linux-sg2042/drivers/base/regmap/regmap.c

2916 lines
70 KiB
C

/*
* Register map access API
*
* Copyright 2011 Wolfson Microelectronics plc
*
* Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/log2.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
#include "internal.h"
/*
* Sometimes for failures during very early init the trace
* infrastructure isn't available early enough to be used. For this
* sort of problem defining LOG_DEVICE will add printks for basic
* register I/O on a specific device.
*/
#undef LOG_DEVICE
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change, bool force_write);
static int _regmap_bus_reg_read(void *context, unsigned int reg,
unsigned int *val);
static int _regmap_bus_read(void *context, unsigned int reg,
unsigned int *val);
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
unsigned int val);
static int _regmap_bus_reg_write(void *context, unsigned int reg,
unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
unsigned int val);
bool regmap_reg_in_ranges(unsigned int reg,
const struct regmap_range *ranges,
unsigned int nranges)
{
const struct regmap_range *r;
int i;
for (i = 0, r = ranges; i < nranges; i++, r++)
if (regmap_reg_in_range(reg, r))
return true;
return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
bool regmap_check_range_table(struct regmap *map, unsigned int reg,
const struct regmap_access_table *table)
{
/* Check "no ranges" first */
if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
return false;
/* In case zero "yes ranges" are supplied, any reg is OK */
if (!table->n_yes_ranges)
return true;
return regmap_reg_in_ranges(reg, table->yes_ranges,
table->n_yes_ranges);
}
EXPORT_SYMBOL_GPL(regmap_check_range_table);
bool regmap_writeable(struct regmap *map, unsigned int reg)
{
if (map->max_register && reg > map->max_register)
return false;
if (map->writeable_reg)
return map->writeable_reg(map->dev, reg);
if (map->wr_table)
return regmap_check_range_table(map, reg, map->wr_table);
return true;
}
bool regmap_cached(struct regmap *map, unsigned int reg)
{
int ret;
unsigned int val;
if (map->cache == REGCACHE_NONE)
return false;
if (!map->cache_ops)
return false;
if (map->max_register && reg > map->max_register)
return false;
map->lock(map->lock_arg);
ret = regcache_read(map, reg, &val);
map->unlock(map->lock_arg);
if (ret)
return false;
return true;
}
bool regmap_readable(struct regmap *map, unsigned int reg)
{
if (!map->reg_read)
return false;
if (map->max_register && reg > map->max_register)
return false;
if (map->format.format_write)
return false;
if (map->readable_reg)
return map->readable_reg(map->dev, reg);
if (map->rd_table)
return regmap_check_range_table(map, reg, map->rd_table);
return true;
}
bool regmap_volatile(struct regmap *map, unsigned int reg)
{
if (!map->format.format_write && !regmap_readable(map, reg))
return false;
if (map->volatile_reg)
return map->volatile_reg(map->dev, reg);
if (map->volatile_table)
return regmap_check_range_table(map, reg, map->volatile_table);
if (map->cache_ops)
return false;
else
return true;
}
bool regmap_precious(struct regmap *map, unsigned int reg)
{
if (!regmap_readable(map, reg))
return false;
if (map->precious_reg)
return map->precious_reg(map->dev, reg);
if (map->precious_table)
return regmap_check_range_table(map, reg, map->precious_table);
return false;
}
static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
size_t num)
{
unsigned int i;
for (i = 0; i < num; i++)
if (!regmap_volatile(map, reg + i))
return false;
return true;
}
static void regmap_format_2_6_write(struct regmap *map,
unsigned int reg, unsigned int val)
{
u8 *out = map->work_buf;
*out = (reg << 6) | val;
}
static void regmap_format_4_12_write(struct regmap *map,
unsigned int reg, unsigned int val)
{
__be16 *out = map->work_buf;
*out = cpu_to_be16((reg << 12) | val);
}
static void regmap_format_7_9_write(struct regmap *map,
unsigned int reg, unsigned int val)
{
__be16 *out = map->work_buf;
*out = cpu_to_be16((reg << 9) | val);
}
static void regmap_format_10_14_write(struct regmap *map,
unsigned int reg, unsigned int val)
{
u8 *out = map->work_buf;
out[2] = val;
out[1] = (val >> 8) | (reg << 6);
out[0] = reg >> 2;
}
static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
{
u8 *b = buf;
b[0] = val << shift;
}
static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
{
__be16 *b = buf;
b[0] = cpu_to_be16(val << shift);
}
static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
__le16 *b = buf;
b[0] = cpu_to_le16(val << shift);
}
static void regmap_format_16_native(void *buf, unsigned int val,
unsigned int shift)
{
*(u16 *)buf = val << shift;
}
static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
{
u8 *b = buf;
val <<= shift;
b[0] = val >> 16;
b[1] = val >> 8;
b[2] = val;
}
static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
{
__be32 *b = buf;
b[0] = cpu_to_be32(val << shift);
}
static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
__le32 *b = buf;
b[0] = cpu_to_le32(val << shift);
}
static void regmap_format_32_native(void *buf, unsigned int val,
unsigned int shift)
{
*(u32 *)buf = val << shift;
}
#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
__be64 *b = buf;
b[0] = cpu_to_be64((u64)val << shift);
}
static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
__le64 *b = buf;
b[0] = cpu_to_le64((u64)val << shift);
}
static void regmap_format_64_native(void *buf, unsigned int val,
unsigned int shift)
{
*(u64 *)buf = (u64)val << shift;
}
#endif
static void regmap_parse_inplace_noop(void *buf)
{
}
static unsigned int regmap_parse_8(const void *buf)
{
const u8 *b = buf;
return b[0];
}
static unsigned int regmap_parse_16_be(const void *buf)
{
const __be16 *b = buf;
return be16_to_cpu(b[0]);
}
static unsigned int regmap_parse_16_le(const void *buf)
{
const __le16 *b = buf;
return le16_to_cpu(b[0]);
}
static void regmap_parse_16_be_inplace(void *buf)
{
__be16 *b = buf;
b[0] = be16_to_cpu(b[0]);
}
static void regmap_parse_16_le_inplace(void *buf)
{
__le16 *b = buf;
b[0] = le16_to_cpu(b[0]);
}
static unsigned int regmap_parse_16_native(const void *buf)
{
return *(u16 *)buf;
}
static unsigned int regmap_parse_24(const void *buf)
{
const u8 *b = buf;
unsigned int ret = b[2];
ret |= ((unsigned int)b[1]) << 8;
ret |= ((unsigned int)b[0]) << 16;
return ret;
}
static unsigned int regmap_parse_32_be(const void *buf)
{
const __be32 *b = buf;
return be32_to_cpu(b[0]);
}
static unsigned int regmap_parse_32_le(const void *buf)
{
const __le32 *b = buf;
return le32_to_cpu(b[0]);
}
static void regmap_parse_32_be_inplace(void *buf)
{
__be32 *b = buf;
b[0] = be32_to_cpu(b[0]);
}
static void regmap_parse_32_le_inplace(void *buf)
{
__le32 *b = buf;
b[0] = le32_to_cpu(b[0]);
}
static unsigned int regmap_parse_32_native(const void *buf)
{
return *(u32 *)buf;
}
#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
const __be64 *b = buf;
return be64_to_cpu(b[0]);
}
static unsigned int regmap_parse_64_le(const void *buf)
{
const __le64 *b = buf;
return le64_to_cpu(b[0]);
}
static void regmap_parse_64_be_inplace(void *buf)
{
__be64 *b = buf;
b[0] = be64_to_cpu(b[0]);
}
static void regmap_parse_64_le_inplace(void *buf)
{
__le64 *b = buf;
b[0] = le64_to_cpu(b[0]);
}
static unsigned int regmap_parse_64_native(const void *buf)
{
return *(u64 *)buf;
}
#endif
static void regmap_lock_mutex(void *__map)
{
struct regmap *map = __map;
mutex_lock(&map->mutex);
}
static void regmap_unlock_mutex(void *__map)
{
struct regmap *map = __map;
mutex_unlock(&map->mutex);
}
static void regmap_lock_spinlock(void *__map)
__acquires(&map->spinlock)
{
struct regmap *map = __map;
unsigned long flags;
spin_lock_irqsave(&map->spinlock, flags);
map->spinlock_flags = flags;
}
static void regmap_unlock_spinlock(void *__map)
__releases(&map->spinlock)
{
struct regmap *map = __map;
spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
}
static void dev_get_regmap_release(struct device *dev, void *res)
{
/*
* We don't actually have anything to do here; the goal here
* is not to manage the regmap but to provide a simple way to
* get the regmap back given a struct device.
