linux-sg2042/drivers/hwmon/lm90.c

3002 lines
86 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* lm90.c - Part of lm_sensors, Linux kernel modules for hardware
* monitoring
* Copyright (C) 2003-2010 Jean Delvare <jdelvare@suse.de>
*
* Based on the lm83 driver. The LM90 is a sensor chip made by National
* Semiconductor. It reports up to two temperatures (its own plus up to
* one external one) with a 0.125 deg resolution (1 deg for local
* temperature) and a 3-4 deg accuracy.
*
* This driver also supports the LM89 and LM99, two other sensor chips
* made by National Semiconductor. Both have an increased remote
* temperature measurement accuracy (1 degree), and the LM99
* additionally shifts remote temperatures (measured and limits) by 16
* degrees, which allows for higher temperatures measurement.
* Note that there is no way to differentiate between both chips.
* When device is auto-detected, the driver will assume an LM99.
*
* This driver also supports the LM86, another sensor chip made by
* National Semiconductor. It is exactly similar to the LM90 except it
* has a higher accuracy.
*
* This driver also supports the ADM1032, a sensor chip made by Analog
* Devices. That chip is similar to the LM90, with a few differences
* that are not handled by this driver. Among others, it has a higher
* accuracy than the LM90, much like the LM86 does.
*
* This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
* chips made by Maxim. These chips are similar to the LM86.
* Note that there is no easy way to differentiate between the three
* variants. We use the device address to detect MAX6659, which will result
* in a detection as max6657 if it is on address 0x4c. The extra address
* and features of the MAX6659 are only supported if the chip is configured
* explicitly as max6659, or if its address is not 0x4c.
* These chips lack the remote temperature offset feature.
*
* This driver also supports the MAX6654 chip made by Maxim. This chip can be
* at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
* to MAX6657/MAX6658/MAX6659, but does not support critical temperature
* limits. Extended range is available by setting the configuration register
* accordingly, and is done during initialization. Extended precision is only
* available at conversion rates of 1 Hz and slower. Note that extended
* precision is not enabled by default, as this driver initializes all chips
* to 2 Hz by design. The driver also supports MAX6690, which is practically
* identical to MAX6654.
*
* This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
* MAX6692 chips made by Maxim. These are again similar to the LM86,
* but they use unsigned temperature values and can report temperatures
* from 0 to 145 degrees.
*
* This driver also supports the MAX6680 and MAX6681, two other sensor
* chips made by Maxim. These are quite similar to the other Maxim
* chips. The MAX6680 and MAX6681 only differ in the pinout so they can
* be treated identically.
*
* This driver also supports the MAX6695 and MAX6696, two other sensor
* chips made by Maxim. These are also quite similar to other Maxim
* chips, but support three temperature sensors instead of two. MAX6695
* and MAX6696 only differ in the pinout so they can be treated identically.
*
* This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
* NCT1008 from ON Semiconductor. The chips are supported in both compatibility
* and extended mode. They are mostly compatible with LM90 except for a data
* format difference for the temperature value registers.
*
* This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
* / ON Semiconductor. The chips are similar to ADT7461 but support two external
* temperature sensors.
*
* This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
* The chips are similar to ADT7461/ADT7461A but have full PEC support
* (undocumented).
*
* This driver also supports the SA56004 from Philips. This device is
* pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
*
* This driver also supports the G781 from GMT. This device is compatible
* with the ADM1032.
*
* This driver also supports TMP451 and TMP461 from Texas Instruments.
* Those devices are supported in both compatibility and extended mode.
* They are mostly compatible with ADT7461 except for local temperature
* low byte register and max conversion rate.
*
* This driver also supports MAX1617 and various clones such as G767
* and NE1617. Such clones will be detected as MAX1617.
*
* This driver also supports NE1618 from Philips. It is similar to NE1617
* but supports 11 bit external temperature values.
*
* Since the LM90 was the first chipset supported by this driver, most
* comments will refer to this chipset, but are actually general and
* concern all supported chipsets, unless mentioned otherwise.
*/
#include <linux/bits.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/jiffies.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
/* The maximum number of channels currently supported */
#define MAX_CHANNELS 3
/*
* Addresses to scan
* Address is fully defined internally and cannot be changed except for
* MAX6659, MAX6680 and MAX6681.
* LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
* MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
* ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
* have address 0x4d.
* MAX6647 has address 0x4e.
* MAX6659 can have address 0x4c, 0x4d or 0x4e.
* MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
* 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
* SA56004 can have address 0x48 through 0x4F.
*/
static const unsigned short normal_i2c[] = {
0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
g781, lm84, lm90, lm99,
max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
};
/*
* The LM90 registers
*/
#define LM90_REG_MAN_ID 0xFE
#define LM90_REG_CHIP_ID 0xFF
#define LM90_REG_CONFIG1 0x03
#define LM90_REG_CONFIG2 0xBF
#define LM90_REG_CONVRATE 0x04
#define LM90_REG_STATUS 0x02
#define LM90_REG_LOCAL_TEMP 0x00
#define LM90_REG_LOCAL_HIGH 0x05
#define LM90_REG_LOCAL_LOW 0x06
#define LM90_REG_LOCAL_CRIT 0x20
#define LM90_REG_REMOTE_TEMPH 0x01
#define LM90_REG_REMOTE_TEMPL 0x10
#define LM90_REG_REMOTE_OFFSH 0x11
#define LM90_REG_REMOTE_OFFSL 0x12
#define LM90_REG_REMOTE_HIGHH 0x07
#define LM90_REG_REMOTE_HIGHL 0x13
#define LM90_REG_REMOTE_LOWH 0x08
#define LM90_REG_REMOTE_LOWL 0x14
#define LM90_REG_REMOTE_CRIT 0x19
#define LM90_REG_TCRIT_HYST 0x21
/* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
#define MAX6657_REG_LOCAL_TEMPL 0x11
#define MAX6696_REG_STATUS2 0x12
#define MAX6659_REG_REMOTE_EMERG 0x16
#define MAX6659_REG_LOCAL_EMERG 0x17
/* SA56004 registers */
#define SA56004_REG_LOCAL_TEMPL 0x22
#define LM90_MAX_CONVRATE_MS 16000 /* Maximum conversion rate in ms */
/* TMP451/TMP461 registers */
