linux-sg2042/drivers/crypto/inside-secure/safexcel.c

1848 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*/
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/firmware.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/workqueue.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include "safexcel.h"
static u32 max_rings = EIP197_MAX_RINGS;
module_param(max_rings, uint, 0644);
MODULE_PARM_DESC(max_rings, "Maximum number of rings to use.");
static void eip197_trc_cache_setupvirt(struct safexcel_crypto_priv *priv)
{
int i;
/*
* Map all interfaces/rings to register index 0
* so they can share contexts. Without this, the EIP197 will
* assume each interface/ring to be in its own memory domain
* i.e. have its own subset of UNIQUE memory addresses.
* Which would cause records with the SAME memory address to
* use DIFFERENT cache buffers, causing both poor cache utilization
* AND serious coherence/invalidation issues.
*/
for (i = 0; i < 4; i++)
writel(0, priv->base + EIP197_FLUE_IFC_LUT(i));
/*
* Initialize other virtualization regs for cache
* These may not be in their reset state ...
*/
for (i = 0; i < priv->config.rings; i++) {
writel(0, priv->base + EIP197_FLUE_CACHEBASE_LO(i));
writel(0, priv->base + EIP197_FLUE_CACHEBASE_HI(i));
writel(EIP197_FLUE_CONFIG_MAGIC,
priv->base + EIP197_FLUE_CONFIG(i));
}
writel(0, priv->base + EIP197_FLUE_OFFSETS);
writel(0, priv->base + EIP197_FLUE_ARC4_OFFSET);
}
static void eip197_trc_cache_banksel(struct safexcel_crypto_priv *priv,
u32 addrmid, int *actbank)
{
u32 val;
int curbank;
curbank = addrmid >> 16;
if (curbank != *actbank) {
val = readl(priv->base + EIP197_CS_RAM_CTRL);
val = (val & ~EIP197_CS_BANKSEL_MASK) |
(curbank << EIP197_CS_BANKSEL_OFS);
writel(val, priv->base + EIP197_CS_RAM_CTRL);
*actbank = curbank;
}
}
static u32 eip197_trc_cache_probe(struct safexcel_crypto_priv *priv,
int maxbanks, u32 probemask)
{
u32 val, addrhi, addrlo, addrmid;
int actbank;
/*
* And probe the actual size of the physically attached cache data RAM
* Using a binary subdivision algorithm downto 32 byte cache lines.
*/
addrhi = 1 << (16 + maxbanks);
addrlo = 0;
actbank = min(maxbanks - 1, 0);
while ((addrhi - addrlo) > 32) {
/* write marker to lowest address in top half */
addrmid = (addrhi + addrlo) >> 1;
eip197_trc_cache_banksel(priv, addrmid, &actbank);
writel((addrmid | (addrlo << 16)) & probemask,
priv->base + EIP197_CLASSIFICATION_RAMS +
(addrmid & 0xffff));
/* write marker to lowest address in bottom half */
eip197_trc_cache_banksel(priv, addrlo, &actbank);
writel((addrlo | (addrhi << 16)) & probemask,
priv->base + EIP197_CLASSIFICATION_RAMS +
(addrlo & 0xffff));
/* read back marker from top half */
eip197_trc_cache_banksel(priv, addrmid, &actbank);
val = readl(priv->base + EIP197_CLASSIFICATION_RAMS +
(addrmid & 0xffff));
if (val == ((addrmid | (addrlo << 16)) & probemask)) {
/* read back correct, continue with top half */
addrlo = addrmid;
} else {
/* not read back correct, continue with bottom half */
addrhi = addrmid;
}
}
return addrhi;
}
static void eip197_trc_cache_clear(struct safexcel_crypto_priv *priv,
int cs_rc_max, int cs_ht_wc)
{
int i;
u32 htable_offset, val, offset;
/* Clear all records in administration RAM */
for (i = 0; i < cs_rc_max; i++) {
offset = EIP197_CLASSIFICATION_RAMS + i * EIP197_CS_RC_SIZE;
writel(EIP197_CS_RC_NEXT(EIP197_RC_NULL) |
EIP197_CS_RC_PREV(EIP197_RC_NULL),
priv->base + offset);
val = EIP197_CS_RC_NEXT(i + 1) | EIP197_CS_RC_PREV(i - 1);
if (i == 0)
val |= EIP197_CS_RC_PREV(EIP197_RC_NULL);
else if (i == cs_rc_max - 1)
val |= EIP197_CS_RC_NEXT(EIP197_RC_NULL);
writel(val, priv->base + offset + 4);
/* must also initialize the address key due to ECC! */
writel(0, priv->base + offset + 8);
writel(0, priv->base + offset + 12);
}
/* Clear the hash table entries */
htable_offset = cs_rc_max * EIP197_CS_RC_SIZE;
for (i = 0; i < cs_ht_wc; i++)
writel(GENMASK(29, 0),
priv->base + EIP197_CLASSIFICATION_RAMS +
htable_offset + i * sizeof(u32));
}
static void eip197_trc_cache_init(struct safexcel_crypto_priv *priv)
{
u32 val, dsize, asize;
int cs_rc_max, cs_ht_wc, cs_trc_rec_wc, cs_trc_lg_rec_wc;
int cs_rc_abs_max, cs_ht_sz;
int maxbanks;
/* Setup (dummy) virtualization for cache */
eip197_trc_cache_setupvirt(priv);
/*
* Enable the record cache memory access and
* probe the bank select width
*/
val = readl(priv->base + EIP197_CS_RAM_CTRL);
val &= ~EIP197_TRC_ENABLE_MASK;
val |= EIP197_TRC_ENABLE_0 | EIP197_CS_BANKSEL_MASK;
writel(val, priv->base + EIP197_CS_RAM_CTRL);
val = readl(priv->base + EIP197_CS_RAM_CTRL);
maxbanks = ((val&EIP197_CS_BANKSEL_MASK)>>EIP197_CS_BANKSEL_OFS) + 1;
/* Clear all ECC errors */
writel(0, priv->base + EIP197_TRC_ECCCTRL);
/*
* Make sure the cache memory is accessible by taking record cache into
* reset. Need data memory access here, not admin access.
*/
val = readl(priv->base + EIP197_TRC_PARAMS);
val |= EIP197_TRC_PARAMS_SW_RESET | EIP197_TRC_PARAMS_DATA_ACCESS;
writel(val, priv->base + EIP197_TRC_PARAMS);
/* Probed data RAM size in bytes */
dsize = eip197_trc_cache_probe(priv, maxbanks, 0xffffffff);
/*
* Now probe the administration RAM size pretty much the same way
* Except that only the lower 30 bits are writable and we don't need
* bank selects
*/
val = readl(priv->base + EIP197_TRC_PARAMS);
/* admin access now */
val &= ~(EIP197_TRC_PARAMS_DATA_ACCESS | EIP197_CS_BANKSEL_MASK);
writel(val, priv->base + EIP197_TRC_PARAMS);
/* Probed admin RAM size in admin words */
asize = eip197_trc_cache_probe(priv, 0, 0xbfffffff) >> 4;
/* Clear any ECC errors detected while probing! */
writel(0, priv->base + EIP197_TRC_ECCCTRL);
/*
* Determine optimal configuration from RAM sizes
* Note that we assume that the physical RAM configuration is sane
* Therefore, we don't do any parameter error checking here ...
*/
/* For now, just use a single record format covering everything */
cs_trc_rec_wc = EIP197_CS_TRC_REC_WC;
cs_trc_lg_rec_wc = EIP197_CS_TRC_REC_WC;
/*
* Step #1: How many records will physically fit?
* Hard upper limit is 1023!