*/
}
static bool _regmap_range_add(struct regmap *map,
struct regmap_range_node *data)
{
struct rb_root *root = &map->range_tree;
struct rb_node **new = &(root->rb_node), *parent = NULL;
while (*new) {
struct regmap_range_node *this =
container_of(*new, struct regmap_range_node, node);
parent = *new;
if (data->range_max < this->range_min)
new = &((*new)->rb_left);
else if (data->range_min > this->range_max)
new = &((*new)->rb_right);
else
return false;
}
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root);
return true;
}
static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
unsigned int reg)
{
struct rb_node *node = map->range_tree.rb_node;
while (node) {
struct regmap_range_node *this =
container_of(node, struct regmap_range_node, node);
if (reg < this->range_min)
node = node->rb_left;
else if (reg > this->range_max)
node = node->rb_right;
else
return this;
}
return NULL;
}
static void regmap_range_exit(struct regmap *map)
{
struct rb_node *next;
struct regmap_range_node *range_node;
next = rb_first(&map->range_tree);
while (next) {
range_node = rb_entry(next, struct regmap_range_node, node);
next = rb_next(&range_node->node);
rb_erase(&range_node->node, &map->range_tree);
kfree(range_node);
}
kfree(map->selector_work_buf);
}
int regmap_attach_dev(struct device *dev, struct regmap *map,
const struct regmap_config *config)
{
struct regmap **m;
map->dev = dev;
regmap_debugfs_init(map, config->name);
/* Add a devres resource for dev_get_regmap() */
m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
if (!m) {
regmap_debugfs_exit(map);
return -ENOMEM;
}
*m = map;
devres_add(dev, m);
return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);
static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
const struct regmap_config *config)
{
enum regmap_endian endian;
/* Retrieve the endianness specification from the regmap config */
endian = config->reg_format_endian;
/* If the regmap config specified a non-default value, use that */
if (endian != REGMAP_ENDIAN_DEFAULT)
return endian;
/* Retrieve the endianness specification from the bus config */
if (bus && bus->reg_format_endian_default)
endian = bus->reg_format_endian_default;
/* If the bus specified a non-default value, use that */
if (endian != REGMAP_ENDIAN_DEFAULT)
return endian;
/* Use this if no other value was found */
return REGMAP_ENDIAN_BIG;
}
enum regmap_endian regmap_get_val_endian(struct device *dev,
const struct regmap_bus *bus,
const struct regmap_config *config)
{
struct device_node *np;
enum regmap_endian endian;
/* Retrieve the endianness specification from the regmap config */
endian = config->val_format_endian;
/* If the regmap config specified a non-default value, use that */
if (endian != REGMAP_ENDIAN_DEFAULT)
return endian;
/* If the dev and dev->of_node exist try to get endianness from DT */
if (dev && dev->of_node) {
np = dev->of_node;
/* Parse the device's DT node for an endianness specification */
if (of_property_read_bool(np, "big-endian"))
endian = REGMAP_ENDIAN_BIG;
else if (of_property_read_bool(np, "little-endian"))
endian = REGMAP_ENDIAN_LITTLE;
else if (of_property_read_bool(np, "native-endian"))
endian = REGMAP_ENDIAN_NATIVE;
/* If the endianness was specified in DT, use that */
if (endian != REGMAP_ENDIAN_DEFAULT)
return endian;
}
/* Retrieve the endianness specification from the bus config */
if (bus && bus->val_format_endian_default)
endian = bus->val_format_endian_default;
/* If the bus specified a non-default value, use that */
if (endian != REGMAP_ENDIAN_DEFAULT)
return endian;
/* Use this if no other value was found */
return REGMAP_ENDIAN_BIG;
}
EXPORT_SYMBOL_GPL(regmap_get_val_endian);
struct regmap *__regmap_init(struct device *dev,
const struct regmap_bus *bus,
void *bus_context,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name)
{
struct regmap *map;
int ret = -EINVAL;
enum regmap_endian reg_endian, val_endian;
int i, j;
if (!config)
goto err;
map = kzalloc(sizeof(*map), GFP_KERNEL);
if (map == NULL) {
ret = -ENOMEM;
goto err;
}
if (config->lock && config->unlock) {
map->lock = config->lock;
map->unlock = config->unlock;
map->lock_arg = config->lock_arg;
} else {
if ((bus && bus->fast_io) ||
config->fast_io) {
spin_lock_init(&map->spinlock);
map->lock = regmap_lock_spinlock;
map->unlock = regmap_unlock_spinlock;
lockdep_set_class_and_name(&map->spinlock,
lock_key, lock_name);
} else {
mutex_init(&map->mutex);
map->lock = regmap_lock_mutex;
map->unlock = regmap_unlock_mutex;
lockdep_set_class_and_name(&map->mutex,
lock_key, lock_name);
}
map->lock_arg = map;
}
/*
* When we write in fast-paths with regmap_bulk_write() don't allocate
* scratch buffers with sleeping allocations.