#define TMP451_REG_LOCAL_TEMPL 0x15
#define TMP451_REG_CONALERT 0x22
#define TMP461_REG_CHEN 0x16
#define TMP461_REG_DFC 0x24
/* ADT7481 registers */
#define ADT7481_REG_STATUS2 0x23
#define ADT7481_REG_CONFIG2 0x24
#define ADT7481_REG_MAN_ID 0x3e
#define ADT7481_REG_CHIP_ID 0x3d
/* Device features */
#define LM90_HAVE_EXTENDED_TEMP BIT(0) /* extended temperature support */
#define LM90_HAVE_OFFSET BIT(1) /* temperature offset register */
#define LM90_HAVE_UNSIGNED_TEMP BIT(2) /* temperatures are unsigned */
#define LM90_HAVE_REM_LIMIT_EXT BIT(3) /* extended remote limit */
#define LM90_HAVE_EMERGENCY BIT(4) /* 3rd upper (emergency) limit */
#define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm */
#define LM90_HAVE_TEMP3 BIT(6) /* 3rd temperature sensor */
#define LM90_HAVE_BROKEN_ALERT BIT(7) /* Broken alert */
#define LM90_PAUSE_FOR_CONFIG BIT(8) /* Pause conversion for config */
#define LM90_HAVE_CRIT BIT(9) /* Chip supports CRIT/OVERT register */
#define LM90_HAVE_CRIT_ALRM_SWP BIT(10) /* critical alarm bits swapped */
#define LM90_HAVE_PEC BIT(11) /* Chip supports PEC */
#define LM90_HAVE_PARTIAL_PEC BIT(12) /* Partial PEC support (adm1032)*/
#define LM90_HAVE_ALARMS BIT(13) /* Create 'alarms' attribute */
#define LM90_HAVE_EXT_UNSIGNED BIT(14) /* extended unsigned temperature*/
#define LM90_HAVE_LOW BIT(15) /* low limits */
#define LM90_HAVE_CONVRATE BIT(16) /* conversion rate */
#define LM90_HAVE_REMOTE_EXT BIT(17) /* extended remote temperature */
#define LM90_HAVE_FAULTQUEUE BIT(18) /* configurable samples count */
/* LM90 status */
#define LM90_STATUS_LTHRM BIT(0) /* local THERM limit tripped */
#define LM90_STATUS_RTHRM BIT(1) /* remote THERM limit tripped */
#define LM90_STATUS_ROPEN BIT(2) /* remote is an open circuit */
#define LM90_STATUS_RLOW BIT(3) /* remote low temp limit tripped */
#define LM90_STATUS_RHIGH BIT(4) /* remote high temp limit tripped */
#define LM90_STATUS_LLOW BIT(5) /* local low temp limit tripped */
#define LM90_STATUS_LHIGH BIT(6) /* local high temp limit tripped */
#define LM90_STATUS_BUSY BIT(7) /* conversion is ongoing */
/* MAX6695/6696 and ADT7481 2nd status register */
#define MAX6696_STATUS2_R2THRM BIT(1) /* remote2 THERM limit tripped */
#define MAX6696_STATUS2_R2OPEN BIT(2) /* remote2 is an open circuit */
#define MAX6696_STATUS2_R2LOW BIT(3) /* remote2 low temp limit tripped */
#define MAX6696_STATUS2_R2HIGH BIT(4) /* remote2 high temp limit tripped */
#define MAX6696_STATUS2_ROT2 BIT(5) /* remote emergency limit tripped */
#define MAX6696_STATUS2_R2OT2 BIT(6) /* remote2 emergency limit tripped */
#define MAX6696_STATUS2_LOT2 BIT(7) /* local emergency limit tripped */
/*
* Driver data (common to all clients)
*/
static const struct i2c_device_id lm90_id[] = {
{ "adm1020", max1617 },
{ "adm1021", max1617 },
{ "adm1023", adm1023 },
{ "adm1032", adm1032 },
{ "adt7421", adt7461a },
{ "adt7461", adt7461 },
{ "adt7461a", adt7461a },
{ "adt7481", adt7481 },
{ "adt7482", adt7481 },
{ "adt7483a", adt7481 },
{ "g781", g781 },
{ "gl523sm", max1617 },
{ "lm84", lm84 },
{ "lm86", lm90 },
{ "lm89", lm90 },
{ "lm90", lm90 },
{ "lm99", lm99 },
{ "max1617", max1617 },
{ "max6642", max6642 },
{ "max6646", max6646 },
{ "max6647", max6646 },
{ "max6648", max6648 },
{ "max6649", max6646 },
{ "max6654", max6654 },
{ "max6657", max6657 },
{ "max6658", max6657 },
{ "max6659", max6659 },
{ "max6680", max6680 },
{ "max6681", max6680 },
{ "max6690", max6654 },
{ "max6692", max6648 },
{ "max6695", max6696 },
{ "max6696", max6696 },
{ "mc1066", max1617 },
{ "nct1008", adt7461a },
{ "nct210", nct210 },
{ "nct214", nct72 },
{ "nct218", nct72 },
{ "nct72", nct72 },
{ "ne1618", ne1618 },
{ "w83l771", w83l771 },
{ "sa56004", sa56004 },
{ "thmc10", max1617 },
{ "tmp451", tmp451 },
{ "tmp461", tmp461 },
{ }
};
MODULE_DEVICE_TABLE(i2c, lm90_id);
static const struct of_device_id __maybe_unused lm90_of_match[] = {
{
.compatible = "adi,adm1032",
.data = (void *)adm1032
},
{
.compatible = "adi,adt7461",
.data = (void *)adt7461
},
{
.compatible = "adi,adt7461a",
.data = (void *)adt7461a
},
{
.compatible = "adi,adt7481",
.data = (void *)adt7481
},
{
.compatible = "gmt,g781",
.data = (void *)g781
},
{
.compatible = "national,lm90",
.data = (void *)lm90
},
{
.compatible = "national,lm86",
.data = (void *)lm90
},
{
.compatible = "national,lm89",
.data = (void *)lm90
},
{
.compatible = "national,lm99",
.data = (void *)lm99
},
{
.compatible = "dallas,max6646",
.data = (void *)max6646
},
{
.compatible = "dallas,max6647",
.data = (void *)max6646
},
{
.compatible = "dallas,max6649",
.data = (void *)max6646
},
{
.compatible = "dallas,max6654",
.data = (void *)max6654
},
{
.compatible = "dallas,max6657",
.data = (void *)max6657
},
{
.compatible = "dallas,max6658",
.data = (void *)max6657
},
{
.compatible = "dallas,max6659",
.data = (void *)max6659
},
{
.compatible = "dallas,max6680",
.data = (void *)max6680
},
{
.compatible = "dallas,max6681",
.data = (void *)max6680
},
{
.compatible = "dallas,max6695",
.data = (void *)max6696
},
{
.compatible = "dallas,max6696",
.data = (void *)max6696
},
{
.compatible = "onnn,nct1008",
.data = (void *)adt7461a
},
{
.compatible = "onnn,nct214",
.data = (void *)nct72
},
{
.compatible = "onnn,nct218",
.data = (void *)nct72
},
{
.compatible = "onnn,nct72",
.data = (void *)nct72
},
{
.compatible = "winbond,w83l771",
.data = (void *)w83l771
},
{
.compatible = "nxp,sa56004",
.data = (void *)sa56004
},
{
.compatible = "ti,tmp451",
.data = (void *)tmp451
},
{
.compatible = "ti,tmp461",
.data = (void *)tmp461
},
{ },
};
MODULE_DEVICE_TABLE(of, lm90_of_match);
/*
* chip type specific parameters
*/
struct lm90_params {
u32 flags; /* Capabilities */
u16 alert_alarms; /* Which alarm bits trigger ALERT# */
/* Upper 8 bits for max6695/96 */
u8 max_convrate; /* Maximum conversion rate register value */
u8 resolution; /* 16-bit resolution (default 11 bit) */
u8 reg_status2; /* 2nd status register (optional) */
u8 reg_local_ext; /* Extended local temp register (optional) */
u8 faultqueue_mask; /* fault queue bit mask */
u8 faultqueue_depth; /* fault queue depth if mask is used */
};
static const struct lm90_params lm90_params[] = {
[adm1023] = {
.flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
| LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.resolution = 8,
.max_convrate = 7,
},
[adm1032] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
| LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
| LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
| LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7c,
.max_convrate = 10,
},
[adt7461] = {
/*
* Standard temperature range is supposed to be unsigned,
* but that does not match reality. Negative temperatures
* are always reported.
