
static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm,
struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
struct safexcel_inv_result *result)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ring = ctx->base.ring;
init_completion(&result->completion);
ctx = crypto_tfm_ctx(base->tfm);
ctx->base.exit_inv = true;
sreq->needs_inv = true;
spin_lock_bh(&priv->ring[ring].queue_lock);
crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
wait_for_completion(&result->completion);
if (result->error) {
dev_warn(priv->dev,
"cipher: sync: invalidate: completion error %d\n",
result->error);
return result->error;
}
return 0;
}
static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm)
{
EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE);
struct safexcel_cipher_req *sreq = skcipher_request_ctx(req);
struct safexcel_inv_result result = {};
memset(req, 0, sizeof(struct skcipher_request));
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm));
return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}
static int safexcel_aead_exit_inv(struct crypto_tfm *tfm)
{
EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE);
struct safexcel_cipher_req *sreq = aead_request_ctx(req);
struct safexcel_inv_result result = {};
memset(req, 0, sizeof(struct aead_request));
aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
aead_request_set_tfm(req, __crypto_aead_cast(tfm));
return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result);
}
static int safexcel_queue_req(struct crypto_async_request *base,
struct safexcel_cipher_req *sreq,
enum safexcel_cipher_direction dir)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret, ring;
sreq->needs_inv = false;
sreq->direction = dir;
if (ctx->base.ctxr) {
if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) {
sreq->needs_inv = true;
ctx->base.needs_inv = false;
}
} else {
ctx->base.ring = safexcel_select_ring(priv);
ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
EIP197_GFP_FLAGS(*base),
&ctx->base.ctxr_dma);
if (!ctx->base.ctxr)
return -ENOMEM;
}
ring = ctx->base.ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
ret = crypto_enqueue_request(&priv->ring[ring].queue, base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
return ret;
}
static int safexcel_encrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT);
}
static int safexcel_decrypt(struct skcipher_request *req)
{
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT);
}
static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(tfm->__crt_alg, struct safexcel_alg_template,
alg.skcipher.base);
crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
sizeof(struct safexcel_cipher_req));
ctx->priv = tmpl->priv;
ctx->base.send = safexcel_skcipher_send;
ctx->base.handle_result = safexcel_skcipher_handle_result;
return 0;
}
static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
memzero_explicit(ctx->key, sizeof(ctx->key));
/* context not allocated, skip invalidation */
if (!ctx->base.ctxr)
return -ENOMEM;
memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data));
return 0;
}
static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
if (safexcel_cipher_cra_exit(tfm))
return;
if (priv->flags & EIP197_TRC_CACHE) {
ret = safexcel_skcipher_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "skcipher: invalidation error %d\n",
ret);
} else {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
}
}
static void safexcel_aead_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
if (safexcel_cipher_cra_exit(tfm))
return;
if (priv->flags & EIP197_TRC_CACHE) {
ret = safexcel_aead_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "aead: invalidation error %d\n",
ret);
} else {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
}
}
static int safexcel_skcipher_aes_ecb_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_AES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB;
return 0;
}
struct safexcel_alg_template safexcel_alg_ecb_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_AES,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.base = {
.cra_name = "ecb(aes)",
.cra_driver_name = "safexcel-ecb-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_aes_ecb_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_skcipher_aes_cbc_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_AES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC;
return 0;
}
struct safexcel_alg_template safexcel_alg_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_AES,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "cbc(aes)",
.cra_driver_name = "safexcel-cbc-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_aes_cbc_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_skcipher_aes_cfb_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_AES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CFB;
return 0;
}
struct safexcel_alg_template safexcel_alg_cfb_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_AES_XFB,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "cfb(aes)",
.cra_driver_name = "safexcel-cfb-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_aes_cfb_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_skcipher_aes_ofb_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_AES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_OFB;
return 0;
}