*/
if ((bus && bus->fast_io) || config->fast_io)
map->alloc_flags = GFP_ATOMIC;
else
map->alloc_flags = GFP_KERNEL;
map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
map->format.pad_bytes = config->pad_bits / 8;
map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
config->val_bits + config->pad_bits, 8);
map->reg_shift = config->pad_bits % 8;
if (config->reg_stride)
map->reg_stride = config->reg_stride;
else
map->reg_stride = 1;
if (is_power_of_2(map->reg_stride))
map->reg_stride_order = ilog2(map->reg_stride);
else
map->reg_stride_order = -1;
map->use_single_read = config->use_single_rw || !bus || !bus->read;
map->use_single_write = config->use_single_rw || !bus || !bus->write;
map->can_multi_write = config->can_multi_write && bus && bus->write;
if (bus) {
map->max_raw_read = bus->max_raw_read;
map->max_raw_write = bus->max_raw_write;
}
map->dev = dev;
map->bus = bus;
map->bus_context = bus_context;
map->max_register = config->max_register;
map->wr_table = config->wr_table;
map->rd_table = config->rd_table;
map->volatile_table = config->volatile_table;
map->precious_table = config->precious_table;
map->writeable_reg = config->writeable_reg;
map->readable_reg = config->readable_reg;
map->volatile_reg = config->volatile_reg;
map->precious_reg = config->precious_reg;
map->cache_type = config->cache_type;
map->name = config->name;
spin_lock_init(&map->async_lock);
INIT_LIST_HEAD(&map->async_list);
INIT_LIST_HEAD(&map->async_free);
init_waitqueue_head(&map->async_waitq);
if (config->read_flag_mask || config->write_flag_mask) {
map->read_flag_mask = config->read_flag_mask;
map->write_flag_mask = config->write_flag_mask;
} else if (bus) {
map->read_flag_mask = bus->read_flag_mask;
}
if (!bus) {
map->reg_read = config->reg_read;
map->reg_write = config->reg_write;
map->defer_caching = false;
goto skip_format_initialization;
} else if (!bus->read || !bus->write) {
map->reg_read = _regmap_bus_reg_read;
map->reg_write = _regmap_bus_reg_write;
map->defer_caching = false;
goto skip_format_initialization;
} else {
map->reg_read = _regmap_bus_read;
map->reg_update_bits = bus->reg_update_bits;
}
reg_endian = regmap_get_reg_endian(bus, config);
val_endian = regmap_get_val_endian(dev, bus, config);
switch (config->reg_bits + map->reg_shift) {
case 2:
switch (config->val_bits) {
case 6:
map->format.format_write = regmap_format_2_6_write;
break;
default:
goto err_map;
}
break;
case 4:
switch (config->val_bits) {
case 12:
map->format.format_write = regmap_format_4_12_write;
break;
default:
goto err_map;
}
break;
case 7:
switch (config->val_bits) {
case 9:
map->format.format_write = regmap_format_7_9_write;
break;
default:
goto err_map;
}
break;
case 10:
switch (config->val_bits) {
case 14:
map->format.format_write = regmap_format_10_14_write;
break;
default:
goto err_map;
}
break;
case 8:
map->format.format_reg = regmap_format_8;
break;
case 16:
switch (reg_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_reg = regmap_format_16_be;
break;
case REGMAP_ENDIAN_LITTLE:
map->format.format_reg = regmap_format_16_le;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_reg = regmap_format_16_native;
break;
default:
goto err_map;
}
break;
case 24:
if (reg_endian != REGMAP_ENDIAN_BIG)
goto err_map;
map->format.format_reg = regmap_format_24;
break;
case 32:
switch (reg_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_reg = regmap_format_32_be;
break;
case REGMAP_ENDIAN_LITTLE:
map->format.format_reg = regmap_format_32_le;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_reg = regmap_format_32_native;
break;
default:
goto err_map;
}
break;
#ifdef CONFIG_64BIT
case 64:
switch (reg_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_reg = regmap_format_64_be;
break;
case REGMAP_ENDIAN_LITTLE:
map->format.format_reg = regmap_format_64_le;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_reg = regmap_format_64_native;
break;
default:
goto err_map;
}
break;
#endif
default:
goto err_map;
}
if (val_endian == REGMAP_ENDIAN_NATIVE)
map->format.parse_inplace = regmap_parse_inplace_noop;
switch (config->val_bits) {
case 8:
map->format.format_val = regmap_format_8;
map->format.parse_val = regmap_parse_8;
map->format.parse_inplace = regmap_parse_inplace_noop;
break;
case 16:
switch (val_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_val = regmap_format_16_be;
map->format.parse_val = regmap_parse_16_be;
map->format.parse_inplace = regmap_parse_16_be_inplace;
break;
case REGMAP_ENDIAN_LITTLE:
map->format.format_val = regmap_format_16_le;
map->format.parse_val = regmap_parse_16_le;
map->format.parse_inplace = regmap_parse_16_le_inplace;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_val = regmap_format_16_native;
map->format.parse_val = regmap_parse_16_native;
break;
default:
goto err_map;
}
break;
case 24:
if (val_endian != REGMAP_ENDIAN_BIG)
goto err_map;
map->format.format_val = regmap_format_24;
map->format.parse_val = regmap_parse_24;
break;
case 32:
switch (val_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_val = regmap_format_32_be;
map->format.parse_val = regmap_parse_32_be;
map->format.parse_inplace = regmap_parse_32_be_inplace;
break;
case REGMAP_ENDIAN_LITTLE:
map->format.format_val = regmap_format_32_le;
map->format.parse_val = regmap_parse_32_le;
map->format.parse_inplace = regmap_parse_32_le_inplace;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_val = regmap_format_32_native;
map->format.parse_val = regmap_parse_32_native;
break;
default:
goto err_map;
}
break;
#ifdef CONFIG_64BIT
case 64:
switch (val_endian) {
case REGMAP_ENDIAN_BIG:
map->format.format_val = regmap_format_64_be;
map->format.parse_val = regmap_parse_64_be;
map->format.parse_inplace = regmap_parse_64_be_inplace;
break;
case REGMAP_ENDIAN_LITTLE:
map->format.format_val = regmap_format_64_le;
map->format.parse_val = regmap_parse_64_le;
map->format.parse_inplace = regmap_parse_64_le_inplace;
break;
case REGMAP_ENDIAN_NATIVE:
map->format.format_val = regmap_format_64_native;
map->format.parse_val = regmap_parse_64_native;
break;
default:
goto err_map;
}
break;
#endif
}
if (map->format.format_write) {
if ((reg_endian != REGMAP_ENDIAN_BIG) ||
(val_endian != REGMAP_ENDIAN_BIG))
goto err_map;
map->use_single_write = true;
}
if (!map->format.format_write &&
!(map->format.format_reg && map->format.format_val))
goto err_map;
map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
if (map->work_buf == NULL) {
ret = -ENOMEM;
goto err_map;
}
if (map->format.format_write) {
map->defer_caching = false;
map->reg_write = _regmap_bus_formatted_write;
} else if (map->format.format_val) {
map->defer_caching = true;
map->reg_write = _regmap_bus_raw_write;
}
skip_format_initialization:
map->range_tree = RB_ROOT;
for (i = 0; i < config->num_ranges; i++) {
const struct regmap_range_cfg *range_cfg = &config->ranges[i];
struct regmap_range_node *new;
/* Sanity check */
if (range_cfg->range_max < range_cfg->range_min) {
dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
range_cfg->range_max, range_cfg->range_min);
goto err_range;
}
if (range_cfg->range_max > map->max_register) {
dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
range_cfg->range_max, map->max_register);
goto err_range;
}
if (range_cfg->selector_reg > map->max_register) {
dev_err(map->dev,
"Invalid range %d: selector out of map\n", i);
goto err_range;
}
if (range_cfg->window_len == 0) {
dev_err(map->dev, "Invalid range %d: window_len 0\n",
i);
goto err_range;
}
/* Make sure, that this register range has no selector
or data window within its boundary */
for (j = 0; j < config->num_ranges; j++) {
unsigned sel_reg = config->ranges[j].selector_reg;
unsigned win_min = config->ranges[j].window_start;
unsigned win_max = win_min +
config->ranges[j].window_len - 1;
/* Allow data window inside its own virtual range */
if (j == i)
continue;
if (range_cfg->range_min <= sel_reg &&
sel_reg <= range_cfg->range_max) {
dev_err(map->dev,
"Range %d: selector for %d in window\n",
i, j);
goto err_range;
}
if (!(win_max < range_cfg->range_min ||
win_min > range_cfg->range_max)) {
dev_err(map->dev,
"Range %d: window for %d in window\n",
i, j);
goto err_range;
}
}
new = kzalloc(sizeof(*new), GFP_KERNEL);
if (new == NULL) {
ret = -ENOMEM;
goto err_range;
}
new->map = map;
new->name = range_cfg->name;
new->range_min = range_cfg->range_min;
new->range_max = range_cfg->range_max;
new->selector_reg = range_cfg->selector_reg;
new->selector_mask = range_cfg->selector_mask;
new->selector_shift = range_cfg->selector_shift;
new->window_start = range_cfg->window_start;
new->window_len = range_cfg->window_len;
if (!_regmap_range_add(map, new)) {
dev_err(map->dev, "Failed to add range %d\n", i);
kfree(new);
goto err_range;
}
if (map->selector_work_buf == NULL) {
map->selector_work_buf =
kzalloc(map->format.buf_size, GFP_KERNEL);
if (map->selector_work_buf == NULL) {
ret = -ENOMEM;
goto err_range;
}
}
}
ret = regcache_init(map, config);
if (ret != 0)
goto err_range;
if (dev) {
ret = regmap_attach_dev(dev, map, config);
if (ret != 0)
goto err_regcache;
}
return map;
err_regcache:
regcache_exit(map);
err_range:
regmap_range_exit(map);
kfree(map->work_buf);
err_map:
kfree(map);
err:
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(__regmap_init);
static void devm_regmap_release(struct device *dev, void *res)
{
regmap_exit(*(struct regmap **)res);
}
struct regmap *__devm_regmap_init(struct device *dev,
const struct regmap_bus *bus,
void *bus_context,
const struct regmap_config *config,
struct lock_class_key *lock_key,
const char *lock_name)
{
struct regmap **ptr, *regmap;
ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
regmap = __regmap_init(dev, bus, bus_context, config,
lock_key, lock_name);
if (!IS_ERR(regmap)) {
*ptr = regmap;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return regmap;
}
EXPORT_SYMBOL_GPL(__devm_regmap_init);
static void regmap_field_init(struct regmap_field *rm_field,
struct regmap *regmap, struct reg_field reg_field)
{
rm_field->regmap = regmap;
rm_field->reg = reg_field.reg;
rm_field->shift = reg_field.lsb;
rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
rm_field->id_size = reg_field.id_size;
rm_field->id_offset = reg_field.id_offset;
}
/**
* devm_regmap_field_alloc(): Allocate and initialise a register field
* in a register map.