*/
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
| LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7c,
.max_convrate = 10,
.resolution = 10,
},
[adt7461a] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
| LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
| LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
| LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7c,
.max_convrate = 10,
},
[adt7481] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
| LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
| LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
| LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
| LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x1c7c,
.max_convrate = 11,
.resolution = 10,
.reg_status2 = ADT7481_REG_STATUS2,
},
[g781] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7c,
.max_convrate = 7,
},
[lm84] = {
.flags = LM90_HAVE_ALARMS,
.resolution = 8,
},
[lm90] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
| LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
| LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7b,
.max_convrate = 9,
.faultqueue_mask = BIT(0),
.faultqueue_depth = 3,
},
[lm99] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
| LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
| LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7b,
.max_convrate = 9,
.faultqueue_mask = BIT(0),
.faultqueue_depth = 3,
},
[max1617] = {
.flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
LM90_HAVE_LOW | LM90_HAVE_ALARMS,
.alert_alarms = 0x78,
.resolution = 8,
.max_convrate = 7,
},
[max6642] = {
.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
| LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x50,
.resolution = 10,
.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
.faultqueue_mask = BIT(4),
.faultqueue_depth = 2,
},
[max6646] = {
.flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
| LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
| LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.max_convrate = 6,
.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
},
[max6648] = {
.flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
| LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.max_convrate = 6,
.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
},
[max6654] = {
.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
| LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.max_convrate = 7,
.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
},
[max6657] = {
.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.max_convrate = 8,
.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
},
[max6659] = {
.flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.max_convrate = 8,
.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
},
[max6680] = {
/*
* Apparent temperatures of 128 degrees C or higher are reported
* and treated as negative temperatures (meaning min_alarm will
* be set).
*/
.flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
| LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.max_convrate = 7,
},
[max6696] = {
.flags = LM90_HAVE_EMERGENCY
| LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x1c7c,
.max_convrate = 6,
.reg_status2 = MAX6696_REG_STATUS2,
.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
.faultqueue_mask = BIT(5),
.faultqueue_depth = 4,
},
[nct72] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
| LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
| LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
| LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7c,
.max_convrate = 10,
.resolution = 10,
},
[nct210] = {
.flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
| LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.resolution = 11,
.max_convrate = 7,
},
[ne1618] = {
.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
| LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.resolution = 11,
.max_convrate = 7,
},
[w83l771] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT,
.alert_alarms = 0x7c,
.max_convrate = 8,
},
[sa56004] = {
/*
* Apparent temperatures of 128 degrees C or higher are reported
* and treated as negative temperatures (meaning min_alarm will
* be set).
*/
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7b,
.max_convrate = 9,
.reg_local_ext = SA56004_REG_LOCAL_TEMPL,
.faultqueue_mask = BIT(0),
.faultqueue_depth = 3,
},
[tmp451] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
| LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
| LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7c,
.max_convrate = 9,
.resolution = 12,
.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
},
[tmp461] = {
.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
| LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
| LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
| LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
.alert_alarms = 0x7c,
.max_convrate = 9,
.resolution = 12,
.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
},
};
/*
* temperature register index
*/
enum lm90_temp_reg_index {
LOCAL_LOW = 0,
LOCAL_HIGH,
LOCAL_CRIT,
REMOTE_CRIT,
LOCAL_EMERG, /* max6659 and max6695/96 */
REMOTE_EMERG, /* max6659 and max6695/96 */
REMOTE2_CRIT, /* max6695/96 only */
REMOTE2_EMERG, /* max6695/96 only */
REMOTE_TEMP,
REMOTE_LOW,
REMOTE_HIGH,
REMOTE_OFFSET, /* except max6646, max6657/58/59, and max6695/96 */
LOCAL_TEMP,
REMOTE2_TEMP, /* max6695/96 only */
REMOTE2_LOW, /* max6695/96 only */
REMOTE2_HIGH, /* max6695/96 only */
REMOTE2_OFFSET,
TEMP_REG_NUM
};
/*
* Client data (each client gets its own)
*/
struct lm90_data {
struct i2c_client *client;
struct device *hwmon_dev;
u32 chip_config[2];
u32 channel_config[MAX_CHANNELS + 1];
const char *channel_label[MAX_CHANNELS];
struct hwmon_channel_info chip_info;
struct hwmon_channel_info temp_info;
const struct hwmon_channel_info *info[3];
struct hwmon_chip_info chip;
struct mutex update_lock;
struct delayed_work alert_work;
struct work_struct report_work;
bool valid; /* true if register values are valid */
bool alarms_valid; /* true if status register values are valid */
unsigned long last_updated; /* in jiffies */
unsigned long alarms_updated; /* in jiffies */
int kind;
u32 flags;
unsigned int update_interval; /* in milliseconds */
u8 config; /* Current configuration register value */
u8 config_orig; /* Original configuration register value */
u8 convrate_orig; /* Original conversion rate register value */
u8 resolution; /* temperature resolution in bit */
u16 alert_alarms; /* Which alarm bits trigger ALERT# */
/* Upper 8 bits for max6695/96 */
u8 max_convrate; /* Maximum conversion rate */
u8 reg_status2; /* 2nd status register (optional) */
u8 reg_local_ext; /* local extension register offset */
u8 reg_remote_ext; /* remote temperature low byte */
u8 faultqueue_mask; /* fault queue mask */
u8 faultqueue_depth; /* fault queue mask */
/* registers values */
u16 temp[TEMP_REG_NUM];
u8 temp_hyst;
u8 conalert;
u16 reported_alarms; /* alarms reported as sysfs/udev events */
u16 current_alarms; /* current alarms, reported by chip */
u16 alarms; /* alarms not yet reported to user */
};
/*
* Support functions
*/
/*
* If the chip supports PEC but not on write byte transactions, we need
* to explicitly ask for a transaction without PEC.
