384 lines
12 KiB
C
384 lines
12 KiB
C
/*
|
|
* Copyright (C) 2004-2006 Atmel Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#ifndef __ASM_AVR32_PGTABLE_H
|
|
#define __ASM_AVR32_PGTABLE_H
|
|
|
|
#include <asm/addrspace.h>
|
|
|
|
#ifndef __ASSEMBLY__
|
|
#include <linux/sched.h>
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
/*
|
|
* Use two-level page tables just as the i386 (without PAE)
|
|
*/
|
|
#include <asm/pgtable-2level.h>
|
|
|
|
/*
|
|
* The following code might need some cleanup when the values are
|
|
* final...
|
|
*/
|
|
#define PMD_SIZE (1UL << PMD_SHIFT)
|
|
#define PMD_MASK (~(PMD_SIZE-1))
|
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
|
|
|
#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
|
|
#define FIRST_USER_ADDRESS 0
|
|
|
|
#ifndef __ASSEMBLY__
|
|
extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
|
|
extern void paging_init(void);
|
|
|
|
/*
|
|
* ZERO_PAGE is a global shared page that is always zero: used for
|
|
* zero-mapped memory areas etc.
|
|
*/
|
|
extern struct page *empty_zero_page;
|
|
#define ZERO_PAGE(vaddr) (empty_zero_page)
|
|
|
|
/*
|
|
* Just any arbitrary offset to the start of the vmalloc VM area: the
|
|
* current 8 MiB value just means that there will be a 8 MiB "hole"
|
|
* after the uncached physical memory (P2 segment) until the vmalloc
|
|
* area starts. That means that any out-of-bounds memory accesses will
|
|
* hopefully be caught; we don't know if the end of the P1/P2 segments
|
|
* are actually used for anything, but it is anyway safer to let the
|
|
* MMU catch these kinds of errors than to rely on the memory bus.
|
|
*
|
|
* A "hole" of the same size is added to the end of the P3 segment as
|
|
* well. It might seem wasteful to use 16 MiB of virtual address space
|
|
* on this, but we do have 512 MiB of it...
|
|
*
|
|
* The vmalloc() routines leave a hole of 4 KiB between each vmalloced
|
|
* area for the same reason.
|
|
*/
|
|
#define VMALLOC_OFFSET (8 * 1024 * 1024)
|
|
#define VMALLOC_START (P3SEG + VMALLOC_OFFSET)
|
|
#define VMALLOC_END (P4SEG - VMALLOC_OFFSET)
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
/*
|
|
* Page flags. Some of these flags are not directly supported by
|
|
* hardware, so we have to emulate them.
|
|
*/
|
|
#define _TLBEHI_BIT_VALID 9
|
|
#define _TLBEHI_VALID (1 << _TLBEHI_BIT_VALID)
|
|
|
|
#define _PAGE_BIT_WT 0 /* W-bit : write-through */
|
|
#define _PAGE_BIT_DIRTY 1 /* D-bit : page changed */
|
|
#define _PAGE_BIT_SZ0 2 /* SZ0-bit : Size of page */
|
|
#define _PAGE_BIT_SZ1 3 /* SZ1-bit : Size of page */
|
|
#define _PAGE_BIT_EXECUTE 4 /* X-bit : execute access allowed */
|
|
#define _PAGE_BIT_RW 5 /* AP0-bit : write access allowed */
|
|
#define _PAGE_BIT_USER 6 /* AP1-bit : user space access allowed */
|
|
#define _PAGE_BIT_BUFFER 7 /* B-bit : bufferable */
|
|
#define _PAGE_BIT_GLOBAL 8 /* G-bit : global (ignore ASID) */
|
|
#define _PAGE_BIT_CACHABLE 9 /* C-bit : cachable */
|
|
|
|
/* If we drop support for 1K pages, we get two extra bits */
|
|
#define _PAGE_BIT_PRESENT 10
|
|
#define _PAGE_BIT_ACCESSED 11 /* software: page was accessed */
|
|
|
|
/* The following flags are only valid when !PRESENT */
|
|
#define _PAGE_BIT_FILE 0 /* software: pagecache or swap? */
|
|
|
|
#define _PAGE_WT (1 << _PAGE_BIT_WT)
|
|
#define _PAGE_DIRTY (1 << _PAGE_BIT_DIRTY)
|
|
#define _PAGE_EXECUTE (1 << _PAGE_BIT_EXECUTE)
|
|
#define _PAGE_RW (1 << _PAGE_BIT_RW)
|
|
#define _PAGE_USER (1 << _PAGE_BIT_USER)
|
|
#define _PAGE_BUFFER (1 << _PAGE_BIT_BUFFER)
|
|
#define _PAGE_GLOBAL (1 << _PAGE_BIT_GLOBAL)
|
|
#define _PAGE_CACHABLE (1 << _PAGE_BIT_CACHABLE)
|
|
|
|
/* Software flags */
|
|
#define _PAGE_ACCESSED (1 << _PAGE_BIT_ACCESSED)
|
|
#define _PAGE_PRESENT (1 << _PAGE_BIT_PRESENT)
|
|
#define _PAGE_FILE (1 << _PAGE_BIT_FILE)
|
|
|
|
/*
|
|
* Page types, i.e. sizes. _PAGE_TYPE_NONE corresponds to what is
|
|
* usually called _PAGE_PROTNONE on other architectures.