*
* @dev: Device that will be interacted with
* @regmap: regmap bank in which this register field is located.
* @reg_field: Register field with in the bank.
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap_field. The regmap_field will be automatically freed
* by the device management code.
*/
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
struct regmap *regmap, struct reg_field reg_field)
{
struct regmap_field *rm_field = devm_kzalloc(dev,
sizeof(*rm_field), GFP_KERNEL);
if (!rm_field)
return ERR_PTR(-ENOMEM);
regmap_field_init(rm_field, regmap, reg_field);
return rm_field;
}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
/**
* devm_regmap_field_free(): Free register field allocated using
* devm_regmap_field_alloc. Usally drivers need not call this function,
* as the memory allocated via devm will be freed as per device-driver
* life-cyle.
*
* @dev: Device that will be interacted with
* @field: regmap field which should be freed.
*/
void devm_regmap_field_free(struct device *dev,
struct regmap_field *field)
{
devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);
/**
* regmap_field_alloc(): Allocate and initialise a register field
* in a register map.
*
* @regmap: regmap bank in which this register field is located.
* @reg_field: Register field with in the bank.
*
* The return value will be an ERR_PTR() on error or a valid pointer
* to a struct regmap_field. The regmap_field should be freed by the
* user once its finished working with it using regmap_field_free().
*/
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
struct reg_field reg_field)
{
struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
if (!rm_field)
return ERR_PTR(-ENOMEM);
regmap_field_init(rm_field, regmap, reg_field);
return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);
/**
* regmap_field_free(): Free register field allocated using regmap_field_alloc
*
* @field: regmap field which should be freed.
*/
void regmap_field_free(struct regmap_field *field)
{
kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);
/**
* regmap_reinit_cache(): Reinitialise the current register cache
*
* @map: Register map to operate on.
* @config: New configuration. Only the cache data will be used.
*
* Discard any existing register cache for the map and initialize a
* new cache. This can be used to restore the cache to defaults or to
* update the cache configuration to reflect runtime discovery of the
* hardware.
*
* No explicit locking is done here, the user needs to ensure that
* this function will not race with other calls to regmap.
*/
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
regcache_exit(map);
regmap_debugfs_exit(map);
map->max_register = config->max_register;
map->writeable_reg = config->writeable_reg;
map->readable_reg = config->readable_reg;
map->volatile_reg = config->volatile_reg;
map->precious_reg = config->precious_reg;
map->cache_type = config->cache_type;
regmap_debugfs_init(map, config->name);
map->cache_bypass = false;
map->cache_only = false;
return regcache_init(map, config);
}
EXPORT_SYMBOL_GPL(regmap_reinit_cache);
/**
* regmap_exit(): Free a previously allocated register map
*/
void regmap_exit(struct regmap *map)
{
struct regmap_async *async;
regcache_exit(map);
regmap_debugfs_exit(map);
regmap_range_exit(map);
if (map->bus && map->bus->free_context)
map->bus->free_context(map->bus_context);
kfree(map->work_buf);
while (!list_empty(&map->async_free)) {
async = list_first_entry_or_null(&map->async_free,
struct regmap_async,
list);
list_del(&async->list);
kfree(async->work_buf);
kfree(async);
}
kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);
static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
struct regmap **r = res;
if (!r || !*r) {
WARN_ON(!r || !*r);
return 0;
}
/* If the user didn't specify a name match any */
if (data)
return (*r)->name == data;
else
return 1;
}
/**
* dev_get_regmap(): Obtain the regmap (if any) for a device
*
* @dev: Device to retrieve the map for
* @name: Optional name for the register map, usually NULL.
*
* Returns the regmap for the device if one is present, or NULL. If
* name is specified then it must match the name specified when
* registering the device, if it is NULL then the first regmap found
* will be used. Devices with multiple register maps are very rare,
* generic code should normally not need to specify a name.
*/
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
struct regmap **r = devres_find(dev, dev_get_regmap_release,
dev_get_regmap_match, (void *)name);
if (!r)
return NULL;
return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);
/**
* regmap_get_device(): Obtain the device from a regmap
*
* @map: Register map to operate on.
*
* Returns the underlying device that the regmap has been created for.
*/
struct device *regmap_get_device(struct regmap *map)
{
return map->dev;
}
EXPORT_SYMBOL_GPL(regmap_get_device);
static int _regmap_select_page(struct regmap *map, unsigned int *reg,
struct regmap_range_node *range,
unsigned int val_num)
{
void *orig_work_buf;
unsigned int win_offset;
unsigned int win_page;
bool page_chg;
int ret;
win_offset = (*reg - range->range_min) % range->window_len;
win_page = (*reg - range->range_min) / range->window_len;
if (val_num > 1) {
/* Bulk write shouldn't cross range boundary */
if (*reg + val_num - 1 > range->range_max)
return -EINVAL;
/* ... or single page boundary */
if (val_num > range->window_len - win_offset)
return -EINVAL;
}
/* It is possible to have selector register inside data window.
In that case, selector register is located on every page and
it needs no page switching, when accessed alone. */
if (val_num > 1 ||
range->window_start + win_offset != range->selector_reg) {
/* Use separate work_buf during page switching */
orig_work_buf = map->work_buf;
map->work_buf = map->selector_work_buf;
ret = _regmap_update_bits(map, range->selector_reg,
range->selector_mask,
win_page << range->selector_shift,
&page_chg, false);
map->work_buf = orig_work_buf;
if (ret != 0)
return ret;
}
*reg = range->window_start + win_offset;
return 0;
}
static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
unsigned long mask)
{
u8 *buf;
int i;
if (!mask || !map->work_buf)
return;
buf = map->work_buf;
for (i = 0; i < max_bytes; i++)
buf[i] |= (mask >> (8 * i)) & 0xff;
}
int _regmap_raw_write(struct regmap *map, unsigned int reg,
const void *val, size_t val_len)
{
struct regmap_range_node *range;
unsigned long flags;
void *work_val = map->work_buf + map->format.reg_bytes +
map->format.pad_bytes;
void *buf;
int ret = -ENOTSUPP;
size_t len;
int i;
WARN_ON(!map->bus);
/* Check for unwritable registers before we start */
if (map->writeable_reg)
for (i = 0; i < val_len / map->format.val_bytes; i++)
if (!map->writeable_reg(map->dev,
reg + regmap_get_offset(map, i)))
return -EINVAL;
if (!map->cache_bypass && map->format.parse_val) {
unsigned int ival;
int val_bytes = map->format.val_bytes;
for (i = 0; i < val_len / val_bytes; i++) {
ival = map->format.parse_val(val + (i * val_bytes));
ret = regcache_write(map,
reg + regmap_get_offset(map, i),
ival);
if (ret) {
dev_err(map->dev,
"Error in caching of register: %x ret: %d\n",
reg + i, ret);
return ret;
}
}
if (map->cache_only) {
map->cache_dirty = true;
return 0;
}
}
range = _regmap_range_lookup(map, reg);
if (range) {
int val_num = val_len / map->format.val_bytes;
int win_offset = (reg - range->range_min) % range->window_len;
int win_residue = range->window_len - win_offset;
/* If the write goes beyond the end of the window split it */
while (val_num > win_residue) {
dev_dbg(map->dev, "Writing window %d/%zu\n",
win_residue, val_len / map->format.val_bytes);
ret = _regmap_raw_write(map, reg, val, win_residue *
map->format.val_bytes);
if (ret != 0)
return ret;
reg += win_residue;
val_num -= win_residue;
val += win_residue * map->format.val_bytes;
val_len -= win_residue * map->format.val_bytes;
win_offset = (reg - range->range_min) %
range->window_len;
win_residue = range->window_len - win_offset;
}
ret = _regmap_select_page(map, &reg, range, val_num);
if (ret != 0)
return ret;
}
map->format.format_reg(map->work_buf, reg, map->reg_shift);
regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
map->write_flag_mask);
/*
* Essentially all I/O mechanisms will be faster with a single
* buffer to write. Since register syncs often generate raw
* writes of single registers optimise that case.