*/
static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
{
return i2c_smbus_xfer(client->adapter, client->addr,
client->flags & ~I2C_CLIENT_PEC,
I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
}
/*
* It is assumed that client->update_lock is held (unless we are in
* detection or initialization steps). This matters when PEC is enabled
* for chips with partial PEC support, because we don't want the address
* pointer to change between the write byte and the read byte transactions.
*/
static int lm90_read_reg(struct i2c_client *client, u8 reg)
{
struct lm90_data *data = i2c_get_clientdata(client);
bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
(data->flags & LM90_HAVE_PARTIAL_PEC);
int err;
if (partial_pec) {
err = lm90_write_no_pec(client, reg);
if (err)
return err;
return i2c_smbus_read_byte(client);
}
return i2c_smbus_read_byte_data(client, reg);
}
/*
* Return register write address
*
* The write address for registers 0x03 .. 0x08 is the read address plus 6.
* For other registers the write address matches the read address.
*/
static u8 lm90_write_reg_addr(u8 reg)
{
if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
return reg + 6;
return reg;
}
/*
* Write into LM90 register.
* Convert register address to write address if needed, then execute the
* operation.
*/
static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
{
return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
}
/*
* Write into 16-bit LM90 register.
* Convert register addresses to write address if needed, then execute the
* operation.
*/
static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
{
int ret;
ret = lm90_write_reg(client, regh, val >> 8);
if (ret < 0 || !regl)
return ret;
return lm90_write_reg(client, regl, val & 0xff);
}
static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
bool is_volatile)
{
int oldh, newh, l;
oldh = lm90_read_reg(client, regh);
if (oldh < 0)
return oldh;
if (!regl)
return oldh << 8;
l = lm90_read_reg(client, regl);
if (l < 0)
return l;
if (!is_volatile)
return (oldh << 8) | l;
/*
* For volatile registers we have to use a trick.
* We have to read two registers to have the sensor temperature,
* but we have to beware a conversion could occur between the
* readings. The datasheet says we should either use
* the one-shot conversion register, which we don't want to do
* (disables hardware monitoring) or monitor the busy bit, which is
* impossible (we can't read the values and monitor that bit at the
* exact same time). So the solution used here is to read the high
* the high byte again. If the new high byte matches the old one,
* then we have a valid reading. Otherwise we have to read the low
* byte again, and now we believe we have a correct reading.
*/
newh = lm90_read_reg(client, regh);
if (newh < 0)
return newh;
if (oldh != newh) {
l = lm90_read_reg(client, regl);
if (l < 0)
return l;
}
return (newh << 8) | l;
}
static int lm90_update_confreg(struct lm90_data *data, u8 config)
{
if (data->config != config) {
int err;
err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
if (err)
return err;
data->config = config;
}
return 0;
}
/*
* client->update_lock must be held when calling this function (unless we are
* in detection or initialization steps), and while a remote channel other
* than channel 0 is selected. Also, calling code must make sure to re-select
* external channel 0 before releasing the lock. This is necessary because
* various registers have different meanings as a result of selecting a
* non-default remote channel.
*/
static int lm90_select_remote_channel(struct lm90_data *data, bool second)
{
u8 config = data->config & ~0x08;
if (second)
config |= 0x08;
return lm90_update_confreg(data, config);
}
static int lm90_write_convrate(struct lm90_data *data, int val)
{
u8 config = data->config;
int err;
/* Save config and pause conversion */
if (data->flags & LM90_PAUSE_FOR_CONFIG) {
err = lm90_update_confreg(data, config | 0x40);
if (err < 0)
return err;
}
/* Set conv rate */
err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
/* Revert change to config */
lm90_update_confreg(data, config);
return err;
}
/*
* Set conversion rate.
* client->update_lock must be held when calling this function (unless we are
* in detection or initialization steps).