|
|
*
|
|
* XXX: Find out if _PAGE_PROTNONE is equivalent with !_PAGE_USER. If
|
|
* so, we can encode all possible page sizes (although we can't really
|
|
* support 1K pages anyway due to the _PAGE_PRESENT and _PAGE_ACCESSED
|
|
* bits)
|
|
*
|
|
*/
|
|
#define _PAGE_TYPE_MASK ((1 << _PAGE_BIT_SZ0) | (1 << _PAGE_BIT_SZ1))
|
|
#define _PAGE_TYPE_NONE (0 << _PAGE_BIT_SZ0)
|
|
#define _PAGE_TYPE_SMALL (1 << _PAGE_BIT_SZ0)
|
|
#define _PAGE_TYPE_MEDIUM (2 << _PAGE_BIT_SZ0)
|
|
#define _PAGE_TYPE_LARGE (3 << _PAGE_BIT_SZ0)
|
|
|
|
/*
|
|
* Mask which drop software flags. We currently can't handle more than
|
|
* 512 MiB of physical memory, so we can use bits 29-31 for other
|
|
* stuff. With a fixed 4K page size, we can use bits 10-11 as well as
|
|
* bits 2-3 (SZ)
|
|
*/
|
|
#define _PAGE_FLAGS_HARDWARE_MASK 0xfffff3ff
|
|
|
|
#define _PAGE_FLAGS_CACHE_MASK (_PAGE_CACHABLE | _PAGE_BUFFER | _PAGE_WT)
|
|
|
|
/* TODO: Check for saneness */
|
|
/* User-mode page table flags (to be set in a pgd or pmd entry) */
|
|
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \
|
|
| _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
|
|
/* Kernel-mode page table flags */
|
|
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_TYPE_SMALL | _PAGE_RW \
|
|
| _PAGE_ACCESSED | _PAGE_DIRTY)
|
|
/* Flags that may be modified by software */
|
|
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY \
|
|
| _PAGE_FLAGS_CACHE_MASK)
|
|
|
|
#define _PAGE_FLAGS_READ (_PAGE_CACHABLE | _PAGE_BUFFER)
|
|
#define _PAGE_FLAGS_WRITE (_PAGE_FLAGS_READ | _PAGE_RW | _PAGE_DIRTY)
|
|
|
|
#define _PAGE_NORMAL(x) __pgprot((x) | _PAGE_PRESENT | _PAGE_TYPE_SMALL \
|
|
| _PAGE_ACCESSED)
|
|
|
|
#define PAGE_NONE (_PAGE_ACCESSED | _PAGE_TYPE_NONE)
|
|
#define PAGE_READ (_PAGE_FLAGS_READ | _PAGE_USER)
|
|
#define PAGE_EXEC (_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_USER)
|
|
#define PAGE_WRITE (_PAGE_FLAGS_WRITE | _PAGE_USER)
|
|
#define PAGE_KERNEL _PAGE_NORMAL(_PAGE_FLAGS_WRITE | _PAGE_EXECUTE | _PAGE_GLOBAL)
|
|
#define PAGE_KERNEL_RO _PAGE_NORMAL(_PAGE_FLAGS_READ | _PAGE_EXECUTE | _PAGE_GLOBAL)
|
|
|
|
#define _PAGE_P(x) _PAGE_NORMAL((x) & ~(_PAGE_RW | _PAGE_DIRTY))
|
|
#define _PAGE_S(x) _PAGE_NORMAL(x)
|
|
|
|
#define PAGE_COPY _PAGE_P(PAGE_WRITE | PAGE_READ)
|
|
#define PAGE_SHARED _PAGE_S(PAGE_WRITE | PAGE_READ)
|
|
|
|
#ifndef __ASSEMBLY__
|
|
/*
|
|
* The hardware supports flags for write- and execute access. Read is
|
|
* always allowed if the page is loaded into the TLB, so the "-w-",
|
|
* "--x" and "-wx" mappings are implemented as "rw-", "r-x" and "rwx",
|
|
* respectively.