struct safexcel_alg_template safexcel_alg_ofb_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_AES_XFB,
.alg.skcipher = {
.setkey = safexcel_skcipher_aes_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ofb(aes)",
.cra_driver_name = "safexcel-ofb-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_aes_ofb_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_skcipher_aesctr_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
int ret, i;
unsigned int keylen;
/* last 4 bytes of key are the nonce! */
ctx->nonce = *(u32 *)(key + len - CTR_RFC3686_NONCE_SIZE);
/* exclude the nonce here */
keylen = len - CTR_RFC3686_NONCE_SIZE;
ret = aes_expandkey(&aes, key, keylen);
if (ret) {
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < keylen / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < keylen / sizeof(u32); i++)
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
ctx->key_len = keylen;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_skcipher_aes_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_AES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD;
return 0;
}
struct safexcel_alg_template safexcel_alg_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_AES,
.alg.skcipher = {
.setkey = safexcel_skcipher_aesctr_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
/* Add nonce size */
.min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE,
.ivsize = CTR_RFC3686_IV_SIZE,
.base = {
.cra_name = "rfc3686(ctr(aes))",
.cra_driver_name = "safexcel-ctr-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_aes_ctr_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key,
unsigned int len)
{
struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm);
int ret;
ret = verify_skcipher_des_key(ctfm, key);
if (ret)
return ret;
/* if context exits and key changed, need to invalidate it */
if (ctx->base.ctxr_dma)
if (memcmp(ctx->key, key, len))
ctx->base.needs_inv = true;
memcpy(ctx->key, key, len);
ctx->key_len = len;
return 0;
}
static int safexcel_skcipher_des_cbc_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_DES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC;
return 0;
}
struct safexcel_alg_template safexcel_alg_cbc_des = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_DES,
.alg.skcipher = {
.setkey = safexcel_des_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.base = {
.cra_name = "cbc(des)",
.cra_driver_name = "safexcel-cbc-des",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_des_cbc_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_skcipher_des_ecb_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_DES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB;
return 0;
}
struct safexcel_alg_template safexcel_alg_ecb_des = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_DES,
.alg.skcipher = {
.setkey = safexcel_des_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.base = {
.cra_name = "ecb(des)",
.cra_driver_name = "safexcel-ecb-des",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_des_ecb_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm);
int err;
err = verify_skcipher_des3_key(ctfm, key);
if (err)
return err;
/* if context exits and key changed, need to invalidate it */
if (ctx->base.ctxr_dma) {
if (memcmp(ctx->key, key, len))
ctx->base.needs_inv = true;
}
memcpy(ctx->key, key, len);
ctx->key_len = len;
return 0;
}
static int safexcel_skcipher_des3_cbc_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_3DES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC;
return 0;
}
struct safexcel_alg_template safexcel_alg_cbc_des3_ede = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_DES,
.alg.skcipher = {
.setkey = safexcel_des3_ede_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.ivsize = DES3_EDE_BLOCK_SIZE,
.base = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "safexcel-cbc-des3_ede",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_des3_cbc_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_skcipher_des3_ecb_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_3DES;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB;
return 0;
}
struct safexcel_alg_template safexcel_alg_ecb_des3_ede = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_DES,
.alg.skcipher = {
.setkey = safexcel_des3_ede_setkey,
.encrypt = safexcel_encrypt,
.decrypt = safexcel_decrypt,
.min_keysize = DES3_EDE_KEY_SIZE,
.max_keysize = DES3_EDE_KEY_SIZE,
.base = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "safexcel-ecb-des3_ede",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_des3_ecb_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_encrypt(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT);
}
static int safexcel_aead_decrypt(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT);
}
static int safexcel_aead_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(tfm->__crt_alg, struct safexcel_alg_template,
alg.aead.base);
crypto_aead_set_reqsize(__crypto_aead_cast(tfm),
sizeof(struct safexcel_cipher_req));
ctx->priv = tmpl->priv;
ctx->alg = SAFEXCEL_AES; /* default */
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; /* default */
ctx->aead = true;
ctx->base.send = safexcel_aead_send;
ctx->base.handle_result = safexcel_aead_handle_result;
return 0;
}
static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