*/
static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
unsigned int interval)
{
unsigned int update_interval;
int i, err;
/* Shift calculations to avoid rounding errors */
interval <<= 6;
/* find the nearest update rate */
for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
i < data->max_convrate; i++, update_interval >>= 1)
if (interval >= update_interval * 3 / 4)
break;
err = lm90_write_convrate(data, i);
data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
return err;
}
static int lm90_set_faultqueue(struct i2c_client *client,
struct lm90_data *data, int val)
{
int err;
if (data->faultqueue_mask) {
err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
data->config & ~data->faultqueue_mask :
data->config | data->faultqueue_mask);
} else {
static const u8 values[4] = {0, 2, 6, 0x0e};
data->conalert = (data->conalert & 0xf1) | values[val - 1];
err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
data->conalert);
}
return err;
}
static int lm90_update_limits(struct device *dev)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int val;
if (data->flags & LM90_HAVE_CRIT) {
val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
if (val < 0)
return val;
data->temp[LOCAL_CRIT] = val << 8;
val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
if (val < 0)
return val;
data->temp[REMOTE_CRIT] = val << 8;
val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
if (val < 0)
return val;
data->temp_hyst = val;
}
if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
val = lm90_read_reg(client, TMP451_REG_CONALERT);
if (val < 0)
return val;
data->conalert = val;
}
val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
(data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
false);
if (val < 0)
return val;
data->temp[REMOTE_LOW] = val;
val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
(data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
false);
if (val < 0)
return val;
data->temp[REMOTE_HIGH] = val;
if (data->flags & LM90_HAVE_OFFSET) {
val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
LM90_REG_REMOTE_OFFSL, false);
if (val < 0)
return val;
data->temp[REMOTE_OFFSET] = val;
}
if (data->flags & LM90_HAVE_EMERGENCY) {
val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
if (val < 0)
return val;
data->temp[LOCAL_EMERG] = val << 8;
val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
if (val < 0)
return val;
data->temp[REMOTE_EMERG] = val << 8;
}
if (data->flags & LM90_HAVE_TEMP3) {
val = lm90_select_remote_channel(data, true);
if (val < 0)
return val;
val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
if (val < 0)
return val;
data->temp[REMOTE2_CRIT] = val << 8;
if (data->flags & LM90_HAVE_EMERGENCY) {
val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
if (val < 0)
return val;
data->temp[REMOTE2_EMERG] = val << 8;
}
val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
if (val < 0)
return val;
data->temp[REMOTE2_LOW] = val << 8;
val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
if (val < 0)
return val;
data->temp[REMOTE2_HIGH] = val << 8;
if (data->flags & LM90_HAVE_OFFSET) {
val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
LM90_REG_REMOTE_OFFSL, false);
if (val < 0)
return val;
data->temp[REMOTE2_OFFSET] = val;
}
lm90_select_remote_channel(data, false);
}
return 0;
}
static void lm90_report_alarms(struct work_struct *work)
{
struct lm90_data *data = container_of(work, struct lm90_data, report_work);
u16 cleared_alarms, new_alarms, current_alarms;
struct device *hwmon_dev = data->hwmon_dev;
struct device *dev = &data->client->dev;
int st, st2;
current_alarms = data->current_alarms;
cleared_alarms = data->reported_alarms & ~current_alarms;
new_alarms = current_alarms & ~data->reported_alarms;
if (!cleared_alarms && !new_alarms)
return;
st = new_alarms & 0xff;
st2 = new_alarms >> 8;
if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
(st2 & MAX6696_STATUS2_LOT2))
dev_dbg(dev, "temp%d out of range, please check!\n", 1);
if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
(st2 & MAX6696_STATUS2_ROT2))
dev_dbg(dev, "temp%d out of range, please check!\n", 2);
if (st & LM90_STATUS_ROPEN)
dev_dbg(dev, "temp%d diode open, please check!\n", 2);
if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
dev_dbg(dev, "temp%d out of range, please check!\n", 3);
if (st2 & MAX6696_STATUS2_R2OPEN)
dev_dbg(dev, "temp%d diode open, please check!\n", 3);
st |= cleared_alarms & 0xff;
st2 |= cleared_alarms >> 8;
if (st & LM90_STATUS_LLOW)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
if (st & LM90_STATUS_RLOW)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
if (st2 & MAX6696_STATUS2_R2LOW)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
if (st & LM90_STATUS_LHIGH)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
if (st & LM90_STATUS_RHIGH)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
if (st2 & MAX6696_STATUS2_R2HIGH)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
if (st & LM90_STATUS_LTHRM)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
if (st & LM90_STATUS_RTHRM)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
if (st2 & MAX6696_STATUS2_R2THRM)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
if (st2 & MAX6696_STATUS2_LOT2)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
if (st2 & MAX6696_STATUS2_ROT2)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
if (st2 & MAX6696_STATUS2_R2OT2)
hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
data->reported_alarms = current_alarms;
}
static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
{
if (force || !data->alarms_valid ||
time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
struct i2c_client *client = data->client;
bool check_enable;
u16 alarms;
int val;
data->alarms_valid = false;
val = lm90_read_reg(client, LM90_REG_STATUS);
if (val < 0)
return val;
alarms = val & ~LM90_STATUS_BUSY;
if (data->reg_status2) {
val = lm90_read_reg(client, data->reg_status2);
if (val < 0)
return val;
alarms |= val << 8;
}
/*
* If the update is forced (called from interrupt or alert
* handler) and alarm data is valid, the alarms may have been
* updated after the last update interval, and the status
* register may still be cleared. Only add additional alarms
* in this case. Alarms will be cleared later if appropriate.
*/
if (force && data->alarms_valid)
data->current_alarms |= alarms;
else
data->current_alarms = alarms;
data->alarms |= alarms;
check_enable = (client->irq || !(data->config_orig & 0x80)) &&
(data->config & 0x80);
if (force || check_enable)
schedule_work(&data->report_work);
/*
* Re-enable ALERT# output if it was originally enabled, relevant
* alarms are all clear, and alerts are currently disabled.
* Otherwise (re)schedule worker if needed.
*/
if (check_enable) {
if (!(data->current_alarms & data->alert_alarms)) {
dev_dbg(&client->dev, "Re-enabling ALERT#\n");
lm90_update_confreg(data, data->config & ~0x80);
/*
* We may have been called from the update handler.
* If so, the worker, if scheduled, is no longer
* needed. Cancel it. Don't synchronize because
* it may already be running.
*/
cancel_delayed_work(&data->alert_work);
} else {
schedule_delayed_work(&data->alert_work,
max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
}
}
data->alarms_updated = jiffies;
data->alarms_valid = true;
}
return 0;
}
static int lm90_update_alarms(struct lm90_data *data, bool force)
{
int err;
mutex_lock(&data->update_lock);
err = lm90_update_alarms_locked(data, force);
mutex_unlock(&data->update_lock);
return err;
}
static void lm90_alert_work(struct work_struct *__work)
{
struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
/* Nothing to do if alerts are enabled */
if (!(data->config & 0x80))
return;
lm90_update_alarms(data, true);
}
static int lm90_update_device(struct device *dev)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
unsigned long next_update;
int val;
if (!data->valid) {
val = lm90_update_limits(dev);
if (val < 0)
return val;
}
next_update = data->last_updated +
msecs_to_jiffies(data->update_interval);
if (time_after(jiffies, next_update) || !data->valid) {
dev_dbg(&client->dev, "Updating lm90 data.\n");
data->valid = false;
val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
if (val < 0)
return val;
data->temp[LOCAL_LOW] = val << 8;
val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
if (val < 0)
return val;
data->temp[LOCAL_HIGH] = val << 8;
val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
data->reg_local_ext, true);
if (val < 0)
return val;
data->temp[LOCAL_TEMP] = val;
val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
data->reg_remote_ext, true);
if (val < 0)
return val;
data->temp[REMOTE_TEMP] = val;
if (data->flags & LM90_HAVE_TEMP3) {
val = lm90_select_remote_channel(data, true);
if (val < 0)
return val;
val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
data->reg_remote_ext, true);
if (val < 0) {
lm90_select_remote_channel(data, false);
return val;
}
data->temp[REMOTE2_TEMP] = val;
lm90_select_remote_channel(data, false);
}
val = lm90_update_alarms_locked(data, false);
if (val < 0)
return val;
data->last_updated = jiffies;
data->valid = true;
}
return 0;
}
/* pec used for devices with PEC support */
static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
char *buf)
{
struct i2c_client *client = to_i2c_client(dev);
return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
}
static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
long val;
int err;
err = kstrtol(buf, 10, &val);
if (err < 0)
return err;
switch (val) {
case 0:
client->flags &= ~I2C_CLIENT_PEC;
break;
case 1:
client->flags |= I2C_CLIENT_PEC;
break;
default:
return -EINVAL;
}
return count;
}
static DEVICE_ATTR_RW(pec);
static int lm90_temp_get_resolution(struct lm90_data *data, int index)
{
switch (index) {
case REMOTE_TEMP:
if (data->reg_remote_ext)
return data->resolution;
return 8;
case REMOTE_OFFSET:
case REMOTE2_OFFSET:
case REMOTE2_TEMP:
return data->resolution;
case LOCAL_TEMP:
if (data->reg_local_ext)
return data->resolution;
return 8;
case REMOTE_LOW:
case REMOTE_HIGH:
case REMOTE2_LOW:
case REMOTE2_HIGH:
if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
return data->resolution;
return 8;
default:
return 8;
}
}
static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
{
int val;
if (flags & LM90_HAVE_EXTENDED_TEMP)
val = regval - 0x4000;
else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
val = regval;
else
val = (s16)regval;
return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
}
static int lm90_get_temp(struct lm90_data *data, int index, int channel)
{
int temp = lm90_temp_from_reg(data->flags, data->temp[index],
lm90_temp_get_resolution(data, index));
/* +16 degrees offset for remote temperature on LM99 */
if (data->kind == lm99 && channel)
temp += 16000;
return temp;
}
static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
{
int fraction = resolution > 8 ?
