linux-sg2042/arch/x86/kernel/uprobes.c

729 lines
23 KiB
C

/*
* User-space Probes (UProbes) for x86
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Copyright (C) IBM Corporation, 2008-2011
* Authors:
* Srikar Dronamraju
* Jim Keniston
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <asm/processor.h>
#include <asm/insn.h>
/* Post-execution fixups. */
/* No fixup needed */
#define UPROBE_FIX_NONE 0x0
/* Adjust IP back to vicinity of actual insn */
#define UPROBE_FIX_IP 0x1
/* Adjust the return address of a call insn */
#define UPROBE_FIX_CALL 0x2
/* Instruction will modify TF, don't change it */
#define UPROBE_FIX_SETF 0x4
#define UPROBE_FIX_RIP_AX 0x8000
#define UPROBE_FIX_RIP_CX 0x4000
#define UPROBE_TRAP_NR UINT_MAX
/* Adaptations for mhiramat x86 decoder v14. */
#define OPCODE1(insn) ((insn)->opcode.bytes[0])
#define OPCODE2(insn) ((insn)->opcode.bytes[1])
#define OPCODE3(insn) ((insn)->opcode.bytes[2])
#define MODRM_REG(insn) X86_MODRM_REG(insn->modrm.value)
#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \
(b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \
(b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \
(bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \
<< (row % 32))
/*
* Good-instruction tables for 32-bit apps. This is non-const and volatile
* to keep gcc from statically optimizing it out, as variable_test_bit makes
* some versions of gcc to think only *(unsigned long*) is used.
*/
static volatile u32 good_insns_32[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
W(0x20, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* 20 */
W(0x30, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
W(0xd0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
/* Using this for both 64-bit and 32-bit apps */
static volatile u32 good_2byte_insns[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
W(0x30, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
W(0xd0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
W(0xf0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#ifdef CONFIG_X86_64
/* Good-instruction tables for 64-bit apps */
static volatile u32 good_insns_64[256 / 32] = {
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
/* ---------------------------------------------- */
W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 00 */
W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
W(0x20, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) | /* 20 */
W(0x30, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 30 */
W(0x40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 40 */
W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
W(0x60, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
W(0xc0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
W(0xf0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1) /* f0 */
/* ---------------------------------------------- */
/* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
};
#endif
#undef W
/*
* opcodes we'll probably never support:
*
* 6c-6d, e4-e5, ec-ed - in
* 6e-6f, e6-e7, ee-ef - out
* cc, cd - int3, int
* cf - iret
* d6 - illegal instruction
* f1 - int1/icebp
* f4 - hlt
* fa, fb - cli, sti
* 0f - lar, lsl, syscall, clts, sysret, sysenter, sysexit, invd, wbinvd, ud2
*
* invalid opcodes in 64-bit mode:
*
* 06, 0e, 16, 1e, 27, 2f, 37, 3f, 60-62, 82, c4-c5, d4-d5
* 63 - we support this opcode in x86_64 but not in i386.
*
* opcodes we may need to refine support for:
*
* 0f - 2-byte instructions: For many of these instructions, the validity
* depends on the prefix and/or the reg field. On such instructions, we
* just consider the opcode combination valid if it corresponds to any
* valid instruction.
*
* 8f - Group 1 - only reg = 0 is OK
* c6-c7 - Group 11 - only reg = 0 is OK
* d9-df - fpu insns with some illegal encodings
* f2, f3 - repnz, repz prefixes. These are also the first byte for
* certain floating-point instructions, such as addsd.
*
* fe - Group 4 - only reg = 0 or 1 is OK
* ff - Group 5 - only reg = 0-6 is OK
*
* others -- Do we need to support these?
*
* 0f - (floating-point?) prefetch instructions
* 07, 17, 1f - pop es, pop ss, pop ds
* 26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
* but 64 and 65 (fs: and gs:) seem to be used, so we support them
* 67 - addr16 prefix
* ce - into
* f0 - lock prefix
*/
/*
* TODO:
* - Where necessary, examine the modrm byte and allow only valid instructions
* in the different Groups and fpu instructions.