*/
cs_rc_abs_max = min_t(uint, ((dsize >> 2) / cs_trc_lg_rec_wc), 1023);
/* Step #2: Need at least 2 words in the admin RAM per record */
cs_rc_max = min_t(uint, cs_rc_abs_max, (asize >> 1));
/* Step #3: Determine log2 of hash table size */
cs_ht_sz = __fls(asize - cs_rc_max) - 2;
/* Step #4: determine current size of hash table in dwords */
cs_ht_wc = 16<<cs_ht_sz; /* dwords, not admin words */
/* Step #5: add back excess words and see if we can fit more records */
cs_rc_max = min_t(uint, cs_rc_abs_max, asize - (cs_ht_wc >> 4));
/* Clear the cache RAMs */
eip197_trc_cache_clear(priv, cs_rc_max, cs_ht_wc);
/* Disable the record cache memory access */
val = readl(priv->base + EIP197_CS_RAM_CTRL);
val &= ~EIP197_TRC_ENABLE_MASK;
writel(val, priv->base + EIP197_CS_RAM_CTRL);
/* Write head and tail pointers of the record free chain */
val = EIP197_TRC_FREECHAIN_HEAD_PTR(0) |
EIP197_TRC_FREECHAIN_TAIL_PTR(cs_rc_max - 1);
writel(val, priv->base + EIP197_TRC_FREECHAIN);
/* Configure the record cache #1 */
val = EIP197_TRC_PARAMS2_RC_SZ_SMALL(cs_trc_rec_wc) |
EIP197_TRC_PARAMS2_HTABLE_PTR(cs_rc_max);
writel(val, priv->base + EIP197_TRC_PARAMS2);
/* Configure the record cache #2 */
val = EIP197_TRC_PARAMS_RC_SZ_LARGE(cs_trc_lg_rec_wc) |
EIP197_TRC_PARAMS_BLK_TIMER_SPEED(1) |
EIP197_TRC_PARAMS_HTABLE_SZ(cs_ht_sz);
writel(val, priv->base + EIP197_TRC_PARAMS);
dev_info(priv->dev, "TRC init: %dd,%da (%dr,%dh)\n",
dsize, asize, cs_rc_max, cs_ht_wc + cs_ht_wc);
}
static void eip197_init_firmware(struct safexcel_crypto_priv *priv)
{
int pe, i;
u32 val;
for (pe = 0; pe < priv->config.pes; pe++) {
/* Configure the token FIFO's */
writel(3, EIP197_PE(priv) + EIP197_PE_ICE_PUTF_CTRL(pe));
writel(0, EIP197_PE(priv) + EIP197_PE_ICE_PPTF_CTRL(pe));
/* Clear the ICE scratchpad memory */
val = readl(EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
val |= EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_TIMER |
EIP197_PE_ICE_SCRATCH_CTRL_TIMER_EN |
EIP197_PE_ICE_SCRATCH_CTRL_SCRATCH_ACCESS |
EIP197_PE_ICE_SCRATCH_CTRL_CHANGE_ACCESS;
writel(val, EIP197_PE(priv) + EIP197_PE_ICE_SCRATCH_CTRL(pe));
/* clear the scratchpad RAM using 32 bit writes only */
for (i = 0; i < EIP197_NUM_OF_SCRATCH_BLOCKS; i++)
writel(0, EIP197_PE(priv) +
EIP197_PE_ICE_SCRATCH_RAM(pe) + (i << 2));
/* Reset the IFPP engine to make its program mem accessible */
writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
/* Reset the IPUE engine to make its program mem accessible */
writel(EIP197_PE_ICE_x_CTRL_SW_RESET |
EIP197_PE_ICE_x_CTRL_CLR_ECC_CORR |
EIP197_PE_ICE_x_CTRL_CLR_ECC_NON_CORR,
EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
/* Enable access to all IFPP program memories */
writel(EIP197_PE_ICE_RAM_CTRL_FPP_PROG_EN,
EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
}
}
static int eip197_write_firmware(struct safexcel_crypto_priv *priv,
const struct firmware *fw)
{
const u32 *data = (const u32 *)fw->data;
int i;
/* Write the firmware */
for (i = 0; i < fw->size / sizeof(u32); i++)
writel(be32_to_cpu(data[i]),
priv->base + EIP197_CLASSIFICATION_RAMS + i * sizeof(u32));
/* Exclude final 2 NOPs from size */
return i - EIP197_FW_TERMINAL_NOPS;
}
/*
* If FW is actual production firmware, then poll for its initialization
* to complete and check if it is good for the HW, otherwise just return OK.
*/
static bool poll_fw_ready(struct safexcel_crypto_priv *priv, int fpp)
{
int pe, pollcnt;
u32 base, pollofs;
if (fpp)
pollofs = EIP197_FW_FPP_READY;
else
pollofs = EIP197_FW_PUE_READY;
for (pe = 0; pe < priv->config.pes; pe++) {
base = EIP197_PE_ICE_SCRATCH_RAM(pe);
pollcnt = EIP197_FW_START_POLLCNT;
while (pollcnt &&
(readl_relaxed(EIP197_PE(priv) + base +
pollofs) != 1)) {
pollcnt--;
}
if (!pollcnt) {
dev_err(priv->dev, "FW(%d) for PE %d failed to start\n",
fpp, pe);
return false;
}
}
return true;
}
static bool eip197_start_firmware(struct safexcel_crypto_priv *priv,
int ipuesz, int ifppsz, int minifw)
{
int pe;
u32 val;
for (pe = 0; pe < priv->config.pes; pe++) {
/* Disable access to all program memory */
writel(0, EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
/* Start IFPP microengines */
if (minifw)
val = 0;
else
val = EIP197_PE_ICE_UENG_START_OFFSET((ifppsz - 1) &
EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
EIP197_PE_ICE_UENG_DEBUG_RESET;
writel(val, EIP197_PE(priv) + EIP197_PE_ICE_FPP_CTRL(pe));
/* Start IPUE microengines */
if (minifw)
val = 0;
else
val = EIP197_PE_ICE_UENG_START_OFFSET((ipuesz - 1) &
EIP197_PE_ICE_UENG_INIT_ALIGN_MASK) |
EIP197_PE_ICE_UENG_DEBUG_RESET;
writel(val, EIP197_PE(priv) + EIP197_PE_ICE_PUE_CTRL(pe));
}
/* For miniFW startup, there is no initialization, so always succeed */
if (minifw)
return true;
/* Wait until all the firmwares have properly started up */
if (!poll_fw_ready(priv, 1))
return false;
if (!poll_fw_ready(priv, 0))
return false;
return true;
}
static int eip197_load_firmwares(struct safexcel_crypto_priv *priv)
{
const char *fw_name[] = {"ifpp.bin", "ipue.bin"};
const struct firmware *fw[FW_NB];
char fw_path[37], *dir = NULL;
int i, j, ret = 0, pe;
int ipuesz, ifppsz, minifw = 0;
if (priv->version == EIP197D_MRVL)
dir = "eip197d";
else if (priv->version == EIP197B_MRVL ||
priv->version == EIP197_DEVBRD)
dir = "eip197b";
else
return -ENODEV;
retry_fw:
for (i = 0; i < FW_NB; i++) {
snprintf(fw_path, 37, "inside-secure/%s/%s", dir, fw_name[i]);
ret = firmware_request_nowarn(&fw[i], fw_path, priv->dev);
if (ret) {
if (minifw || priv->version != EIP197B_MRVL)
goto release_fw;
/* Fallback to the old firmware location for the
* EIP197b.