1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
if (flags & LM90_HAVE_EXTENDED_TEMP) {
val = clamp_val(val, -64000, 191000 + fraction);
val += 64000;
} else if (flags & LM90_HAVE_EXT_UNSIGNED) {
val = clamp_val(val, 0, 255000 + fraction);
} else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
val = clamp_val(val, 0, 127000 + fraction);
} else {
val = clamp_val(val, -128000, 127000 + fraction);
}
return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
}
static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
{
static const u8 regs[] = {
[LOCAL_LOW] = LM90_REG_LOCAL_LOW,
[LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
[LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
[REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
[LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
[REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
[REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
[REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
[REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
[REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
[REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
[REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
};
struct i2c_client *client = data->client;
u8 regh = regs[index];
u8 regl = 0;
int err;
if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
if (index == REMOTE_LOW || index == REMOTE2_LOW)
regl = LM90_REG_REMOTE_LOWL;
else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
regl = LM90_REG_REMOTE_HIGHL;
}
/* +16 degrees offset for remote temperature on LM99 */
if (data->kind == lm99 && channel) {
/* prevent integer underflow */
val = max(val, -128000l);
val -= 16000;
}
data->temp[index] = lm90_temp_to_reg(data->flags, val,
lm90_temp_get_resolution(data, index));
if (channel > 1)
lm90_select_remote_channel(data, true);
err = lm90_write16(client, regh, regl, data->temp[index]);
if (channel > 1)
lm90_select_remote_channel(data, false);
return err;
}
static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
{
int temp = lm90_get_temp(data, index, channel);
return temp - data->temp_hyst * 1000;
}
static int lm90_set_temphyst(struct lm90_data *data, long val)
{
int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
/* prevent integer overflow/underflow */
val = clamp_val(val, -128000l, 255000l);
data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
}
static int lm90_get_temp_offset(struct lm90_data *data, int index)
{
int res = lm90_temp_get_resolution(data, index);
return lm90_temp_from_reg(0, data->temp[index], res);
}
static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
{
int err;
val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
/* For ADT7481 we can use the same registers for remote channel 1 and 2 */
if (channel > 1)
lm90_select_remote_channel(data, true);
err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
if (channel > 1)
lm90_select_remote_channel(data, false);
if (err)
return err;
data->temp[index] = val;
return 0;
}
static const u8 lm90_temp_index[MAX_CHANNELS] = {
LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
};
static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
};
static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
};
static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
};
static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
};
static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
-1, REMOTE_OFFSET, REMOTE2_OFFSET
};
static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
{
struct lm90_data *data = dev_get_drvdata(dev);
int err;
u16 bit;
mutex_lock(&data->update_lock);
err = lm90_update_device(dev);
mutex_unlock(&data->update_lock);
if (err)
return err;
switch (attr) {
case hwmon_temp_input:
*val = lm90_get_temp(data, lm90_temp_index[channel], channel);
break;
case hwmon_temp_min_alarm:
case hwmon_temp_max_alarm:
case hwmon_temp_crit_alarm:
case hwmon_temp_emergency_alarm:
case hwmon_temp_fault:
switch (attr) {
case hwmon_temp_min_alarm:
bit = lm90_min_alarm_bits[channel];
break;
case hwmon_temp_max_alarm:
bit = lm90_max_alarm_bits[channel];
break;
case hwmon_temp_crit_alarm:
if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
bit = lm90_crit_alarm_bits_swapped[channel];
else
bit = lm90_crit_alarm_bits[channel];
break;
case hwmon_temp_emergency_alarm:
bit = lm90_emergency_alarm_bits[channel];
break;
case hwmon_temp_fault:
bit = lm90_fault_bits[channel];
break;
}
*val = !!(data->alarms & bit);
data->alarms &= ~bit;
data->alarms |= data->current_alarms;
break;
case hwmon_temp_min:
*val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
break;
case hwmon_temp_max:
*val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
break;
case hwmon_temp_crit:
*val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
break;
case hwmon_temp_crit_hyst:
*val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
break;
case hwmon_temp_emergency:
*val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
break;
case hwmon_temp_emergency_hyst:
*val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
break;
case hwmon_temp_offset:
*val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
{
struct lm90_data *data = dev_get_drvdata(dev);
int err;
mutex_lock(&data->update_lock);
err = lm90_update_device(dev);
if (err)
goto error;
switch (attr) {
case hwmon_temp_min:
err = lm90_set_temp(data, lm90_temp_min_index[channel],
channel, val);
break;
case hwmon_temp_max:
err = lm90_set_temp(data, lm90_temp_max_index[channel],
channel, val);
break;
case hwmon_temp_crit:
err = lm90_set_temp(data, lm90_temp_crit_index[channel],
channel, val);
break;
case hwmon_temp_crit_hyst:
err = lm90_set_temphyst(data, val);
break;
case hwmon_temp_emergency:
err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
channel, val);
break;
case hwmon_temp_offset:
err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
channel, val);
break;
default:
err = -EOPNOTSUPP;
break;
}
error:
mutex_unlock(&data->update_lock);
return err;
}
static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
{
switch (attr) {
case hwmon_temp_input:
case hwmon_temp_min_alarm:
case hwmon_temp_max_alarm:
case hwmon_temp_crit_alarm:
case hwmon_temp_emergency_alarm:
case hwmon_temp_emergency_hyst:
case hwmon_temp_fault:
case hwmon_temp_label:
return 0444;
case hwmon_temp_min:
case hwmon_temp_max:
case hwmon_temp_crit:
case hwmon_temp_emergency:
case hwmon_temp_offset:
return 0644;
case hwmon_temp_crit_hyst:
if (channel == 0)
return 0644;
return 0444;
default:
return 0;
}
}
static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
{
struct lm90_data *data = dev_get_drvdata(dev);
int err;
mutex_lock(&data->update_lock);
err = lm90_update_device(dev);
mutex_unlock(&data->update_lock);
if (err)
return err;
switch (attr) {
case hwmon_chip_update_interval:
*val = data->update_interval;
break;
case hwmon_chip_alarms:
*val = data->alarms;
break;
case hwmon_chip_temp_samples:
if (data->faultqueue_mask) {
*val = (data->config & data->faultqueue_mask) ?