*/
static bool is_prefix_bad(struct insn *insn)
{
int i;
for (i = 0; i < insn->prefixes.nbytes; i++) {
switch (insn->prefixes.bytes[i]) {
case 0x26: /* INAT_PFX_ES */
case 0x2E: /* INAT_PFX_CS */
case 0x36: /* INAT_PFX_DS */
case 0x3E: /* INAT_PFX_SS */
case 0xF0: /* INAT_PFX_LOCK */
return true;
}
}
return false;
}
static int validate_insn_32bits(struct arch_uprobe *auprobe, struct insn *insn)
{
insn_init(insn, auprobe->insn, false);
/* Skip good instruction prefixes; reject "bad" ones. */
insn_get_opcode(insn);
if (is_prefix_bad(insn))
return -ENOTSUPP;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_32))
return 0;
if (insn->opcode.nbytes == 2) {
if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
return 0;
}
return -ENOTSUPP;
}
/*
* Figure out which fixups arch_uprobe_post_xol() will need to perform, and
* annotate arch_uprobe->fixups accordingly. To start with,
* arch_uprobe->fixups is either zero or it reflects rip-related fixups.
*/
static void prepare_fixups(struct arch_uprobe *auprobe, struct insn *insn)
{
bool fix_ip = true, fix_call = false; /* defaults */
int reg;
insn_get_opcode(insn); /* should be a nop */
switch (OPCODE1(insn)) {
case 0x9d:
/* popf */
auprobe->fixups |= UPROBE_FIX_SETF;
break;
case 0xc3: /* ret/lret */
case 0xcb:
case 0xc2:
case 0xca:
/* ip is correct */
fix_ip = false;
break;
case 0xe8: /* call relative - Fix return addr */
fix_call = true;
break;
case 0x9a: /* call absolute - Fix return addr, not ip */
fix_call = true;
fix_ip = false;
break;
case 0xff:
insn_get_modrm(insn);
reg = MODRM_REG(insn);
if (reg == 2 || reg == 3) {
/* call or lcall, indirect */
/* Fix return addr; ip is correct. */
fix_call = true;
fix_ip = false;
} else if (reg == 4 || reg == 5) {
/* jmp or ljmp, indirect */
/* ip is correct. */
fix_ip = false;
}
break;
case 0xea: /* jmp absolute -- ip is correct */
fix_ip = false;
break;
default:
break;
}
if (fix_ip)
auprobe->fixups |= UPROBE_FIX_IP;
if (fix_call)
auprobe->fixups |= UPROBE_FIX_CALL;
}
#ifdef CONFIG_X86_64
/*
* If arch_uprobe->insn doesn't use rip-relative addressing, return
* immediately. Otherwise, rewrite the instruction so that it accesses
* its memory operand indirectly through a scratch register. Set
* arch_uprobe->fixups and arch_uprobe->rip_rela_target_address
* accordingly. (The contents of the scratch register will be saved
* before we single-step the modified instruction, and restored
* afterward.)
*
* We do this because a rip-relative instruction can access only a
* relatively small area (+/- 2 GB from the instruction), and the XOL
* area typically lies beyond that area. At least for instructions
* that store to memory, we can't execute the original instruction
* and "fix things up" later, because the misdirected store could be
* disastrous.
*
* Some useful facts about rip-relative instructions:
*
* - There's always a modrm byte.
* - There's never a SIB byte.
* - The displacement is always 4 bytes.
*/
static void
handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
u8 *cursor;
u8 reg;
if (mm->context.ia32_compat)
return;
auprobe->rip_rela_target_address = 0x0;
if (!insn_rip_relative(insn))
return;
/*
* insn_rip_relative() would have decoded rex_prefix, modrm.
* Clear REX.b bit (extension of MODRM.rm field):
* we want to encode rax/rcx, not r8/r9.
*/
if (insn->rex_prefix.nbytes) {
cursor = auprobe->insn + insn_offset_rex_prefix(insn);
*cursor &= 0xfe; /* Clearing REX.B bit */
}
/*
* Point cursor at the modrm byte. The next 4 bytes are the
* displacement. Beyond the displacement, for some instructions,
* is the immediate operand.
*/
cursor = auprobe->insn + insn_offset_modrm(insn);
insn_get_length(insn);
/*
* Convert from rip-relative addressing to indirect addressing
* via a scratch register. Change the r/m field from 0x5 (%rip)
* to 0x0 (%rax) or 0x1 (%rcx), and squeeze out the offset field.
*/
reg = MODRM_REG(insn);
if (reg == 0) {
/*
* The register operand (if any) is either the A register
* (%rax, %eax, etc.) or (if the 0x4 bit is set in the
* REX prefix) %r8. In any case, we know the C register
* is NOT the register operand, so we use %rcx (register
* #1) for the scratch register.