ctx->state_sz = SHA1_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA1,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha1_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
ctx->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha256),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha256_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
ctx->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha224),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha224_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512;
ctx->state_sz = SHA512_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha512),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha512_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384;
ctx->state_sz = SHA512_DIGEST_SIZE;
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha384),cbc(aes))",
.cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha384_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha1_des3_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha1_cra_init(tfm);
ctx->alg = SAFEXCEL_3DES; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_des3_ede = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA1,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
.cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-des3_ede",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha1_des3_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha1_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha1_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA1,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha1-ctr-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha1_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha256_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha256_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha256-ctr-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha256_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha224_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha224_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA224_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha224),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha224-ctr-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha224_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha512_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha512_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha512-ctr-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha512_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_sha384_ctr_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_sha384_cra_init(tfm);
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */
return 0;
}
struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_ctr_aes = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512,
.alg.aead = {
.setkey = safexcel_aead_setkey,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA384_DIGEST_SIZE,
.base = {
.cra_name = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
.cra_driver_name = "safexcel-authenc-hmac-sha384-ctr-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_sha384_ctr_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_skcipher_aesxts_setkey(struct crypto_skcipher *ctfm,
const u8 *key, unsigned int len)
{
struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
int ret, i;
unsigned int keylen;
/* Check for illegal XTS keys */
ret = xts_verify_key(ctfm, key, len);
if (ret)
return ret;
/* Only half of the key data is cipher key */
keylen = (len >> 1);
ret = aes_expandkey(&aes, key, keylen);
if (ret) {
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < keylen / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < keylen / sizeof(u32); i++)
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
/* The other half is the tweak key */
ret = aes_expandkey(&aes, (u8 *)(key + keylen), keylen);
if (ret) {
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < keylen / sizeof(u32); i++) {
if (ctx->key[i + keylen / sizeof(u32)] !=
cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < keylen / sizeof(u32); i++)
ctx->key[i + keylen / sizeof(u32)] =
cpu_to_le32(aes.key_enc[i]);
ctx->key_len = keylen << 1;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_skcipher_aes_xts_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_skcipher_cra_init(tfm);
ctx->alg = SAFEXCEL_AES;
ctx->xts = 1;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XTS;
return 0;
}
static int safexcel_encrypt_xts(struct skcipher_request *req)
{
if (req->cryptlen < XTS_BLOCK_SIZE)
return -EINVAL;
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_ENCRYPT);
}
static int safexcel_decrypt_xts(struct skcipher_request *req)
{
if (req->cryptlen < XTS_BLOCK_SIZE)
return -EINVAL;
return safexcel_queue_req(&req->base, skcipher_request_ctx(req),
SAFEXCEL_DECRYPT);
}
struct safexcel_alg_template safexcel_alg_xts_aes = {
.type = SAFEXCEL_ALG_TYPE_SKCIPHER,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_AES_XTS,
.alg.skcipher = {
.setkey = safexcel_skcipher_aesxts_setkey,
.encrypt = safexcel_encrypt_xts,
.decrypt = safexcel_decrypt_xts,
/* XTS actually uses 2 AES keys glued together */
.min_keysize = AES_MIN_KEY_SIZE * 2,
.max_keysize = AES_MAX_KEY_SIZE * 2,
.ivsize = XTS_BLOCK_SIZE,
.base = {
.cra_name = "xts(aes)",