data->faultqueue_depth : 1;
} else {
switch (data->conalert & 0x0e) {
case 0x0:
default:
*val = 1;
break;
case 0x2:
*val = 2;
break;
case 0x6:
*val = 3;
break;
case 0xe:
*val = 4;
break;
}
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
int err;
mutex_lock(&data->update_lock);
err = lm90_update_device(dev);
if (err)
goto error;
switch (attr) {
case hwmon_chip_update_interval:
err = lm90_set_convrate(client, data,
clamp_val(val, 0, 100000));
break;
case hwmon_chip_temp_samples:
err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
break;
default:
err = -EOPNOTSUPP;
break;
}
error:
mutex_unlock(&data->update_lock);
return err;
}
static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
{
switch (attr) {
case hwmon_chip_update_interval:
case hwmon_chip_temp_samples:
return 0644;
case hwmon_chip_alarms:
return 0444;
default:
return 0;
}
}
static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
switch (type) {
case hwmon_chip:
return lm90_chip_read(dev, attr, channel, val);
case hwmon_temp:
return lm90_temp_read(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, const char **str)
{
struct lm90_data *data = dev_get_drvdata(dev);
*str = data->channel_label[channel];
return 0;
}
static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long val)
{
switch (type) {
case hwmon_chip:
return lm90_chip_write(dev, attr, channel, val);
case hwmon_temp:
return lm90_temp_write(dev, attr, channel, val);
default:
return -EOPNOTSUPP;
}
}
static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
u32 attr, int channel)
{
switch (type) {
case hwmon_chip:
return lm90_chip_is_visible(data, attr, channel);
case hwmon_temp:
return lm90_temp_is_visible(data, attr, channel);
default:
return 0;
}
}
static const char *lm90_detect_lm84(struct i2c_client *client)
{
static const u8 regs[] = {
LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
};
int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
int reg1, reg2, reg3, reg4;
bool nonzero = false;
u8 ff = 0xff;
int i;
if (status < 0 || (status & 0xab))
return NULL;
/*
* For LM84, undefined registers return the most recent value.
* Repeat several times, each time checking against a different
* (presumably) existing register.
*/
for (i = 0; i < ARRAY_SIZE(regs); i++) {
reg1 = i2c_smbus_read_byte_data(client, regs[i]);
reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
if (reg1 < 0)
return NULL;
/* If any register has a different value, this is not an LM84 */
if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
return NULL;
nonzero |= reg1 || reg2 || reg3 || reg4;
ff &= reg1;
}
/*
* If all registers always returned 0 or 0xff, all bets are off,
* and we can not make any predictions about the chip type.
*/
return nonzero && ff != 0xff ? "lm84" : NULL;
}
static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
{
int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
int llo, rlo, lhi, rhi;
if (status < 0 || (status & 0x03))
return NULL;
if (config1 & 0x3f)
return NULL;
/*
* Fail if unsupported registers return anything but 0xff.
* The calling code already checked man_id and chip_id.
* A byte read operation repeats the most recent read operation
* and should also return 0xff.
*/
if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
i2c_smbus_read_byte(client) != 0xff)
return NULL;
llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
if (llo < 0 || rlo < 0)
return NULL;
/*
* A byte read operation repeats the most recent read and should
* return the same value.
*/
if (i2c_smbus_read_byte(client) != rhi)
return NULL;
/*
* The following two checks are marginal since the checked values
* are strictly speaking valid.
*/
/* fail for negative high limits; this also catches read errors */
if ((s8)lhi < 0 || (s8)rhi < 0)
return NULL;
/* fail if low limits are larger than or equal to high limits */
if ((s8)llo >= lhi || (s8)rlo >= rhi)
return NULL;
if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
/*
* Word read operations return 0xff in second byte
*/
if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
0xffff)
return NULL;
if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
(config1 | 0xff00))
return NULL;
if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
(lhi | 0xff00))
return NULL;
}
return "max1617";
}
static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
int config1, int convrate)
{
int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
int address = client->addr;
const char *name = NULL;
if (config2 < 0)
return NULL;
if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
return NULL;
if (address != 0x4c && address != 0x4d)
return NULL;
switch (chip_id & 0xf0) {
case 0x10: /* LM86 */
if (address == 0x4c)
name = "lm86";
break;
case 0x20: /* LM90 */
if (address == 0x4c)
name = "lm90";
break;
case 0x30: /* LM89/LM99 */
name = "lm99"; /* detect LM89 as LM99 */
break;
default:
break;
}
return name;
}
static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
int convrate)
{
int address = client->addr;
const char *name = NULL;
switch (chip_id) {
case 0xca: /* NCT218 */
if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
convrate <= 0x0a)
name = "nct218";
break;
default:
break;
}
return name;
}
static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
int chip_id, int config1, int convrate)
{
int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
int address = client->addr;
const char *name = NULL;
if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
return NULL;
/*
* The following chips should be detected by this function. Known
* register values are listed. Registers 0x3d .. 0x3e are undocumented
* for most of the chips, yet appear to return a well defined value.
* Register 0xff is undocumented for some of the chips. Register 0x3f
* is undocumented for all chips, but also returns a well defined value.
* Values are as reported from real chips unless mentioned otherwise.
* The code below checks values for registers 0x3d, 0x3e, and 0xff,
* but not for register 0x3f.