|
|
*
|
|
* The "---" case is handled by software; the page will simply not be
|
|
* loaded into the TLB if the page type is _PAGE_TYPE_NONE.
|
|
*/
|
|
|
|
#define __P000 __pgprot(PAGE_NONE)
|
|
#define __P001 _PAGE_P(PAGE_READ)
|
|
#define __P010 _PAGE_P(PAGE_WRITE)
|
|
#define __P011 _PAGE_P(PAGE_WRITE | PAGE_READ)
|
|
#define __P100 _PAGE_P(PAGE_EXEC)
|
|
#define __P101 _PAGE_P(PAGE_EXEC | PAGE_READ)
|
|
#define __P110 _PAGE_P(PAGE_EXEC | PAGE_WRITE)
|
|
#define __P111 _PAGE_P(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
|
|
|
|
#define __S000 __pgprot(PAGE_NONE)
|
|
#define __S001 _PAGE_S(PAGE_READ)
|
|
#define __S010 _PAGE_S(PAGE_WRITE)
|
|
#define __S011 _PAGE_S(PAGE_WRITE | PAGE_READ)
|
|
#define __S100 _PAGE_S(PAGE_EXEC)
|
|
#define __S101 _PAGE_S(PAGE_EXEC | PAGE_READ)
|
|
#define __S110 _PAGE_S(PAGE_EXEC | PAGE_WRITE)
|
|
#define __S111 _PAGE_S(PAGE_EXEC | PAGE_WRITE | PAGE_READ)
|
|
|
|
#define pte_none(x) (!pte_val(x))
|
|
#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
|
|
|
|
#define pte_clear(mm,addr,xp) \
|
|
do { \
|
|
set_pte_at(mm, addr, xp, __pte(0)); \
|
|
} while (0)
|
|
|
|
/*
|
|
* The following only work if pte_present() is true.
|
|
* Undefined behaviour if not..
|
|
*/
|
|
static inline int pte_write(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_RW;
|
|
}
|
|
static inline int pte_dirty(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_DIRTY;
|
|
}
|
|
static inline int pte_young(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_ACCESSED;
|
|
}
|
|
static inline int pte_special(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The following only work if pte_present() is not true.
|
|
*/
|
|
static inline int pte_file(pte_t pte)
|
|
{
|
|
return pte_val(pte) & _PAGE_FILE;
|
|
}
|
|
|
|
/* Mutator functions for PTE bits */
|
|
static inline pte_t pte_wrprotect(pte_t pte)
|
|
{
|
|
set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_RW));
|
|
return pte;
|
|
}
|
|
static inline pte_t pte_mkclean(pte_t pte)
|
|
{
|
|
set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY));
|
|
return pte;
|
|
}
|
|
static inline pte_t pte_mkold(pte_t pte)
|
|
{
|
|
set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED));
|
|
return pte;
|
|
}
|
|
static inline pte_t pte_mkwrite(pte_t pte)
|
|
{
|
|
set_pte(&pte, __pte(pte_val(pte) | _PAGE_RW));
|
|
return pte;
|
|
}
|
|
static inline pte_t pte_mkdirty(pte_t pte)
|
|
{
|
|
set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY));
|
|
return pte;
|
|
}
|
|
static inline pte_t pte_mkyoung(pte_t pte)
|
|
{
|
|
set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED));
|
|
return pte;
|
|
}
|
|
static inline pte_t pte_mkspecial(pte_t pte)
|
|
{
|
|
return pte;
|
|
}
|
|
|
|
#define pmd_none(x) (!pmd_val(x))
|
|
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
|
|
#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
|
|
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) \
|
|
!= _KERNPG_TABLE)
|
|
|
|
/*
|
|
* Permanent address of a page. We don't support highmem, so this is
|
|
* trivial.