*/
ret = firmware_request_nowarn(&fw[i], fw_name[i],
priv->dev);
if (ret)
goto release_fw;
}
}
eip197_init_firmware(priv);
ifppsz = eip197_write_firmware(priv, fw[FW_IFPP]);
/* Enable access to IPUE program memories */
for (pe = 0; pe < priv->config.pes; pe++)
writel(EIP197_PE_ICE_RAM_CTRL_PUE_PROG_EN,
EIP197_PE(priv) + EIP197_PE_ICE_RAM_CTRL(pe));
ipuesz = eip197_write_firmware(priv, fw[FW_IPUE]);
if (eip197_start_firmware(priv, ipuesz, ifppsz, minifw)) {
dev_dbg(priv->dev, "Firmware loaded successfully\n");
return 0;
}
ret = -ENODEV;
release_fw:
for (j = 0; j < i; j++)
release_firmware(fw[j]);
if (!minifw) {
/* Retry with minifw path */
dev_dbg(priv->dev, "Firmware set not (fully) present or init failed, falling back to BCLA mode\n");
dir = "eip197_minifw";
minifw = 1;
goto retry_fw;
}
dev_dbg(priv->dev, "Firmware load failed.\n");
return ret;
}
static int safexcel_hw_setup_cdesc_rings(struct safexcel_crypto_priv *priv)
{
u32 cd_size_rnd, val;
int i, cd_fetch_cnt;
cd_size_rnd = (priv->config.cd_size +
(BIT(priv->hwconfig.hwdataw) - 1)) >>
priv->hwconfig.hwdataw;
/* determine number of CD's we can fetch into the CD FIFO as 1 block */
if (priv->flags & SAFEXCEL_HW_EIP197) {
/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
cd_fetch_cnt = (1 << priv->hwconfig.hwcfsize) / cd_size_rnd;
cd_fetch_cnt = min_t(uint, cd_fetch_cnt,
(priv->config.pes * EIP197_FETCH_DEPTH));
} else {
/* for the EIP97, just fetch all that fits minus 1 */
cd_fetch_cnt = ((1 << priv->hwconfig.hwcfsize) /
cd_size_rnd) - 1;
}
for (i = 0; i < priv->config.rings; i++) {
/* ring base address */
writel(lower_32_bits(priv->ring[i].cdr.base_dma),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(upper_32_bits(priv->ring[i].cdr.base_dma),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.cd_offset << 16) |
priv->config.cd_size,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
writel(((cd_fetch_cnt *
(cd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
(cd_fetch_cnt * priv->config.cd_offset),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Configure DMA tx control */
val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
writel(val, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
/* clear any pending interrupt */
writel(GENMASK(5, 0),
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
}
return 0;
}
static int safexcel_hw_setup_rdesc_rings(struct safexcel_crypto_priv *priv)
{
u32 rd_size_rnd, val;
int i, rd_fetch_cnt;
/* determine number of RD's we can fetch into the FIFO as one block */
rd_size_rnd = (EIP197_RD64_FETCH_SIZE +
(BIT(priv->hwconfig.hwdataw) - 1)) >>
priv->hwconfig.hwdataw;
if (priv->flags & SAFEXCEL_HW_EIP197) {
/* EIP197: try to fetch enough in 1 go to keep all pipes busy */
rd_fetch_cnt = (1 << priv->hwconfig.hwrfsize) / rd_size_rnd;
rd_fetch_cnt = min_t(uint, rd_fetch_cnt,
(priv->config.pes * EIP197_FETCH_DEPTH));
} else {
/* for the EIP97, just fetch all that fits minus 1 */
rd_fetch_cnt = ((1 << priv->hwconfig.hwrfsize) /
rd_size_rnd) - 1;
}
for (i = 0; i < priv->config.rings; i++) {
/* ring base address */
writel(lower_32_bits(priv->ring[i].rdr.base_dma),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(upper_32_bits(priv->ring[i].rdr.base_dma),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
writel(EIP197_xDR_DESC_MODE_64BIT | (priv->config.rd_offset << 16) |
priv->config.rd_size,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DESC_SIZE);
writel(((rd_fetch_cnt *
(rd_size_rnd << priv->hwconfig.hwdataw)) << 16) |
(rd_fetch_cnt * priv->config.rd_offset),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Configure DMA tx control */
val = EIP197_HIA_xDR_CFG_WR_CACHE(WR_CACHE_3BITS);
val |= EIP197_HIA_xDR_CFG_RD_CACHE(RD_CACHE_3BITS);
val |= EIP197_HIA_xDR_WR_RES_BUF | EIP197_HIA_xDR_WR_CTRL_BUF;
writel(val,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_DMA_CFG);
/* clear any pending interrupt */
writel(GENMASK(7, 0),
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
/* enable ring interrupt */
val = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
val |= EIP197_RDR_IRQ(i);
writel(val, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CTRL(i));
}
return 0;
}
static int safexcel_hw_init(struct safexcel_crypto_priv *priv)
{
u32 val;
int i, ret, pe;
dev_dbg(priv->dev, "HW init: using %d pipe(s) and %d ring(s)\n",
priv->config.pes, priv->config.rings);
/*
* For EIP197's only set maximum number of TX commands to 2^5 = 32
* Skip for the EIP97 as it does not have this field.
*/
if (priv->flags & SAFEXCEL_HW_EIP197) {
val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
val |= EIP197_MST_CTRL_TX_MAX_CMD(5);
writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
}
/* Configure wr/rd cache values */
writel(EIP197_MST_CTRL_RD_CACHE(RD_CACHE_4BITS) |
EIP197_MST_CTRL_WD_CACHE(WR_CACHE_4BITS),
EIP197_HIA_GEN_CFG(priv) + EIP197_MST_CTRL);
/* Interrupts reset */
/* Disable all global interrupts */
writel(0, EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ENABLE_CTRL);
/* Clear any pending interrupt */
writel(GENMASK(31, 0), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
/* Processing Engine configuration */
for (pe = 0; pe < priv->config.pes; pe++) {
/* Data Fetch Engine configuration */
/* Reset all DFE threads */
writel(EIP197_DxE_THR_CTRL_RESET_PE,
EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
if (priv->flags & SAFEXCEL_HW_EIP197)
/* Reset HIA input interface arbiter (EIP197 only) */
writel(EIP197_HIA_RA_PE_CTRL_RESET,
EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
/* DMA transfer size to use */
val = EIP197_HIA_DFE_CFG_DIS_DEBUG;
val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(6) |
EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(9);
val |= EIP197_HIA_DxE_CFG_MIN_CTRL_SIZE(6) |
EIP197_HIA_DxE_CFG_MAX_CTRL_SIZE(7);
val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(RD_CACHE_3BITS);
val |= EIP197_HIA_DxE_CFG_CTRL_CACHE_CTRL(RD_CACHE_3BITS);
writel(val, EIP197_HIA_DFE(priv) + EIP197_HIA_DFE_CFG(pe));
/* Leave the DFE threads reset state */
writel(0, EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
/* Configure the processing engine thresholds */
writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
EIP197_PE_IN_xBUF_THRES_MAX(9),
EIP197_PE(priv) + EIP197_PE_IN_DBUF_THRES(pe));
writel(EIP197_PE_IN_xBUF_THRES_MIN(6) |
EIP197_PE_IN_xBUF_THRES_MAX(7),
EIP197_PE(priv) + EIP197_PE_IN_TBUF_THRES(pe));
if (priv->flags & SAFEXCEL_HW_EIP197)
/* enable HIA input interface arbiter and rings */
writel(EIP197_HIA_RA_PE_CTRL_EN |
GENMASK(priv->config.rings - 1, 0),
EIP197_HIA_AIC(priv) + EIP197_HIA_RA_PE_CTRL(pe));
/* Data Store Engine configuration */
/* Reset all DSE threads */
writel(EIP197_DxE_THR_CTRL_RESET_PE,
EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
/* Wait for all DSE threads to complete */
while ((readl(EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_STAT(pe)) &
GENMASK(15, 12)) != GENMASK(15, 12))
;
/* DMA transfer size to use */
val = EIP197_HIA_DSE_CFG_DIS_DEBUG;
val |= EIP197_HIA_DxE_CFG_MIN_DATA_SIZE(7) |
EIP197_HIA_DxE_CFG_MAX_DATA_SIZE(8);
val |= EIP197_HIA_DxE_CFG_DATA_CACHE_CTRL(WR_CACHE_3BITS);
val |= EIP197_HIA_DSE_CFG_ALWAYS_BUFFERABLE;
/* FIXME: instability issues can occur for EIP97 but disabling
* it impacts performance.