*/
auprobe->fixups = UPROBE_FIX_RIP_CX;
/* Change modrm from 00 000 101 to 00 000 001. */
*cursor = 0x1;
} else {
/* Use %rax (register #0) for the scratch register. */
auprobe->fixups = UPROBE_FIX_RIP_AX;
/* Change modrm from 00 xxx 101 to 00 xxx 000 */
*cursor = (reg << 3);
}
/* Target address = address of next instruction + (signed) offset */
auprobe->rip_rela_target_address = (long)insn->length + insn->displacement.value;
/* Displacement field is gone; slide immediate field (if any) over. */
if (insn->immediate.nbytes) {
cursor++;
memmove(cursor, cursor + insn->displacement.nbytes, insn->immediate.nbytes);
}
return;
}
static int validate_insn_64bits(struct arch_uprobe *auprobe, struct insn *insn)
{
insn_init(insn, auprobe->insn, true);
/* Skip good instruction prefixes; reject "bad" ones. */
insn_get_opcode(insn);
if (is_prefix_bad(insn))
return -ENOTSUPP;
if (test_bit(OPCODE1(insn), (unsigned long *)good_insns_64))
return 0;
if (insn->opcode.nbytes == 2) {
if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
return 0;
}
return -ENOTSUPP;
}
static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
if (mm->context.ia32_compat)
return validate_insn_32bits(auprobe, insn);
return validate_insn_64bits(auprobe, insn);
}
#else /* 32-bit: */
static void handle_riprel_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
/* No RIP-relative addressing on 32-bit */
}
static int validate_insn_bits(struct arch_uprobe *auprobe, struct mm_struct *mm, struct insn *insn)
{
return validate_insn_32bits(auprobe, insn);
}
#endif /* CONFIG_X86_64 */
/**
* arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
* @mm: the probed address space.
* @arch_uprobe: the probepoint information.
* @addr: virtual address at which to install the probepoint
* Return 0 on success or a -ve number on error.
*/
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
{
int ret;
struct insn insn;
auprobe->fixups = 0;
ret = validate_insn_bits(auprobe, mm, &insn);
if (ret != 0)
return ret;
handle_riprel_insn(auprobe, mm, &insn);
prepare_fixups(auprobe, &insn);
return 0;
}
#ifdef CONFIG_X86_64
/*
* If we're emulating a rip-relative instruction, save the contents
* of the scratch register and store the target address in that register.
*/
static void
pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
struct arch_uprobe_task *autask)
{
if (auprobe->fixups & UPROBE_FIX_RIP_AX) {
autask->saved_scratch_register = regs->ax;
regs->ax = current->utask->vaddr;
regs->ax += auprobe->rip_rela_target_address;
} else if (auprobe->fixups & UPROBE_FIX_RIP_CX) {
autask->saved_scratch_register = regs->cx;
regs->cx = current->utask->vaddr;
regs->cx += auprobe->rip_rela_target_address;
}
}
#else
static void
pre_xol_rip_insn(struct arch_uprobe *auprobe, struct pt_regs *regs,
struct arch_uprobe_task *autask)
{
/* No RIP-relative addressing on 32-bit */
}
#endif
/*
* arch_uprobe_pre_xol - prepare to execute out of line.
* @auprobe: the probepoint information.
* @regs: reflects the saved user state of current task.
*/
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct arch_uprobe_task *autask;
autask = &current->utask->autask;
autask->saved_trap_nr = current->thread.trap_nr;
current->thread.trap_nr = UPROBE_TRAP_NR;
regs->ip = current->utask->xol_vaddr;
pre_xol_rip_insn(auprobe, regs, autask);
autask->saved_tf = !!(regs->flags & X86_EFLAGS_TF);
regs->flags |= X86_EFLAGS_TF;
if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
set_task_blockstep(current, false);
return 0;
}
/*
* This function is called by arch_uprobe_post_xol() to adjust the return
* address pushed by a call instruction executed out of line.
*/
static int adjust_ret_addr(unsigned long sp, long correction)
{
int rasize, ncopied;
long ra = 0;
if (is_ia32_task())
rasize = 4;
else
rasize = 8;
ncopied = copy_from_user(&ra, (void __user *)sp, rasize);
if (unlikely(ncopied))
return -EFAULT;
ra += correction;
ncopied = copy_to_user((void __user *)sp, &ra, rasize);
if (unlikely(ncopied))
return -EFAULT;
return 0;
}
#ifdef CONFIG_X86_64
static bool is_riprel_insn(struct arch_uprobe *auprobe)
{
return ((auprobe->fixups & (UPROBE_FIX_RIP_AX | UPROBE_FIX_RIP_CX)) != 0);
}
static void
handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
{
if (is_riprel_insn(auprobe)) {
struct arch_uprobe_task *autask;
autask = &current->utask->autask;
if (auprobe->fixups & UPROBE_FIX_RIP_AX)
regs->ax = autask->saved_scratch_register;
else
regs->cx = autask->saved_scratch_register;
/*
* The original instruction includes a displacement, and so
* is 4 bytes longer than what we've just single-stepped.