.cra_driver_name = "safexcel-xts-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = XTS_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_skcipher_aes_xts_cra_init,
.cra_exit = safexcel_skcipher_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_gcm_setkey(struct crypto_aead *ctfm, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
u32 hashkey[AES_BLOCK_SIZE >> 2];
int ret, i;
ret = aes_expandkey(&aes, key, len);
if (ret) {
crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
memzero_explicit(&aes, sizeof(aes));
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < len / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < len / sizeof(u32); i++)
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
ctx->key_len = len;
/* Compute hash key by encrypting zeroes with cipher key */
crypto_cipher_clear_flags(ctx->hkaes, CRYPTO_TFM_REQ_MASK);
crypto_cipher_set_flags(ctx->hkaes, crypto_aead_get_flags(ctfm) &
CRYPTO_TFM_REQ_MASK);
ret = crypto_cipher_setkey(ctx->hkaes, key, len);
crypto_aead_set_flags(ctfm, crypto_cipher_get_flags(ctx->hkaes) &
CRYPTO_TFM_RES_MASK);
if (ret)
return ret;
memset(hashkey, 0, AES_BLOCK_SIZE);
crypto_cipher_encrypt_one(ctx->hkaes, (u8 *)hashkey, (u8 *)hashkey);
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) {
if (ctx->ipad[i] != cpu_to_be32(hashkey[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++)
ctx->ipad[i] = cpu_to_be32(hashkey[i]);
memzero_explicit(hashkey, AES_BLOCK_SIZE);
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_aead_gcm_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_GHASH;
ctx->state_sz = GHASH_BLOCK_SIZE;
ctx->xcm = EIP197_XCM_MODE_GCM;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XCM; /* override default */
ctx->hkaes = crypto_alloc_cipher("aes", 0, 0);
if (IS_ERR(ctx->hkaes))
return PTR_ERR(ctx->hkaes);
return 0;
}
static void safexcel_aead_gcm_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
crypto_free_cipher(ctx->hkaes);
safexcel_aead_cra_exit(tfm);
}
static int safexcel_aead_gcm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
return crypto_gcm_check_authsize(authsize);
}
struct safexcel_alg_template safexcel_alg_gcm = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_GHASH,
.alg.aead = {
.setkey = safexcel_aead_gcm_setkey,
.setauthsize = safexcel_aead_gcm_setauthsize,
.encrypt = safexcel_aead_encrypt,
.decrypt = safexcel_aead_decrypt,
.ivsize = GCM_AES_IV_SIZE,
.maxauthsize = GHASH_DIGEST_SIZE,
.base = {
.cra_name = "gcm(aes)",
.cra_driver_name = "safexcel-gcm-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_gcm_cra_init,
.cra_exit = safexcel_aead_gcm_cra_exit,
.cra_module = THIS_MODULE,
},
},
};
static int safexcel_aead_ccm_setkey(struct crypto_aead *ctfm, const u8 *key,
unsigned int len)
{
struct crypto_tfm *tfm = crypto_aead_tfm(ctfm);
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct crypto_aes_ctx aes;
int ret, i;
ret = aes_expandkey(&aes, key, len);
if (ret) {
crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
memzero_explicit(&aes, sizeof(aes));
return ret;
}
if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) {
for (i = 0; i < len / sizeof(u32); i++) {
if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) {
ctx->base.needs_inv = true;
break;
}
}
}
for (i = 0; i < len / sizeof(u32); i++) {
ctx->key[i] = cpu_to_le32(aes.key_enc[i]);
ctx->ipad[i + 2 * AES_BLOCK_SIZE / sizeof(u32)] =
cpu_to_be32(aes.key_enc[i]);
}
ctx->key_len = len;
ctx->state_sz = 2 * AES_BLOCK_SIZE + len;
if (len == AES_KEYSIZE_192)
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC192;
else if (len == AES_KEYSIZE_256)
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC256;
else
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
memzero_explicit(&aes, sizeof(aes));
return 0;
}
static int safexcel_aead_ccm_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm);
safexcel_aead_cra_init(tfm);
ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_XCBC128;
ctx->state_sz = 3 * AES_BLOCK_SIZE;
ctx->xcm = EIP197_XCM_MODE_CCM;
ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XCM; /* override default */
return 0;
}
static int safexcel_aead_ccm_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
/* Borrowed from crypto/ccm.c */
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
return 0;
}
static int safexcel_ccm_encrypt(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
if (req->iv[0] < 1 || req->iv[0] > 7)
return -EINVAL;
return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT);
}
static int safexcel_ccm_decrypt(struct aead_request *req)
{
struct safexcel_cipher_req *creq = aead_request_ctx(req);
if (req->iv[0] < 1 || req->iv[0] > 7)
return -EINVAL;
return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT);
}
struct safexcel_alg_template safexcel_alg_ccm = {
.type = SAFEXCEL_ALG_TYPE_AEAD,
.algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_CBC_MAC_ALL,
.alg.aead = {
.setkey = safexcel_aead_ccm_setkey,
.setauthsize = safexcel_aead_ccm_setauthsize,
.encrypt = safexcel_ccm_encrypt,
.decrypt = safexcel_ccm_decrypt,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.base = {
.cra_name = "ccm(aes)",
.cra_driver_name = "safexcel-ccm-aes",
.cra_priority = SAFEXCEL_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct safexcel_cipher_ctx),
.cra_alignmask = 0,
.cra_init = safexcel_aead_ccm_cra_init,
.cra_exit = safexcel_aead_cra_exit,
.cra_module = THIS_MODULE,
},
},
};