*/
if (priv->flags & SAFEXCEL_HW_EIP197)
val |= EIP197_HIA_DSE_CFG_EN_SINGLE_WR;
writel(val, EIP197_HIA_DSE(priv) + EIP197_HIA_DSE_CFG(pe));
/* Leave the DSE threads reset state */
writel(0, EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
/* Configure the procesing engine thresholds */
writel(EIP197_PE_OUT_DBUF_THRES_MIN(7) |
EIP197_PE_OUT_DBUF_THRES_MAX(8),
EIP197_PE(priv) + EIP197_PE_OUT_DBUF_THRES(pe));
/* Processing Engine configuration */
/* Token & context configuration */
val = EIP197_PE_EIP96_TOKEN_CTRL_CTX_UPDATES |
EIP197_PE_EIP96_TOKEN_CTRL_NO_TOKEN_WAIT |
EIP197_PE_EIP96_TOKEN_CTRL_ENABLE_TIMEOUT;
writel(val, EIP197_PE(priv) + EIP197_PE_EIP96_TOKEN_CTRL(pe));
/* H/W capabilities selection: just enable everything */
writel(EIP197_FUNCTION_ALL,
EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION_EN(pe));
writel(EIP197_FUNCTION_ALL,
EIP197_PE(priv) + EIP197_PE_EIP96_FUNCTION2_EN(pe));
}
/* Command Descriptor Rings prepare */
for (i = 0; i < priv->config.rings; i++) {
/* Clear interrupts for this ring */
writel(GENMASK(31, 0),
EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLE_CLR(i));
/* Disable external triggering */
writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Clear the pending prepared counter */
writel(EIP197_xDR_PREP_CLR_COUNT,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
/* Clear the pending processed counter */
writel(EIP197_xDR_PROC_CLR_COUNT,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
writel(0,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
writel(0,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
writel((EIP197_DEFAULT_RING_SIZE * priv->config.cd_offset) << 2,
EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
}
/* Result Descriptor Ring prepare */
for (i = 0; i < priv->config.rings; i++) {
/* Disable external triggering*/
writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_CFG);
/* Clear the pending prepared counter */
writel(EIP197_xDR_PREP_CLR_COUNT,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_COUNT);
/* Clear the pending processed counter */
writel(EIP197_xDR_PROC_CLR_COUNT,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_COUNT);
writel(0,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PREP_PNTR);
writel(0,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_PROC_PNTR);
/* Ring size */
writel((EIP197_DEFAULT_RING_SIZE * priv->config.rd_offset) << 2,
EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_SIZE);
}
for (pe = 0; pe < priv->config.pes; pe++) {
/* Enable command descriptor rings */
writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
EIP197_HIA_DFE_THR(priv) + EIP197_HIA_DFE_THR_CTRL(pe));
/* Enable result descriptor rings */
writel(EIP197_DxE_THR_CTRL_EN | GENMASK(priv->config.rings - 1, 0),
EIP197_HIA_DSE_THR(priv) + EIP197_HIA_DSE_THR_CTRL(pe));
}
/* Clear any HIA interrupt */
writel(GENMASK(30, 20), EIP197_HIA_AIC_G(priv) + EIP197_HIA_AIC_G_ACK);
if (priv->flags & SAFEXCEL_HW_EIP197) {
eip197_trc_cache_init(priv);
priv->flags |= EIP197_TRC_CACHE;
ret = eip197_load_firmwares(priv);
if (ret)
return ret;
}
safexcel_hw_setup_cdesc_rings(priv);
safexcel_hw_setup_rdesc_rings(priv);
return 0;
}
/* Called with ring's lock taken */
static void safexcel_try_push_requests(struct safexcel_crypto_priv *priv,
int ring)
{
int coal = min_t(int, priv->ring[ring].requests, EIP197_MAX_BATCH_SZ);
if (!coal)
return;
/* Configure when we want an interrupt */
writel(EIP197_HIA_RDR_THRESH_PKT_MODE |
EIP197_HIA_RDR_THRESH_PROC_PKT(coal),
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_THRESH);
}
void safexcel_dequeue(struct safexcel_crypto_priv *priv, int ring)
{
struct crypto_async_request *req, *backlog;
struct safexcel_context *ctx;
int ret, nreq = 0, cdesc = 0, rdesc = 0, commands, results;
/* If a request wasn't properly dequeued because of a lack of resources,
* proceeded it first,
*/
req = priv->ring[ring].req;
backlog = priv->ring[ring].backlog;
if (req)
goto handle_req;
while (true) {
spin_lock_bh(&priv->ring[ring].queue_lock);
backlog = crypto_get_backlog(&priv->ring[ring].queue);
req = crypto_dequeue_request(&priv->ring[ring].queue);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (!req) {
priv->ring[ring].req = NULL;
priv->ring[ring].backlog = NULL;
goto finalize;
}
handle_req:
ctx = crypto_tfm_ctx(req->tfm);
ret = ctx->send(req, ring, &commands, &results);
if (ret)
goto request_failed;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
/* In case the send() helper did not issue any command to push
* to the engine because the input data was cached, continue to
* dequeue other requests as this is valid and not an error.
*/
if (!commands && !results)
continue;
cdesc += commands;
rdesc += results;
nreq++;
}
request_failed:
/* Not enough resources to handle all the requests. Bail out and save
* the request and the backlog for the next dequeue call (per-ring).
*/
priv->ring[ring].req = req;
priv->ring[ring].backlog = backlog;
finalize:
if (!nreq)
return;
spin_lock_bh(&priv->ring[ring].lock);
priv->ring[ring].requests += nreq;
if (!priv->ring[ring].busy) {
safexcel_try_push_requests(priv, ring);
priv->ring[ring].busy = true;
}
spin_unlock_bh(&priv->ring[ring].lock);
/* let the RDR know we have pending descriptors */
writel((rdesc * priv->config.rd_offset) << 2,
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
/* let the CDR know we have pending descriptors */
writel((cdesc * priv->config.cd_offset) << 2,
EIP197_HIA_CDR(priv, ring) + EIP197_HIA_xDR_PREP_COUNT);
}
inline int safexcel_rdesc_check_errors(struct safexcel_crypto_priv *priv,
struct safexcel_result_desc *rdesc)
{
if (likely((!rdesc->descriptor_overflow) &&
(!rdesc->buffer_overflow) &&
(!rdesc->result_data.error_code)))
return 0;
if (rdesc->descriptor_overflow)
dev_err(priv->dev, "Descriptor overflow detected");
if (rdesc->buffer_overflow)
dev_err(priv->dev, "Buffer overflow detected");
if (rdesc->result_data.error_code & 0x4066) {
/* Fatal error (bits 1,2,5,6 & 14) */
dev_err(priv->dev,
"result descriptor error (%x)",
rdesc->result_data.error_code);
return -EIO;
} else if (rdesc->result_data.error_code &
(BIT(7) | BIT(4) | BIT(3) | BIT(0))) {
/*
* Give priority over authentication fails:
* Blocksize, length & overflow errors,
* something wrong with the input!