|
|
*/
|
|
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
|
|
#define pte_page(x) (pfn_to_page(pte_pfn(x)))
|
|
|
|
/*
|
|
* Mark the prot value as uncacheable and unbufferable
|
|
*/
|
|
#define pgprot_noncached(prot) \
|
|
__pgprot(pgprot_val(prot) & ~(_PAGE_BUFFER | _PAGE_CACHABLE))
|
|
|
|
/*
|
|
* Mark the prot value as uncacheable but bufferable
|
|
*/
|
|
#define pgprot_writecombine(prot) \
|
|
__pgprot((pgprot_val(prot) & ~_PAGE_CACHABLE) | _PAGE_BUFFER)
|
|
|
|
/*
|
|
* Conversion functions: convert a page and protection to a page entry,
|
|
* and a page entry and page directory to the page they refer to.
|
|
*
|
|
* extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
|
|
*/
|
|
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
|
|
|
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
|
{
|
|
set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK)
|
|
| pgprot_val(newprot)));
|
|
return pte;
|
|
}
|
|
|
|
#define page_pte(page) page_pte_prot(page, __pgprot(0))
|
|
|
|
#define pmd_page_vaddr(pmd) \
|
|
((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
|
|
|
|
#define pmd_page(pmd) (phys_to_page(pmd_val(pmd)))
|
|
|
|
/* to find an entry in a page-table-directory. */
|
|
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
|
|
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
|
|
#define pgd_offset_current(address) \
|
|
((pgd_t *)__mfsr(SYSREG_PTBR) + pgd_index(address))
|
|
|
|
/* to find an entry in a kernel page-table-directory */
|
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
|
|
|
/* Find an entry in the third-level page table.. */
|
|
#define pte_index(address) \
|
|
((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
|
#define pte_offset(dir, address) \
|
|
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
|
|
#define pte_offset_kernel(dir, address) \
|
|
((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
|
|
#define pte_offset_map(dir, address) pte_offset_kernel(dir, address)
|
|
#define pte_offset_map_nested(dir, address) pte_offset_kernel(dir, address)
|
|
#define pte_unmap(pte) do { } while (0)
|
|
#define pte_unmap_nested(pte) do { } while (0)
|
|
|
|
struct vm_area_struct;
|
|
extern void update_mmu_cache(struct vm_area_struct * vma,
|
|
unsigned long address, pte_t pte);
|
|
|
|
/*
|
|
* Encode and decode a swap entry
|
|
*
|
|
* Constraints:
|
|
* _PAGE_FILE at bit 0
|
|
* _PAGE_TYPE_* at bits 2-3 (for emulating _PAGE_PROTNONE)
|
|
* _PAGE_PRESENT at bit 10
|
|
*
|
|
* We encode the type into bits 4-9 and offset into bits 11-31. This
|
|
* gives us a 21 bits offset, or 2**21 * 4K = 8G usable swap space per
|
|
* device, and 64 possible types.
|
|
*
|
|
* NOTE: We should set ZEROs at the position of _PAGE_PRESENT
|
|
* and _PAGE_PROTNONE bits
|
|
*/
|
|
#define __swp_type(x) (((x).val >> 4) & 0x3f)
|
|
#define __swp_offset(x) ((x).val >> 11)
|
|
#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
|
|
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
|
|
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
|
|
|
|
/*
|
|
* Encode and decode a nonlinear file mapping entry. We have to
|
|
* preserve _PAGE_FILE and _PAGE_PRESENT here. _PAGE_TYPE_* isn't
|
|
* necessary, since _PAGE_FILE implies !_PAGE_PROTNONE (?)
|
|
*/
|
|
#define PTE_FILE_MAX_BITS 30
|
|
#define pte_to_pgoff(pte) (((pte_val(pte) >> 1) & 0x1ff) \
|
|
| ((pte_val(pte) >> 11) << 9))
|
|
#define pgoff_to_pte(off) ((pte_t) { ((((off) & 0x1ff) << 1) \
|
|
| (((off) >> 9) << 11) \
|
|
| _PAGE_FILE) })
|
|
|
|
typedef pte_t *pte_addr_t;
|
|
|
|
#define kern_addr_valid(addr) (1)
|
|
|
|
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
|
|
remap_pfn_range(vma, vaddr, pfn, size, prot)
|
|
|
|
/* No page table caches to initialize (?) */
|
|
#define pgtable_cache_init() do { } while(0)
|
|
|
|
#include <asm-generic/pgtable.h>
|
|
|
|
#endif /* !__ASSEMBLY__ */
|
|
|
|
#endif /* __ASM_AVR32_PGTABLE_H */
|