*/
if (val != work_val && val_len == map->format.val_bytes) {
memcpy(work_val, val, map->format.val_bytes);
val = work_val;
}
if (map->async && map->bus->async_write) {
struct regmap_async *async;
trace_regmap_async_write_start(map, reg, val_len);
spin_lock_irqsave(&map->async_lock, flags);
async = list_first_entry_or_null(&map->async_free,
struct regmap_async,
list);
if (async)
list_del(&async->list);
spin_unlock_irqrestore(&map->async_lock, flags);
if (!async) {
async = map->bus->async_alloc();
if (!async)
return -ENOMEM;
async->work_buf = kzalloc(map->format.buf_size,
GFP_KERNEL | GFP_DMA);
if (!async->work_buf) {
kfree(async);
return -ENOMEM;
}
}
async->map = map;
/* If the caller supplied the value we can use it safely. */
memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
map->format.reg_bytes + map->format.val_bytes);
spin_lock_irqsave(&map->async_lock, flags);
list_add_tail(&async->list, &map->async_list);
spin_unlock_irqrestore(&map->async_lock, flags);
if (val != work_val)
ret = map->bus->async_write(map->bus_context,
async->work_buf,
map->format.reg_bytes +
map->format.pad_bytes,
val, val_len, async);
else
ret = map->bus->async_write(map->bus_context,
async->work_buf,
map->format.reg_bytes +
map->format.pad_bytes +
val_len, NULL, 0, async);
if (ret != 0) {
dev_err(map->dev, "Failed to schedule write: %d\n",
ret);
spin_lock_irqsave(&map->async_lock, flags);
list_move(&async->list, &map->async_free);
spin_unlock_irqrestore(&map->async_lock, flags);
}
return ret;
}
trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
/* If we're doing a single register write we can probably just
* send the work_buf directly, otherwise try to do a gather
* write.
*/
if (val == work_val)
ret = map->bus->write(map->bus_context, map->work_buf,
map->format.reg_bytes +
map->format.pad_bytes +
val_len);
else if (map->bus->gather_write)
ret = map->bus->gather_write(map->bus_context, map->work_buf,
map->format.reg_bytes +
map->format.pad_bytes,
val, val_len);
/* If that didn't work fall back on linearising by hand. */
if (ret == -ENOTSUPP) {
len = map->format.reg_bytes + map->format.pad_bytes + val_len;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
memcpy(buf, map->work_buf, map->format.reg_bytes);
memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
val, val_len);
ret = map->bus->write(map->bus_context, buf, len);
kfree(buf);
} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
/* regcache_drop_region() takes lock that we already have,
* thus call map->cache_ops->drop() directly
*/
if (map->cache_ops && map->cache_ops->drop)
map->cache_ops->drop(map, reg, reg + 1);
}
trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
return ret;
}
/**
* regmap_can_raw_write - Test if regmap_raw_write() is supported
*
* @map: Map to check.
*/
bool regmap_can_raw_write(struct regmap *map)
{
return map->bus && map->bus->write && map->format.format_val &&
map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);
/**
* regmap_get_raw_read_max - Get the maximum size we can read
*
* @map: Map to check.
*/
size_t regmap_get_raw_read_max(struct regmap *map)
{
return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
/**
* regmap_get_raw_write_max - Get the maximum size we can read
*
* @map: Map to check.
*/
size_t regmap_get_raw_write_max(struct regmap *map)
{
return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
unsigned int val)
{
int ret;
struct regmap_range_node *range;
struct regmap *map = context;
WARN_ON(!map->bus || !map->format.format_write);
range = _regmap_range_lookup(map, reg);
if (range) {
ret = _regmap_select_page(map, &reg, range, 1);
if (ret != 0)
return ret;
}
map->format.format_write(map, reg, val);
trace_regmap_hw_write_start(map, reg, 1);
ret = map->bus->write(map->bus_context, map->work_buf,
map->format.buf_size);
trace_regmap_hw_write_done(map, reg, 1);
return ret;
}
static int _regmap_bus_reg_write(void *context, unsigned int reg,
unsigned int val)
{
struct regmap *map = context;
return map->bus->reg_write(map->bus_context, reg, val);
}
static int _regmap_bus_raw_write(void *context, unsigned int reg,
unsigned int val)
{
struct regmap *map = context;
WARN_ON(!map->bus || !map->format.format_val);
map->format.format_val(map->work_buf + map->format.reg_bytes
+ map->format.pad_bytes, val, 0);
return _regmap_raw_write(map, reg,
map->work_buf +
map->format.reg_bytes +
map->format.pad_bytes,
map->format.val_bytes);
}
static inline void *_regmap_map_get_context(struct regmap *map)
{
return (map->bus) ? map : map->bus_context;
}
int _regmap_write(struct regmap *map, unsigned int reg,
unsigned int val)
{
int ret;
void *context = _regmap_map_get_context(map);
if (!regmap_writeable(map, reg))
return -EIO;
if (!map->cache_bypass && !map->defer_caching) {
ret = regcache_write(map, reg, val);
if (ret != 0)
return ret;
if (map->cache_only) {
map->cache_dirty = true;
return 0;
}
}
#ifdef LOG_DEVICE
if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
dev_info(map->dev, "%x <= %x\n", reg, val);
#endif
trace_regmap_reg_write(map, reg, val);
return map->reg_write(context, reg, val);
}
/**
* regmap_write(): Write a value to a single register
*
* @map: Register map to write to
* @reg: Register to write to
* @val: Value to be written
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
int ret;
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
map->lock(map->lock_arg);
ret = _regmap_write(map, reg, val);
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);
/**
* regmap_write_async(): Write a value to a single register asynchronously
*
* @map: Register map to write to
* @reg: Register to write to
* @val: Value to be written
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
int ret;
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
map->lock(map->lock_arg);
map->async = true;
ret = _regmap_write(map, reg, val);
map->async = false;
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);
/**
* regmap_raw_write(): Write raw values to one or more registers
*
* @map: Register map to write to
* @reg: Initial register to write to
* @val: Block of data to be written, laid out for direct transmission to the
* device
* @val_len: Length of data pointed to by val.
*
* This function is intended to be used for things like firmware
* download where a large block of data needs to be transferred to the
* device. No formatting will be done on the data provided.