*/
return -EINVAL;
} else if (rdesc->result_data.error_code & BIT(9)) {
/* Authentication failed */
return -EBADMSG;
}
/* All other non-fatal errors */
return -EINVAL;
}
inline void safexcel_rdr_req_set(struct safexcel_crypto_priv *priv,
int ring,
struct safexcel_result_desc *rdesc,
struct crypto_async_request *req)
{
int i = safexcel_ring_rdr_rdesc_index(priv, ring, rdesc);
priv->ring[ring].rdr_req[i] = req;
}
inline struct crypto_async_request *
safexcel_rdr_req_get(struct safexcel_crypto_priv *priv, int ring)
{
int i = safexcel_ring_first_rdr_index(priv, ring);
return priv->ring[ring].rdr_req[i];
}
void safexcel_complete(struct safexcel_crypto_priv *priv, int ring)
{
struct safexcel_command_desc *cdesc;
/* Acknowledge the command descriptors */
do {
cdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].cdr);
if (IS_ERR(cdesc)) {
dev_err(priv->dev,
"Could not retrieve the command descriptor\n");
return;
}
} while (!cdesc->last_seg);
}
void safexcel_inv_complete(struct crypto_async_request *req, int error)
{
struct safexcel_inv_result *result = req->data;
if (error == -EINPROGRESS)
return;
result->error = error;
complete(&result->completion);
}
int safexcel_invalidate_cache(struct crypto_async_request *async,
struct safexcel_crypto_priv *priv,
dma_addr_t ctxr_dma, int ring)
{
struct safexcel_command_desc *cdesc;
struct safexcel_result_desc *rdesc;
int ret = 0;
/* Prepare command descriptor */
cdesc = safexcel_add_cdesc(priv, ring, true, true, 0, 0, 0, ctxr_dma);
if (IS_ERR(cdesc))
return PTR_ERR(cdesc);
cdesc->control_data.type = EIP197_TYPE_EXTENDED;
cdesc->control_data.options = 0;
cdesc->control_data.refresh = 0;
cdesc->control_data.control0 = CONTEXT_CONTROL_INV_TR;
/* Prepare result descriptor */
rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0);
if (IS_ERR(rdesc)) {
ret = PTR_ERR(rdesc);
goto cdesc_rollback;
}
safexcel_rdr_req_set(priv, ring, rdesc, async);
return ret;
cdesc_rollback:
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
return ret;
}
static inline void safexcel_handle_result_descriptor(struct safexcel_crypto_priv *priv,
int ring)
{
struct crypto_async_request *req;
struct safexcel_context *ctx;
int ret, i, nreq, ndesc, tot_descs, handled = 0;
bool should_complete;
handle_results:
tot_descs = 0;
nreq = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
nreq >>= EIP197_xDR_PROC_xD_PKT_OFFSET;
nreq &= EIP197_xDR_PROC_xD_PKT_MASK;
if (!nreq)
goto requests_left;
for (i = 0; i < nreq; i++) {
req = safexcel_rdr_req_get(priv, ring);
ctx = crypto_tfm_ctx(req->tfm);
ndesc = ctx->handle_result(priv, ring, req,
&should_complete, &ret);
if (ndesc < 0) {
dev_err(priv->dev, "failed to handle result (%d)\n",
ndesc);
goto acknowledge;
}
if (should_complete) {
local_bh_disable();
req->complete(req, ret);
local_bh_enable();
}
tot_descs += ndesc;
handled++;
}
acknowledge:
if (i)
writel(EIP197_xDR_PROC_xD_PKT(i) |
EIP197_xDR_PROC_xD_COUNT(tot_descs * priv->config.rd_offset),
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_PROC_COUNT);
/* If the number of requests overflowed the counter, try to proceed more
* requests.
*/
if (nreq == EIP197_xDR_PROC_xD_PKT_MASK)
goto handle_results;
requests_left:
spin_lock_bh(&priv->ring[ring].lock);
priv->ring[ring].requests -= handled;
safexcel_try_push_requests(priv, ring);
if (!priv->ring[ring].requests)
priv->ring[ring].busy = false;
spin_unlock_bh(&priv->ring[ring].lock);
}
static void safexcel_dequeue_work(struct work_struct *work)
{
struct safexcel_work_data *data =
container_of(work, struct safexcel_work_data, work);
safexcel_dequeue(data->priv, data->ring);
}
struct safexcel_ring_irq_data {
struct safexcel_crypto_priv *priv;
int ring;
};
static irqreturn_t safexcel_irq_ring(int irq, void *data)
{
struct safexcel_ring_irq_data *irq_data = data;
struct safexcel_crypto_priv *priv = irq_data->priv;
int ring = irq_data->ring, rc = IRQ_NONE;
u32 status, stat;
status = readl(EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ENABLED_STAT(ring));
if (!status)
return rc;
/* RDR interrupts */
if (status & EIP197_RDR_IRQ(ring)) {
stat = readl(EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
if (unlikely(stat & EIP197_xDR_ERR)) {
/*
* Fatal error, the RDR is unusable and must be
* reinitialized. This should not happen under
* normal circumstances.
*/
dev_err(priv->dev, "RDR: fatal error.\n");
} else if (likely(stat & EIP197_xDR_THRESH)) {
rc = IRQ_WAKE_THREAD;
}
/* ACK the interrupts */
writel(stat & 0xff,
EIP197_HIA_RDR(priv, ring) + EIP197_HIA_xDR_STAT);
}
/* ACK the interrupts */
writel(status, EIP197_HIA_AIC_R(priv) + EIP197_HIA_AIC_R_ACK(ring));
return rc;
}
static irqreturn_t safexcel_irq_ring_thread(int irq, void *data)
{
struct safexcel_ring_irq_data *irq_data = data;
struct safexcel_crypto_priv *priv = irq_data->priv;
int ring = irq_data->ring;
safexcel_handle_result_descriptor(priv, ring);
queue_work(priv->ring[ring].workqueue,
&priv->ring[ring].work_data.work);
return IRQ_HANDLED;
}
static int safexcel_request_ring_irq(void *pdev, int irqid,
int is_pci_dev,
irq_handler_t handler,
irq_handler_t threaded_handler,
struct safexcel_ring_irq_data *ring_irq_priv)
{
int ret, irq;
struct device *dev;
if (IS_ENABLED(CONFIG_PCI) && is_pci_dev) {
struct pci_dev *pci_pdev = pdev;
dev = &pci_pdev->dev;
irq = pci_irq_vector(pci_pdev, irqid);
if (irq < 0) {
dev_err(dev, "unable to get device MSI IRQ %d (err %d)\n",
irqid, irq);
return irq;
}
} else if (IS_ENABLED(CONFIG_OF)) {
struct platform_device *plf_pdev = pdev;
char irq_name[6] = {0}; /* "ringX\0" */
snprintf(irq_name, 6, "ring%d", irqid);
dev = &plf_pdev->dev;
irq = platform_get_irq_byname(plf_pdev, irq_name);
if (irq < 0) {
dev_err(dev, "unable to get IRQ '%s' (err %d)\n",
irq_name, irq);
return irq;
}
}
ret = devm_request_threaded_irq(dev, irq, handler,
threaded_handler, IRQF_ONESHOT,
dev_name(dev), ring_irq_priv);
if (ret) {
dev_err(dev, "unable to request IRQ %d\n", irq);
return ret;
}
return irq;
}
static struct safexcel_alg_template *safexcel_algs[] = {
&safexcel_alg_ecb_des,
&safexcel_alg_cbc_des,
&safexcel_alg_ecb_des3_ede,
&safexcel_alg_cbc_des3_ede,
&safexcel_alg_ecb_aes,
&safexcel_alg_cbc_aes,
&safexcel_alg_cfb_aes,
&safexcel_alg_ofb_aes,
&safexcel_alg_ctr_aes,
&safexcel_alg_md5,
&safexcel_alg_sha1,
&safexcel_alg_sha224,
&safexcel_alg_sha256,
&safexcel_alg_sha384,
&safexcel_alg_sha512,
&safexcel_alg_hmac_md5,