* Fall through to handle stuff like "jmpq *...(%rip)" and
* "callq *...(%rip)".
*/
if (correction)
*correction += 4;
}
}
#else
static void
handle_riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs, long *correction)
{
/* No RIP-relative addressing on 32-bit */
}
#endif
/*
* If xol insn itself traps and generates a signal(Say,
* SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
* instruction jumps back to its own address. It is assumed that anything
* like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
*
* arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
* arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
* UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
*/
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
if (t->thread.trap_nr != UPROBE_TRAP_NR)
return true;
return false;
}
/*
* Called after single-stepping. To avoid the SMP problems that can
* occur when we temporarily put back the original opcode to
* single-step, we single-stepped a copy of the instruction.
*
* This function prepares to resume execution after the single-step.
* We have to fix things up as follows:
*
* Typically, the new ip is relative to the copied instruction. We need
* to make it relative to the original instruction (FIX_IP). Exceptions
* are return instructions and absolute or indirect jump or call instructions.
*
* If the single-stepped instruction was a call, the return address that
* is atop the stack is the address following the copied instruction. We
* need to make it the address following the original instruction (FIX_CALL).
*
* If the original instruction was a rip-relative instruction such as
* "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
* instruction using a scratch register -- e.g., "movl %edx,(%rax)".
* We need to restore the contents of the scratch register and adjust
* the ip, keeping in mind that the instruction we executed is 4 bytes
* shorter than the original instruction (since we squeezed out the offset
* field). (FIX_RIP_AX or FIX_RIP_CX)
*/
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask;
long correction;
int result = 0;
WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
utask = current->utask;
current->thread.trap_nr = utask->autask.saved_trap_nr;
correction = (long)(utask->vaddr - utask->xol_vaddr);
handle_riprel_post_xol(auprobe, regs, &correction);
if (auprobe->fixups & UPROBE_FIX_IP)
regs->ip += correction;
if (auprobe->fixups & UPROBE_FIX_CALL)
result = adjust_ret_addr(regs->sp, correction);
/*
* arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
* so we can get an extra SIGTRAP if we do not clear TF. We need
* to examine the opcode to make it right.
*/
if (utask->autask.saved_tf)
send_sig(SIGTRAP, current, 0);
else if (!(auprobe->fixups & UPROBE_FIX_SETF))
regs->flags &= ~X86_EFLAGS_TF;
return result;
}
/* callback routine for handling exceptions. */
int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
struct die_args *args = data;
struct pt_regs *regs = args->regs;
int ret = NOTIFY_DONE;
/* We are only interested in userspace traps */
if (regs && !user_mode_vm(regs))
return NOTIFY_DONE;
switch (val) {
case DIE_INT3:
if (uprobe_pre_sstep_notifier(regs))
ret = NOTIFY_STOP;
break;
case DIE_DEBUG:
if (uprobe_post_sstep_notifier(regs))
ret = NOTIFY_STOP;
default:
break;
}
return ret;
}
/*
* This function gets called when XOL instruction either gets trapped or
* the thread has a fatal signal, so reset the instruction pointer to its
* probed address.
*/
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
struct uprobe_task *utask = current->utask;
current->thread.trap_nr = utask->autask.saved_trap_nr;
handle_riprel_post_xol(auprobe, regs, NULL);
instruction_pointer_set(regs, utask->vaddr);
/* clear TF if it was set by us in arch_uprobe_pre_xol() */
if (!utask->autask.saved_tf)
regs->flags &= ~X86_EFLAGS_TF;
}
/*
* Skip these instructions as per the currently known x86 ISA.
* rep=0x66*; nop=0x90
*/
static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
int i;
for (i = 0; i < MAX_UINSN_BYTES; i++) {
if (auprobe->insn[i] == 0x66)
continue;
if (auprobe->insn[i] == 0x90) {
regs->ip += i + 1;
return true;
}
break;
}
return false;
}
bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
bool ret = __skip_sstep(auprobe, regs);
if (ret && (regs->flags & X86_EFLAGS_TF))
send_sig(SIGTRAP, current, 0);
return ret;
}
unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
{
int rasize, ncopied;
unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
rasize = is_ia32_task() ? 4 : 8;
ncopied = copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize);
if (unlikely(ncopied))
return -1;
/* check whether address has been already hijacked */
if (orig_ret_vaddr == trampoline_vaddr)
return orig_ret_vaddr;
ncopied = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
if (likely(!ncopied))
return orig_ret_vaddr;
if (ncopied != rasize) {
pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);
force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
}
return -1;
}