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_raw_write(struct regmap *map, unsigned int reg,
const void *val, size_t val_len)
{
int ret;
if (!regmap_can_raw_write(map))
return -EINVAL;
if (val_len % map->format.val_bytes)
return -EINVAL;
if (map->max_raw_write && map->max_raw_write > val_len)
return -E2BIG;
map->lock(map->lock_arg);
ret = _regmap_raw_write(map, reg, val, val_len);
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);
/**
* regmap_field_update_bits_base():
* Perform a read/modify/write cycle on the register field
* with change, async, force option
*
* @field: Register field to write to
* @mask: Bitmask to change
* @val: Value to be written
* @change: Boolean indicating if a write was done
* @async: Boolean indicating asynchronously
* @force: Boolean indicating use force update
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_field_update_bits_base(struct regmap_field *field,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force)
{
mask = (mask << field->shift) & field->mask;
return regmap_update_bits_base(field->regmap, field->reg,
mask, val << field->shift,
change, async, force);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
/**
* regmap_fields_update_bits_base():
* Perform a read/modify/write cycle on the register field
* with change, async, force option
*
* @field: Register field to write to
* @id: port ID
* @mask: Bitmask to change
* @val: Value to be written
* @change: Boolean indicating if a write was done
* @async: Boolean indicating asynchronously
* @force: Boolean indicating use force update
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force)
{
if (id >= field->id_size)
return -EINVAL;
mask = (mask << field->shift) & field->mask;
return regmap_update_bits_base(field->regmap,
field->reg + (field->id_offset * id),
mask, val << field->shift,
change, async, force);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
/*
* regmap_bulk_write(): Write multiple registers to the device
*
* @map: Register map to write to
* @reg: First register to be write from
* @val: Block of data to be written, in native register size for device
* @val_count: Number of registers to write
*
* This function is intended to be used for writing a large block of
* data to the device either in single transfer or multiple transfer.
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
size_t val_count)
{
int ret = 0, i;
size_t val_bytes = map->format.val_bytes;
size_t total_size = val_bytes * val_count;
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
/*
* Some devices don't support bulk write, for
* them we have a series of single write operations in the first two if
* blocks.
*
* The first if block is used for memory mapped io. It does not allow
* val_bytes of 3 for example.
* The second one is for busses that do not provide raw I/O.
* The third one is used for busses which do not have these limitations
* and can write arbitrary value lengths.
*/
if (!map->bus) {
map->lock(map->lock_arg);
for (i = 0; i < val_count; i++) {
unsigned int ival;
switch (val_bytes) {
case 1:
ival = *(u8 *)(val + (i * val_bytes));
break;
case 2:
ival = *(u16 *)(val + (i * val_bytes));
break;
case 4:
ival = *(u32 *)(val + (i * val_bytes));
break;
#ifdef CONFIG_64BIT
case 8:
ival = *(u64 *)(val + (i * val_bytes));
break;
#endif
default:
ret = -EINVAL;
goto out;
}
ret = _regmap_write(map,
reg + regmap_get_offset(map, i),
ival);
if (ret != 0)
goto out;
}
out:
map->unlock(map->lock_arg);
} else if (map->bus && !map->format.parse_inplace) {
const u8 *u8 = val;
const u16 *u16 = val;
const u32 *u32 = val;
unsigned int ival;
for (i = 0; i < val_count; i++) {
switch (map->format.val_bytes) {
case 4:
ival = u32[i];
break;
case 2:
ival = u16[i];
break;
case 1:
ival = u8[i];
break;
default:
return -EINVAL;
}
ret = regmap_write(map, reg + (i * map->reg_stride),
ival);
if (ret)
return ret;
}
} else if (map->use_single_write ||
(map->max_raw_write && map->max_raw_write < total_size)) {
int chunk_stride = map->reg_stride;
size_t chunk_size = val_bytes;
size_t chunk_count = val_count;
if (!map->use_single_write) {
chunk_size = map->max_raw_write;
if (chunk_size % val_bytes)
chunk_size -= chunk_size % val_bytes;
chunk_count = total_size / chunk_size;
chunk_stride *= chunk_size / val_bytes;
}
map->lock(map->lock_arg);
/* Write as many bytes as possible with chunk_size */
for (i = 0; i < chunk_count; i++) {
ret = _regmap_raw_write(map,
reg + (i * chunk_stride),
val + (i * chunk_size),
chunk_size);
if (ret)
break;
}
/* Write remaining bytes */
if (!ret && chunk_size * i < total_size) {
ret = _regmap_raw_write(map, reg + (i * chunk_stride),
val + (i * chunk_size),
total_size - i * chunk_size);
}
map->unlock(map->lock_arg);
} else {
void *wval;
if (!val_count)
return -EINVAL;
wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
if (!wval) {
dev_err(map->dev, "Error in memory allocation\n");
return -ENOMEM;
}
for (i = 0; i < val_count * val_bytes; i += val_bytes)
map->format.parse_inplace(wval + i);
map->lock(map->lock_arg);
ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
map->unlock(map->lock_arg);
kfree(wval);
}
return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);
/*
* _regmap_raw_multi_reg_write()
*
* the (register,newvalue) pairs in regs have not been formatted, but
* they are all in the same page and have been changed to being page
* relative. The page register has been written if that was necessary.
*/
static int _regmap_raw_multi_reg_write(struct regmap *map,
const struct reg_sequence *regs,
size_t num_regs)
{
int ret;
void *buf;
int i;
u8 *u8;
size_t val_bytes = map->format.val_bytes;
size_t reg_bytes = map->format.reg_bytes;
size_t pad_bytes = map->format.pad_bytes;
size_t pair_size = reg_bytes + pad_bytes + val_bytes;
size_t len = pair_size * num_regs;
if (!len)
return -EINVAL;
buf = kzalloc(len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
/* We have to linearise by hand. */
u8 = buf;
for (i = 0; i < num_regs; i++) {
unsigned int reg = regs[i].reg;
unsigned int val = regs[i].def;
trace_regmap_hw_write_start(map, reg, 1);
map->format.format_reg(u8, reg, map->reg_shift);
u8 += reg_bytes + pad_bytes;
map->format.format_val(u8, val, 0);
u8 += val_bytes;
}
u8 = buf;
*u8 |= map->write_flag_mask;
ret = map->bus->write(map->bus_context, buf, len);
kfree(buf);
for (i = 0; i < num_regs; i++) {
int reg = regs[i].reg;
trace_regmap_hw_write_done(map, reg, 1);
}
return ret;
}
static unsigned int _regmap_register_page(struct regmap *map,
unsigned int reg,
struct regmap_range_node *range)
{
unsigned int win_page = (reg - range->range_min) / range->window_len;
return win_page;
}
static int _regmap_range_multi_paged_reg_write(struct regmap *map,
struct reg_sequence *regs,
size_t num_regs)
{
int ret;
int i, n;
struct reg_sequence *base;
unsigned int this_page = 0;
unsigned int page_change = 0;
/*
* the set of registers are not neccessarily in order, but
* since the order of write must be preserved this algorithm
* chops the set each time the page changes. This also applies
* if there is a delay required at any point in the sequence.
*/
base = regs;
for (i = 0, n = 0; i < num_regs; i++, n++) {
unsigned int reg = regs[i].reg;
struct regmap_range_node *range;
range = _regmap_range_lookup(map, reg);
if (range) {
unsigned int win_page = _regmap_register_page(map, reg,
range);
if (i == 0)
this_page = win_page;
if (win_page != this_page) {
this_page = win_page;
page_change = 1;
}
}
/* If we have both a page change and a delay make sure to
* write the regs and apply the delay before we change the
* page.