&safexcel_alg_hmac_sha1,
&safexcel_alg_hmac_sha224,
&safexcel_alg_hmac_sha256,
&safexcel_alg_hmac_sha384,
&safexcel_alg_hmac_sha512,
&safexcel_alg_authenc_hmac_sha1_cbc_aes,
&safexcel_alg_authenc_hmac_sha224_cbc_aes,
&safexcel_alg_authenc_hmac_sha256_cbc_aes,
&safexcel_alg_authenc_hmac_sha384_cbc_aes,
&safexcel_alg_authenc_hmac_sha512_cbc_aes,
&safexcel_alg_authenc_hmac_sha1_cbc_des3_ede,
&safexcel_alg_authenc_hmac_sha1_ctr_aes,
&safexcel_alg_authenc_hmac_sha224_ctr_aes,
&safexcel_alg_authenc_hmac_sha256_ctr_aes,
&safexcel_alg_authenc_hmac_sha384_ctr_aes,
&safexcel_alg_authenc_hmac_sha512_ctr_aes,
&safexcel_alg_xts_aes,
&safexcel_alg_gcm,
&safexcel_alg_ccm,
};
static int safexcel_register_algorithms(struct safexcel_crypto_priv *priv)
{
int i, j, ret = 0;
for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
safexcel_algs[i]->priv = priv;
/* Do we have all required base algorithms available? */
if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
safexcel_algs[i]->algo_mask)
/* No, so don't register this ciphersuite */
continue;
if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
ret = crypto_register_skcipher(&safexcel_algs[i]->alg.skcipher);
else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
ret = crypto_register_aead(&safexcel_algs[i]->alg.aead);
else
ret = crypto_register_ahash(&safexcel_algs[i]->alg.ahash);
if (ret)
goto fail;
}
return 0;
fail:
for (j = 0; j < i; j++) {
/* Do we have all required base algorithms available? */
if ((safexcel_algs[j]->algo_mask & priv->hwconfig.algo_flags) !=
safexcel_algs[j]->algo_mask)
/* No, so don't unregister this ciphersuite */
continue;
if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&safexcel_algs[j]->alg.skcipher);
else if (safexcel_algs[j]->type == SAFEXCEL_ALG_TYPE_AEAD)
crypto_unregister_aead(&safexcel_algs[j]->alg.aead);
else
crypto_unregister_ahash(&safexcel_algs[j]->alg.ahash);
}
return ret;
}
static void safexcel_unregister_algorithms(struct safexcel_crypto_priv *priv)
{
int i;
for (i = 0; i < ARRAY_SIZE(safexcel_algs); i++) {
/* Do we have all required base algorithms available? */
if ((safexcel_algs[i]->algo_mask & priv->hwconfig.algo_flags) !=
safexcel_algs[i]->algo_mask)
/* No, so don't unregister this ciphersuite */
continue;
if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_SKCIPHER)
crypto_unregister_skcipher(&safexcel_algs[i]->alg.skcipher);
else if (safexcel_algs[i]->type == SAFEXCEL_ALG_TYPE_AEAD)
crypto_unregister_aead(&safexcel_algs[i]->alg.aead);
else
crypto_unregister_ahash(&safexcel_algs[i]->alg.ahash);
}
}
static void safexcel_configure(struct safexcel_crypto_priv *priv)
{
u32 val, mask = 0;
val = readl(EIP197_HIA_AIC_G(priv) + EIP197_HIA_OPTIONS);
/* Read number of PEs from the engine */
if (priv->flags & SAFEXCEL_HW_EIP197)
/* Wider field width for all EIP197 type engines */
mask = EIP197_N_PES_MASK;
else
/* Narrow field width for EIP97 type engine */
mask = EIP97_N_PES_MASK;
priv->config.pes = (val >> EIP197_N_PES_OFFSET) & mask;
priv->config.rings = min_t(u32, val & GENMASK(3, 0), max_rings);
val = (val & GENMASK(27, 25)) >> 25;
mask = BIT(val) - 1;
priv->config.cd_size = (sizeof(struct safexcel_command_desc) / sizeof(u32));
priv->config.cd_offset = (priv->config.cd_size + mask) & ~mask;
priv->config.rd_size = (sizeof(struct safexcel_result_desc) / sizeof(u32));
priv->config.rd_offset = (priv->config.rd_size + mask) & ~mask;
}
static void safexcel_init_register_offsets(struct safexcel_crypto_priv *priv)
{
struct safexcel_register_offsets *offsets = &priv->offsets;
if (priv->flags & SAFEXCEL_HW_EIP197) {
offsets->hia_aic = EIP197_HIA_AIC_BASE;
offsets->hia_aic_g = EIP197_HIA_AIC_G_BASE;
offsets->hia_aic_r = EIP197_HIA_AIC_R_BASE;
offsets->hia_aic_xdr = EIP197_HIA_AIC_xDR_BASE;
offsets->hia_dfe = EIP197_HIA_DFE_BASE;
offsets->hia_dfe_thr = EIP197_HIA_DFE_THR_BASE;
offsets->hia_dse = EIP197_HIA_DSE_BASE;
offsets->hia_dse_thr = EIP197_HIA_DSE_THR_BASE;
offsets->hia_gen_cfg = EIP197_HIA_GEN_CFG_BASE;
offsets->pe = EIP197_PE_BASE;
offsets->global = EIP197_GLOBAL_BASE;
} else {
offsets->hia_aic = EIP97_HIA_AIC_BASE;
offsets->hia_aic_g = EIP97_HIA_AIC_G_BASE;
offsets->hia_aic_r = EIP97_HIA_AIC_R_BASE;
offsets->hia_aic_xdr = EIP97_HIA_AIC_xDR_BASE;
offsets->hia_dfe = EIP97_HIA_DFE_BASE;
offsets->hia_dfe_thr = EIP97_HIA_DFE_THR_BASE;
offsets->hia_dse = EIP97_HIA_DSE_BASE;
offsets->hia_dse_thr = EIP97_HIA_DSE_THR_BASE;
offsets->hia_gen_cfg = EIP97_HIA_GEN_CFG_BASE;
offsets->pe = EIP97_PE_BASE;
offsets->global = EIP97_GLOBAL_BASE;
}
}
/*
* Generic part of probe routine, shared by platform and PCI driver
*
* Assumes IO resources have been mapped, private data mem has been allocated,
* clocks have been enabled, device pointer has been assigned etc.
*
*/
static int safexcel_probe_generic(void *pdev,
struct safexcel_crypto_priv *priv,
int is_pci_dev)
{
struct device *dev = priv->dev;
u32 peid, version, mask, val, hiaopt;
int i, ret, hwctg;
priv->context_pool = dmam_pool_create("safexcel-context", dev,
sizeof(struct safexcel_context_record),
1, 0);
if (!priv->context_pool)
return -ENOMEM;
/*
* First try the EIP97 HIA version regs
* For the EIP197, this is guaranteed to NOT return any of the test
* values
*/
version = readl(priv->base + EIP97_HIA_AIC_BASE + EIP197_HIA_VERSION);
mask = 0; /* do not swap */
if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
} else if (EIP197_REG_HI16(version) == EIP197_HIA_VERSION_BE) {
/* read back byte-swapped, so complement byte swap bits */
mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
} else {
/* So it wasn't an EIP97 ... maybe it's an EIP197? */
version = readl(priv->base + EIP197_HIA_AIC_BASE +
EIP197_HIA_VERSION);
if (EIP197_REG_LO16(version) == EIP197_HIA_VERSION_LE) {
priv->hwconfig.hiaver = EIP197_VERSION_MASK(version);
priv->flags |= SAFEXCEL_HW_EIP197;
} else if (EIP197_REG_HI16(version) ==
EIP197_HIA_VERSION_BE) {
/* read back byte-swapped, so complement swap bits */
mask = EIP197_MST_CTRL_BYTE_SWAP_BITS;
priv->hwconfig.hiaver = EIP197_VERSION_SWAP(version);
priv->flags |= SAFEXCEL_HW_EIP197;
} else {
return -ENODEV;
}
}
/* Now initialize the reg offsets based on the probing info so far */
safexcel_init_register_offsets(priv);
/*
* If the version was read byte-swapped, we need to flip the device
* swapping Keep in mind here, though, that what we write will also be
* byte-swapped ...