*/
if (page_change || regs[i].delay_us) {
/* For situations where the first write requires
* a delay we need to make sure we don't call
* raw_multi_reg_write with n=0
* This can't occur with page breaks as we
* never write on the first iteration
*/
if (regs[i].delay_us && i == 0)
n = 1;
ret = _regmap_raw_multi_reg_write(map, base, n);
if (ret != 0)
return ret;
if (regs[i].delay_us)
udelay(regs[i].delay_us);
base += n;
n = 0;
if (page_change) {
ret = _regmap_select_page(map,
&base[n].reg,
range, 1);
if (ret != 0)
return ret;
page_change = 0;
}
}
}
if (n > 0)
return _regmap_raw_multi_reg_write(map, base, n);
return 0;
}
static int _regmap_multi_reg_write(struct regmap *map,
const struct reg_sequence *regs,
size_t num_regs)
{
int i;
int ret;
if (!map->can_multi_write) {
for (i = 0; i < num_regs; i++) {
ret = _regmap_write(map, regs[i].reg, regs[i].def);
if (ret != 0)
return ret;
if (regs[i].delay_us)
udelay(regs[i].delay_us);
}
return 0;
}
if (!map->format.parse_inplace)
return -EINVAL;
if (map->writeable_reg)
for (i = 0; i < num_regs; i++) {
int reg = regs[i].reg;
if (!map->writeable_reg(map->dev, reg))
return -EINVAL;
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
}
if (!map->cache_bypass) {
for (i = 0; i < num_regs; i++) {
unsigned int val = regs[i].def;
unsigned int reg = regs[i].reg;
ret = regcache_write(map, reg, val);
if (ret) {
dev_err(map->dev,
"Error in caching of register: %x ret: %d\n",
reg, ret);
return ret;
}
}
if (map->cache_only) {
map->cache_dirty = true;
return 0;
}
}
WARN_ON(!map->bus);
for (i = 0; i < num_regs; i++) {
unsigned int reg = regs[i].reg;
struct regmap_range_node *range;
/* Coalesce all the writes between a page break or a delay
* in a sequence
*/
range = _regmap_range_lookup(map, reg);
if (range || regs[i].delay_us) {
size_t len = sizeof(struct reg_sequence)*num_regs;
struct reg_sequence *base = kmemdup(regs, len,
GFP_KERNEL);
if (!base)
return -ENOMEM;
ret = _regmap_range_multi_paged_reg_write(map, base,
num_regs);
kfree(base);
return ret;
}
}
return _regmap_raw_multi_reg_write(map, regs, num_regs);
}
/*
* regmap_multi_reg_write(): Write multiple registers to the device
*
* where the set of register,value pairs are supplied in any order,
* possibly not all in a single range.
*
* @map: Register map to write to
* @regs: Array of structures containing register,value to be written
* @num_regs: Number of registers to write
*
* The 'normal' block write mode will send ultimately send data on the
* target bus as R,V1,V2,V3,..,Vn where successively higer registers are
* addressed. However, this alternative block multi write mode will send
* the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
* must of course support the mode.
*
* A value of zero will be returned on success, a negative errno will be
* returned in error cases.
*/
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
int num_regs)
{
int ret;
map->lock(map->lock_arg);
ret = _regmap_multi_reg_write(map, regs, num_regs);
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
/*
* regmap_multi_reg_write_bypassed(): Write multiple registers to the
* device but not the cache
*
* where the set of register are supplied in any order
*
* @map: Register map to write to
* @regs: Array of structures containing register,value to be written
* @num_regs: Number of registers to write
*
* This function is intended to be used for writing a large block of data
* atomically to the device in single transfer for those I2C client devices
* that implement this alternative block write mode.
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_multi_reg_write_bypassed(struct regmap *map,
const struct reg_sequence *regs,
int num_regs)
{
int ret;
bool bypass;
map->lock(map->lock_arg);
bypass = map->cache_bypass;
map->cache_bypass = true;
ret = _regmap_multi_reg_write(map, regs, num_regs);
map->cache_bypass = bypass;
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
/**
* regmap_raw_write_async(): Write raw values to one or more registers
* asynchronously
*
* @map: Register map to write to
* @reg: Initial register to write to
* @val: Block of data to be written, laid out for direct transmission to the
* device. Must be valid until regmap_async_complete() is called.
* @val_len: Length of data pointed to by val.
*
* This function is intended to be used for things like firmware
* download where a large block of data needs to be transferred to the
* device. No formatting will be done on the data provided.
*
* If supported by the underlying bus the write will be scheduled
* asynchronously, helping maximise I/O speed on higher speed buses
* like SPI. regmap_async_complete() can be called to ensure that all
* asynchrnous writes have been completed.
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
const void *val, size_t val_len)
{
int ret;
if (val_len % map->format.val_bytes)
return -EINVAL;
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
map->lock(map->lock_arg);
map->async = true;
ret = _regmap_raw_write(map, reg, val, val_len);
map->async = false;
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);
static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
unsigned int val_len)
{
struct regmap_range_node *range;
int ret;
WARN_ON(!map->bus);
if (!map->bus || !map->bus->read)
return -EINVAL;
range = _regmap_range_lookup(map, reg);
if (range) {
ret = _regmap_select_page(map, &reg, range,
val_len / map->format.val_bytes);
if (ret != 0)
return ret;
}
map->format.format_reg(map->work_buf, reg, map->reg_shift);
regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
map->read_flag_mask);
trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
ret = map->bus->read(map->bus_context, map->work_buf,
map->format.reg_bytes + map->format.pad_bytes,
val, val_len);
trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
return ret;
}
static int _regmap_bus_reg_read(void *context, unsigned int reg,
unsigned int *val)
{
struct regmap *map = context;
return map->bus->reg_read(map->bus_context, reg, val);
}
static int _regmap_bus_read(void *context, unsigned int reg,
unsigned int *val)
{
int ret;
struct regmap *map = context;
if (!map->format.parse_val)
return -EINVAL;
ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
if (ret == 0)
*val = map->format.parse_val(map->work_buf);
return ret;
}
static int _regmap_read(struct regmap *map, unsigned int reg,
unsigned int *val)
{
int ret;
void *context = _regmap_map_get_context(map);
if (!map->cache_bypass) {
ret = regcache_read(map, reg, val);
if (ret == 0)
return 0;
}
if (map->cache_only)
return -EBUSY;
if (!regmap_readable(map, reg))
return -EIO;
ret = map->reg_read(context, reg, val);
if (ret == 0) {
#ifdef LOG_DEVICE
if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
dev_info(map->dev, "%x => %x\n", reg, *val);
#endif
trace_regmap_reg_read(map, reg, *val);
if (!map->cache_bypass)
regcache_write(map, reg, *val);
}
return ret;
}
/**
* regmap_read(): Read a value from a single register
*
* @map: Register map to read from
* @reg: Register to be read from
* @val: Pointer to store read value
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
int ret;
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
map->lock(map->lock_arg);
ret = _regmap_read(map, reg, val);
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);
/**
* regmap_raw_read(): Read raw data from the device
*
* @map: Register map to read from
* @reg: First register to be read from
* @val: Pointer to store read value
* @val_len: Size of data to read
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
size_t val_len)
{
size_t val_bytes = map->format.val_bytes;
size_t val_count = val_len / val_bytes;
unsigned int v;
int ret, i;
if (!map->bus)
return -EINVAL;
if (val_len % map->format.val_bytes)
return -EINVAL;
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
if (val_count == 0)
return -EINVAL;
map->lock(map->lock_arg);
if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
map->cache_type == REGCACHE_NONE) {
if (!map->bus->read) {
ret = -ENOTSUPP;
goto out;
}
if (map->max_raw_read && map->max_raw_read < val_len) {
ret = -E2BIG;
goto out;
}
/* Physical block read if there's no cache involved */
ret = _regmap_raw_read(map, reg, val, val_len);
} else {
/* Otherwise go word by word for the cache; should be low
* cost as we expect to hit the cache.
*/
for (i = 0; i < val_count; i++) {
ret = _regmap_read(map, reg + regmap_get_offset(map, i),
&v);
if (ret != 0)
goto out;
map->format.format_val(val + (i * val_bytes), v, 0);
}
}
out:
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);
/**
* regmap_field_read(): Read a value to a single register field
*
* @field: Register field to read from
* @val: Pointer to store read value
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
int ret;
unsigned int reg_val;
ret = regmap_read(field->regmap, field->reg, &reg_val);
if (ret != 0)
return ret;
reg_val &= field->mask;
reg_val >>= field->shift;
*val = reg_val;
return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);
/**
* regmap_fields_read(): Read a value to a single register field with port ID
*
* @field: Register field to read from
* @id: port ID
* @val: Pointer to store read value
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_fields_read(struct regmap_field *field, unsigned int id,
unsigned int *val)
{
int ret;
unsigned int reg_val;
if (id >= field->id_size)
return -EINVAL;
ret = regmap_read(field->regmap,
field->reg + (field->id_offset * id),
&reg_val);
if (ret != 0)
return ret;
reg_val &= field->mask;
reg_val >>= field->shift;
*val = reg_val;
return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);
/**
* regmap_bulk_read(): Read multiple registers from the device
*
* @map: Register map to read from
* @reg: First register to be read from
* @val: Pointer to store read value, in native register size for device
* @val_count: Number of registers to read
*
* A value of zero will be returned on success, a negative errno will
* be returned in error cases.
*/
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
size_t val_count)
{
int ret, i;
size_t val_bytes = map->format.val_bytes;
bool vol = regmap_volatile_range(map, reg, val_count);
if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;
if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
/*
* Some devices does not support bulk read, for
* them we have a series of single read operations.
*/
size_t total_size = val_bytes * val_count;
if (!map->use_single_read &&
(!map->max_raw_read || map->max_raw_read > total_size)) {
ret = regmap_raw_read(map, reg, val,
val_bytes * val_count);
if (ret != 0)
return ret;
} else {
/*
* Some devices do not support bulk read or do not
* support large bulk reads, for them we have a series
* of read operations.
*/
int chunk_stride = map->reg_stride;
size_t chunk_size = val_bytes;
size_t chunk_count = val_count;
if (!map->use_single_read) {
chunk_size = map->max_raw_read;
if (chunk_size % val_bytes)
chunk_size -= chunk_size % val_bytes;
chunk_count = total_size / chunk_size;
chunk_stride *= chunk_size / val_bytes;
}
/* Read bytes that fit into a multiple of chunk_size */
for (i = 0; i < chunk_count; i++) {
ret = regmap_raw_read(map,
reg + (i * chunk_stride),
val + (i * chunk_size),
chunk_size);
if (ret != 0)
return ret;
}
/* Read remaining bytes */
if (chunk_size * i < total_size) {
ret = regmap_raw_read(map,
reg + (i * chunk_stride),
val + (i * chunk_size),
total_size - i * chunk_size);
if (ret != 0)
return ret;
}
}
for (i = 0; i < val_count * val_bytes; i += val_bytes)
map->format.parse_inplace(val + i);
} else {
for (i = 0; i < val_count; i++) {
unsigned int ival;
ret = regmap_read(map, reg + regmap_get_offset(map, i),
&ival);
if (ret != 0)
return ret;
if (map->format.format_val) {
map->format.format_val(val + (i * val_bytes), ival, 0);
} else {
/* Devices providing read and write
* operations can use the bulk I/O
* functions if they define a val_bytes,
* we assume that the values are native
* endian.
*/
#ifdef CONFIG_64BIT
u64 *u64 = val;
#endif
u32 *u32 = val;
u16 *u16 = val;
u8 *u8 = val;
switch (map->format.val_bytes) {
#ifdef CONFIG_64BIT
case 8:
u64[i] = ival;
break;
#endif
case 4:
u32[i] = ival;
break;
case 2:
u16[i] = ival;
break;
case 1:
u8[i] = ival;
break;
default:
return -EINVAL;
}
}
}
}
return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);
static int _regmap_update_bits(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change, bool force_write)
{
int ret;
unsigned int tmp, orig;
if (change)
*change = false;
if (regmap_volatile(map, reg) && map->reg_update_bits) {
ret = map->reg_update_bits(map->bus_context, reg, mask, val);
if (ret == 0 && change)
*change = true;
} else {
ret = _regmap_read(map, reg, &orig);
if (ret != 0)
return ret;
tmp = orig & ~mask;
tmp |= val & mask;
if (force_write || (tmp != orig)) {
ret = _regmap_write(map, reg, tmp);
if (ret == 0 && change)
*change = true;
}
}
return ret;
}
/**
* regmap_update_bits_base:
* Perform a read/modify/write cycle on the
* register map with change, async, force option
*
* @map: Register map to update
* @reg: Register to update
* @mask: Bitmask to change
* @val: New value for bitmask
* @change: Boolean indicating if a write was done
* @async: Boolean indicating asynchronously
* @force: Boolean indicating use force update
*
* if async was true,
* With most buses the read must be done synchronously so this is most
* useful for devices with a cache which do not need to interact with
* the hardware to determine the current register value.
*
* Returns zero for success, a negative number on error.
*/
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
unsigned int mask, unsigned int val,
bool *change, bool async, bool force)
{
int ret;
map->lock(map->lock_arg);
map->async = async;
ret = _regmap_update_bits(map, reg, mask, val, change, force);
map->async = false;
map->unlock(map->lock_arg);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_base);
void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
struct regmap *map = async->map;
bool wake;
trace_regmap_async_io_complete(map);
spin_lock(&map->async_lock);
list_move(&async->list, &map->async_free);
wake = list_empty(&map->async_list);
if (ret != 0)
map->async_ret = ret;
spin_unlock(&map->async_lock);
if (wake)
wake_up(&map->async_waitq);
}
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
static int regmap_async_is_done(struct regmap *map)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&map->async_lock, flags);
ret = list_empty(&map->async_list);
spin_unlock_irqrestore(&map->async_lock, flags);
return ret;
}
/**
* regmap_async_complete: Ensure all asynchronous I/O has completed.
*
* @map: Map to operate on.
*
* Blocks until any pending asynchronous I/O has completed. Returns
* an error code for any failed I/O operations.
*/
int regmap_async_complete(struct regmap *map)
{
unsigned long flags;
int ret;
/* Nothing to do with no async support */
if (!map->bus || !map->bus->async_write)
return 0;
trace_regmap_async_complete_start(map);
wait_event(map->async_waitq, regmap_async_is_done(map));
spin_lock_irqsave(&map->async_lock, flags);
ret = map->async_ret;
map->async_ret = 0;
spin_unlock_irqrestore(&map->async_lock, flags);
trace_regmap_async_complete_done(map);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_async_complete);
/**
* regmap_register_patch: Register and apply register updates to be applied
* on device initialistion
*
* @map: Register map to apply updates to.
* @regs: Values to update.
* @num_regs: Number of entries in regs.
*
* Register a set of register updates to be applied to the device
* whenever the device registers are synchronised with the cache and
* apply them immediately. Typically this is used to apply
* corrections to be applied to the device defaults on startup, such
* as the updates some vendors provide to undocumented registers.
*
* The caller must ensure that this function cannot be called
* concurrently with either itself or regcache_sync().
*/
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
int num_regs)
{
struct reg_sequence *p;
int ret;
bool bypass;
if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
num_regs))
return 0;
p = krealloc(map->patch,
sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
GFP_KERNEL);
if (p) {
memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
map->patch = p;
map->patch_regs += num_regs;
} else {
return -ENOMEM;
}
map->lock(map->lock_arg);
bypass = map->cache_bypass;
map->cache_bypass = true;
map->async = true;
ret = _regmap_multi_reg_write(map, regs, num_regs);
map->async = false;
map->cache_bypass = bypass;
map->unlock(map->lock_arg);
regmap_async_complete(map);
return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);
/*
* regmap_get_val_bytes(): Report the size of a register value
*
* Report the size of a register value, mainly intended to for use by
* generic infrastructure built on top of regmap.
*/
int regmap_get_val_bytes(struct regmap *map)
{
if (map->format.format_write)
return -EINVAL;
return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
/**
* regmap_get_max_register(): Report the max register value
*
* Report the max register value, mainly intended to for use by
* generic infrastructure built on top of regmap.
*/
int regmap_get_max_register(struct regmap *map)
{
return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);
/**
* regmap_get_reg_stride(): Report the register address stride
*
* Report the register address stride, mainly intended to for use by
* generic infrastructure built on top of regmap.
*/
int regmap_get_reg_stride(struct regmap *map)
{
return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
int regmap_parse_val(struct regmap *map, const void *buf,
unsigned int *val)
{
if (!map->format.parse_val)
return -EINVAL;
*val = map->format.parse_val(buf);
return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);
static int __init regmap_initcall(void)
{
regmap_debugfs_initcall();
return 0;
}
postcore_initcall(regmap_initcall);