*/
if (mask) {
val = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
val = val ^ (mask >> 24); /* toggle byte swap bits */
writel(val, EIP197_HIA_AIC(priv) + EIP197_HIA_MST_CTRL);
}
/*
* We're not done probing yet! We may fall through to here if no HIA
* was found at all. So, with the endianness presumably correct now and
* the offsets setup, *really* probe for the EIP97/EIP197.
*/
version = readl(EIP197_GLOBAL(priv) + EIP197_VERSION);
if (((priv->flags & SAFEXCEL_HW_EIP197) &&
(EIP197_REG_LO16(version) != EIP197_VERSION_LE)) ||
((!(priv->flags & SAFEXCEL_HW_EIP197) &&
(EIP197_REG_LO16(version) != EIP97_VERSION_LE)))) {
/*
* We did not find the device that matched our initial probing
* (or our initial probing failed) Report appropriate error.
*/
return -ENODEV;
}
priv->hwconfig.hwver = EIP197_VERSION_MASK(version);
hwctg = version >> 28;
peid = version & 255;
/* Detect EIP96 packet engine and version */
version = readl(EIP197_PE(priv) + EIP197_PE_EIP96_VERSION(0));
if (EIP197_REG_LO16(version) != EIP96_VERSION_LE) {
dev_err(dev, "EIP%d: EIP96 not detected.\n", peid);
return -ENODEV;
}
priv->hwconfig.pever = EIP197_VERSION_MASK(version);
hiaopt = readl(EIP197_HIA_AIC(priv) + EIP197_HIA_OPTIONS);
if (priv->flags & SAFEXCEL_HW_EIP197) {
/* EIP197 */
priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) &
EIP197_HWDATAW_MASK;
priv->hwconfig.hwcfsize = ((hiaopt >> EIP197_CFSIZE_OFFSET) &
EIP197_CFSIZE_MASK) +
EIP197_CFSIZE_ADJUST;
priv->hwconfig.hwrfsize = ((hiaopt >> EIP197_RFSIZE_OFFSET) &
EIP197_RFSIZE_MASK) +
EIP197_RFSIZE_ADJUST;
} else {
/* EIP97 */
priv->hwconfig.hwdataw = (hiaopt >> EIP197_HWDATAW_OFFSET) &
EIP97_HWDATAW_MASK;
priv->hwconfig.hwcfsize = (hiaopt >> EIP97_CFSIZE_OFFSET) &
EIP97_CFSIZE_MASK;
priv->hwconfig.hwrfsize = (hiaopt >> EIP97_RFSIZE_OFFSET) &
EIP97_RFSIZE_MASK;
}
/* Get supported algorithms from EIP96 transform engine */
priv->hwconfig.algo_flags = readl(EIP197_PE(priv) +
EIP197_PE_EIP96_OPTIONS(0));
/* Print single info line describing what we just detected */
dev_info(priv->dev, "EIP%d:%x(%d)-HIA:%x(%d,%d,%d),PE:%x,alg:%08x\n",
peid, priv->hwconfig.hwver, hwctg, priv->hwconfig.hiaver,
priv->hwconfig.hwdataw, priv->hwconfig.hwcfsize,
priv->hwconfig.hwrfsize, priv->hwconfig.pever,
priv->hwconfig.algo_flags);
safexcel_configure(priv);
if (IS_ENABLED(CONFIG_PCI) && priv->version == EIP197_DEVBRD) {
/*
* Request MSI vectors for global + 1 per ring -
* or just 1 for older dev images
*/
struct pci_dev *pci_pdev = pdev;
ret = pci_alloc_irq_vectors(pci_pdev,
priv->config.rings + 1,
priv->config.rings + 1,
PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (ret < 0) {
dev_err(dev, "Failed to allocate PCI MSI interrupts\n");
return ret;
}
}
/* Register the ring IRQ handlers and configure the rings */
priv->ring = devm_kcalloc(dev, priv->config.rings,
sizeof(*priv->ring),
GFP_KERNEL);
if (!priv->ring)
return -ENOMEM;
for (i = 0; i < priv->config.rings; i++) {
char wq_name[9] = {0};
int irq;
struct safexcel_ring_irq_data *ring_irq;
ret = safexcel_init_ring_descriptors(priv,
&priv->ring[i].cdr,
&priv->ring[i].rdr);
if (ret) {
dev_err(dev, "Failed to initialize rings\n");
return ret;
}
priv->ring[i].rdr_req = devm_kcalloc(dev,
EIP197_DEFAULT_RING_SIZE,
sizeof(priv->ring[i].rdr_req),
GFP_KERNEL);
if (!priv->ring[i].rdr_req)
return -ENOMEM;
ring_irq = devm_kzalloc(dev, sizeof(*ring_irq), GFP_KERNEL);
if (!ring_irq)
return -ENOMEM;
ring_irq->priv = priv;
ring_irq->ring = i;
irq = safexcel_request_ring_irq(pdev,
EIP197_IRQ_NUMBER(i, is_pci_dev),
is_pci_dev,
safexcel_irq_ring,
safexcel_irq_ring_thread,
ring_irq);
if (irq < 0) {
dev_err(dev, "Failed to get IRQ ID for ring %d\n", i);
return irq;
}
priv->ring[i].work_data.priv = priv;
priv->ring[i].work_data.ring = i;
INIT_WORK(&priv->ring[i].work_data.work,
safexcel_dequeue_work);
snprintf(wq_name, 9, "wq_ring%d", i);
priv->ring[i].workqueue =
create_singlethread_workqueue(wq_name);
if (!priv->ring[i].workqueue)
return -ENOMEM;
priv->ring[i].requests = 0;
priv->ring[i].busy = false;
crypto_init_queue(&priv->ring[i].queue,
EIP197_DEFAULT_RING_SIZE);
spin_lock_init(&priv->ring[i].lock);
spin_lock_init(&priv->ring[i].queue_lock);
}
atomic_set(&priv->ring_used, 0);
ret = safexcel_hw_init(priv);
if (ret) {
dev_err(dev, "HW init failed (%d)\n", ret);
return ret;
}
ret = safexcel_register_algorithms(priv);
if (ret) {
dev_err(dev, "Failed to register algorithms (%d)\n", ret);
return ret;
}
return 0;
}
static void safexcel_hw_reset_rings(struct safexcel_crypto_priv *priv)
{
int i;
for (i = 0; i < priv->config.rings; i++) {
/* clear any pending interrupt */
writel(GENMASK(5, 0), EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_STAT);
writel(GENMASK(7, 0), EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_STAT);
/* Reset the CDR base address */
writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(0, EIP197_HIA_CDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
/* Reset the RDR base address */
writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_LO);
writel(0, EIP197_HIA_RDR(priv, i) + EIP197_HIA_xDR_RING_BASE_ADDR_HI);
}
}
#if IS_ENABLED(CONFIG_OF)
/* for Device Tree platform driver */
static int safexcel_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct safexcel_crypto_priv *priv;
int ret;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->version = (enum safexcel_eip_version)of_device_get_match_data(dev);
platform_set_drvdata(pdev, priv);
priv->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->base)) {
dev_err(dev, "failed to get resource\n");
return PTR_ERR(priv->base);
}
priv->clk = devm_clk_get(&pdev->dev, NULL);
ret = PTR_ERR_OR_ZERO(priv->clk);
/* The clock isn't mandatory */
if (ret != -ENOENT) {
if (ret)
return ret;
ret = clk_prepare_enable(priv->clk);
if (ret) {
dev_err(dev, "unable to enable clk (%d)\n", ret);
return ret;
}
}
priv->reg_clk = devm_clk_get(&pdev->dev, "reg");
ret = PTR_ERR_OR_ZERO(priv->reg_clk);
/* The clock isn't mandatory */
if (ret != -ENOENT) {
if (ret)
goto err_core_clk;
ret = clk_prepare_enable(priv->reg_clk);
if (ret) {
dev_err(dev, "unable to enable reg clk (%d)\n", ret);
goto err_core_clk;
}
}
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret)
goto err_reg_clk;
/* Generic EIP97/EIP197 device probing */
ret = safexcel_probe_generic(pdev, priv, 0);
if (ret)
goto err_reg_clk;
return 0;
err_reg_clk:
clk_disable_unprepare(priv->reg_clk);
err_core_clk:
clk_disable_unprepare(priv->clk);
return ret;
}
static int safexcel_remove(struct platform_device *pdev)
{
struct safexcel_crypto_priv *priv = platform_get_drvdata(pdev);
int i;
safexcel_unregister_algorithms(priv);
safexcel_hw_reset_rings(priv);
clk_disable_unprepare(priv->clk);
for (i = 0; i < priv->config.rings; i++)
destroy_workqueue(priv->ring[i].workqueue);
return 0;
}
static const struct of_device_id safexcel_of_match_table[] = {
{
.compatible = "inside-secure,safexcel-eip97ies",
.data = (void *)EIP97IES_MRVL,
},
{
.compatible = "inside-secure,safexcel-eip197b",
.data = (void *)EIP197B_MRVL,
},
{
.compatible = "inside-secure,safexcel-eip197d",
.data = (void *)EIP197D_MRVL,
},
/* For backward compatibility and intended for generic use */
{
.compatible = "inside-secure,safexcel-eip97",
.data = (void *)EIP97IES_MRVL,
},
{
.compatible = "inside-secure,safexcel-eip197",
.data = (void *)EIP197B_MRVL,
},
{},
};
static struct platform_driver crypto_safexcel = {
.probe = safexcel_probe,
.remove = safexcel_remove,
.driver = {
.name = "crypto-safexcel",
.of_match_table = safexcel_of_match_table,
},
};
#endif
#if IS_ENABLED(CONFIG_PCI)
/* PCIE devices - i.e. Inside Secure development boards */
static int safexcel_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct safexcel_crypto_priv *priv;
void __iomem *pciebase;
int rc;
u32 val;
dev_dbg(dev, "Probing PCIE device: vendor %04x, device %04x, subv %04x, subdev %04x, ctxt %lx\n",
ent->vendor, ent->device, ent->subvendor,
ent->subdevice, ent->driver_data);
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->dev = dev;
priv->version = (enum safexcel_eip_version)ent->driver_data;
pci_set_drvdata(pdev, priv);
/* enable the device */
rc = pcim_enable_device(pdev);
if (rc) {
dev_err(dev, "Failed to enable PCI device\n");
return rc;
}
/* take ownership of PCI BAR0 */
rc = pcim_iomap_regions(pdev, 1, "crypto_safexcel");
if (rc) {
dev_err(dev, "Failed to map IO region for BAR0\n");
return rc;
}
priv->base = pcim_iomap_table(pdev)[0];
if (priv->version == EIP197_DEVBRD) {
dev_dbg(dev, "Device identified as FPGA based development board - applying HW reset\n");
rc = pcim_iomap_regions(pdev, 4, "crypto_safexcel");
if (rc) {
dev_err(dev, "Failed to map IO region for BAR4\n");
return rc;
}
pciebase = pcim_iomap_table(pdev)[2];
val = readl(pciebase + EIP197_XLX_IRQ_BLOCK_ID_ADDR);
if ((val >> 16) == EIP197_XLX_IRQ_BLOCK_ID_VALUE) {
dev_dbg(dev, "Detected Xilinx PCIE IRQ block version %d, multiple MSI support enabled\n",
(val & 0xff));
/* Setup MSI identity map mapping */
writel(EIP197_XLX_USER_VECT_LUT0_IDENT,
pciebase + EIP197_XLX_USER_VECT_LUT0_ADDR);
writel(EIP197_XLX_USER_VECT_LUT1_IDENT,
pciebase + EIP197_XLX_USER_VECT_LUT1_ADDR);
writel(EIP197_XLX_USER_VECT_LUT2_IDENT,
pciebase + EIP197_XLX_USER_VECT_LUT2_ADDR);
writel(EIP197_XLX_USER_VECT_LUT3_IDENT,
pciebase + EIP197_XLX_USER_VECT_LUT3_ADDR);
/* Enable all device interrupts */
writel(GENMASK(31, 0),
pciebase + EIP197_XLX_USER_INT_ENB_MSK);
} else {
dev_err(dev, "Unrecognised IRQ block identifier %x\n",
val);
return -ENODEV;
}
/* HW reset FPGA dev board */
/* assert reset */
writel(1, priv->base + EIP197_XLX_GPIO_BASE);
wmb(); /* maintain strict ordering for accesses here */
/* deassert reset */
writel(0, priv->base + EIP197_XLX_GPIO_BASE);
wmb(); /* maintain strict ordering for accesses here */
}
/* enable bus mastering */
pci_set_master(pdev);
/* Generic EIP97/EIP197 device probing */
rc = safexcel_probe_generic(pdev, priv, 1);
return rc;
}
void safexcel_pci_remove(struct pci_dev *pdev)
{
struct safexcel_crypto_priv *priv = pci_get_drvdata(pdev);
int i;
safexcel_unregister_algorithms(priv);
for (i = 0; i < priv->config.rings; i++)
destroy_workqueue(priv->ring[i].workqueue);
safexcel_hw_reset_rings(priv);
}
static const struct pci_device_id safexcel_pci_ids[] = {
{
PCI_DEVICE_SUB(PCI_VENDOR_ID_XILINX, 0x9038,
0x16ae, 0xc522),
.driver_data = EIP197_DEVBRD,
},
{},
};
MODULE_DEVICE_TABLE(pci, safexcel_pci_ids);
static struct pci_driver safexcel_pci_driver = {
.name = "crypto-safexcel",
.id_table = safexcel_pci_ids,
.probe = safexcel_pci_probe,
.remove = safexcel_pci_remove,
};
#endif
/* Unfortunately, we have to resort to global variables here */
#if IS_ENABLED(CONFIG_PCI)
int pcireg_rc = -EINVAL; /* Default safe value */
#endif
#if IS_ENABLED(CONFIG_OF)
int ofreg_rc = -EINVAL; /* Default safe value */
#endif
static int __init safexcel_init(void)
{
#if IS_ENABLED(CONFIG_PCI)
/* Register PCI driver */
pcireg_rc = pci_register_driver(&safexcel_pci_driver);
#endif
#if IS_ENABLED(CONFIG_OF)
/* Register platform driver */
ofreg_rc = platform_driver_register(&crypto_safexcel);
#if IS_ENABLED(CONFIG_PCI)
/* Return success if either PCI or OF registered OK */
return pcireg_rc ? ofreg_rc : 0;
#else
return ofreg_rc;
#endif
#else
#if IS_ENABLED(CONFIG_PCI)
return pcireg_rc;
#else
return -EINVAL;
#endif
#endif
}
static void __exit safexcel_exit(void)
{
#if IS_ENABLED(CONFIG_OF)
/* Unregister platform driver */
if (!ofreg_rc)
platform_driver_unregister(&crypto_safexcel);
#endif
#if IS_ENABLED(CONFIG_PCI)
/* Unregister PCI driver if successfully registered before */
if (!pcireg_rc)
pci_unregister_driver(&safexcel_pci_driver);
#endif
}
module_init(safexcel_init);
module_exit(safexcel_exit);
MODULE_AUTHOR("Antoine Tenart <antoine.tenart@free-electrons.com>");
MODULE_AUTHOR("Ofer Heifetz <oferh@marvell.com>");
MODULE_AUTHOR("Igal Liberman <igall@marvell.com>");
MODULE_DESCRIPTION("Support for SafeXcel cryptographic engines: EIP97 & EIP197");
MODULE_LICENSE("GPL v2");