*
* Chip Register
* 3d 3e 3f fe ff Notes
* ----------------------------------------------------------
* adm1020 00 00 00 41 39
* adm1021 00 00 00 41 03
* adm1021a 00 00 00 41 3c
* adm1023 00 00 00 41 3c same as adm1021a
* adm1032 00 00 00 41 42
*
* adt7421 21 41 04 41 04
* adt7461 00 00 00 41 51
* adt7461a 61 41 05 41 57
* adt7481 81 41 02 41 62
* adt7482 - - - 41 65 datasheet
* 82 41 05 41 75 real chip
* adt7483 83 41 04 41 94
*
* nct72 61 41 07 41 55
* nct210 00 00 00 41 3f
* nct214 61 41 08 41 5a
* nct1008 - - - 41 57 datasheet rev. 3
* 61 41 06 41 54 real chip
*
* nvt210 - - - 41 - datasheet
* nvt211 - - - 41 - datasheet
*/
switch (chip_id) {
case 0x00 ... 0x03: /* ADM1021 */
case 0x05 ... 0x0f:
if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
!(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
name = "adm1021";
break;
case 0x04: /* ADT7421 (undocumented) */
if (man_id2 == 0x41 && chip_id2 == 0x21 &&
(address == 0x4c || address == 0x4d) &&
(config1 & 0x0b) == 0x08 && convrate <= 0x0a)
name = "adt7421";
break;
case 0x30 ... 0x38: /* ADM1021A, ADM1023 */
case 0x3a ... 0x3e:
/*
* ADM1021A and compatible chips will be mis-detected as
* ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
* found to have a Chip ID of 0x3c.
* ADM1021A does not officially support low byte registers
* (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
* Official support for the temperature offset high byte
* register (0x11) was added to revision F of the ADM1021A
* datasheet.
* It is currently unknown if there is a means to distinguish
* ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
* which differ in functionality from ADM1023.
*/
if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
!(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
name = "adm1023";
break;
case 0x39: /* ADM1020 (undocumented) */
if (man_id2 == 0x00 && chip_id2 == 0x00 &&
(address == 0x4c || address == 0x4d || address == 0x4e) &&
!(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
name = "adm1020";
break;
case 0x3f: /* NCT210 */
if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
!(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
name = "nct210";
break;
case 0x40 ... 0x4f: /* ADM1032 */
if (man_id2 == 0x00 && chip_id2 == 0x00 &&
(address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
convrate <= 0x0a)
name = "adm1032";
break;
case 0x51: /* ADT7461 */
if (man_id2 == 0x00 && chip_id2 == 0x00 &&
(address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
convrate <= 0x0a)
name = "adt7461";
break;
case 0x54: /* NCT1008 */
if (man_id2 == 0x41 && chip_id2 == 0x61 &&
(address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
convrate <= 0x0a)
name = "nct1008";
break;
case 0x55: /* NCT72 */
if (man_id2 == 0x41 && chip_id2 == 0x61 &&
(address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
convrate <= 0x0a)
name = "nct72";
break;
case 0x57: /* ADT7461A, NCT1008 (datasheet rev. 3) */
if (man_id2 == 0x41 && chip_id2 == 0x61 &&
(address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
convrate <= 0x0a)
name = "adt7461a";
break;
case 0x5a: /* NCT214 */
if (man_id2 == 0x41 && chip_id2 == 0x61 &&
common_address && !(config1 & 0x1b) && convrate <= 0x0a)
name = "nct214";
break;
case 0x62: /* ADT7481, undocumented */
if (man_id2 == 0x41 && chip_id2 == 0x81 &&
(address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
!(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
name = "adt7481";
}
break;
case 0x65: /* ADT7482, datasheet */
case 0x75: /* ADT7482, real chip */
if (man_id2 == 0x41 && chip_id2 == 0x82 &&
address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
convrate <= 0x0a)
name = "adt7482";
break;
case 0x94: /* ADT7483 */
if (man_id2 == 0x41 && chip_id2 == 0x83 &&
common_address &&
((address >= 0x18 && address <= 0x1a) ||
(address >= 0x29 && address <= 0x2b) ||
(address >= 0x4c && address <= 0x4e)) &&
!(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
name = "adt7483a";
break;
default:
break;
}
return name;
}
static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
int chip_id, int config1, int convrate)
{
int man_id, emerg, emerg2, status2;
int address = client->addr;
const char *name = NULL;
switch (chip_id) {
case 0x01:
if (!common_address)
break;
/*
* We read MAX6659_REG_REMOTE_EMERG twice, and re-read
* LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
* exists, both readings will reflect the same value. Otherwise,
* the readings will be different.
*/
emerg = i2c_smbus_read_byte_data(client,
MAX6659_REG_REMOTE_EMERG);
man_id = i2c_smbus_read_byte_data(client,
LM90_REG_MAN_ID);
emerg2 = i2c_smbus_read_byte_data(client,
MAX6659_REG_REMOTE_EMERG);
status2 = i2c_smbus_read_byte_data(client,
MAX6696_REG_STATUS2);
if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
return NULL;
/*
* Even though MAX6695 and MAX6696 do not have a chip ID
* register, reading it returns 0x01. Bit 4 of the config1
* register is unused and should return zero when read. Bit 0 of
* the status2 register is unused and should return zero when
* read.
*
* MAX6695 and MAX6696 have an additional set of temperature
* limit registers. We can detect those chips by checking if
* one of those registers exists.
*/
if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
convrate <= 0x07)
name = "max6696";
/*
* The chip_id register of the MAX6680 and MAX6681 holds the
* revision of the chip. The lowest bit of the config1 register
* is unused and should return zero when read, so should the
* second to last bit of config1 (software reset). Register
* address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
* should differ from emerg2, and emerg2 should match man_id
* since it does not exist.
*/
else if (!(config1 & 0x03) && convrate <= 0x07 &&
emerg2 == man_id && emerg2 != status2)
name = "max6680";
/*
* MAX1617A does not have any extended registers (register
* address 0x10 or higher) except for manufacturer and
* device ID registers. Unlike other chips of this series,
* unsupported registers were observed to return a fixed value
* of 0x01.
* Note: Multiple chips with different markings labeled as
* "MAX1617" (no "A") were observed to report manufacturer ID
* 0x4d and device ID 0x01. It is unknown if other variants of
* MAX1617/MAX617A with different behavior exist. The detection
* code below works for those chips.
*/
else if (!(config1 & 0x03f) && convrate <= 0x07 &&
emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
name = "max1617";
break;
case 0x08:
/*
* The chip_id of the MAX6654 holds the revision of the chip.
* The lowest 3 bits of the config1 register are unused and
* should return zero when read.
*/
if (common_address && !(config1 & 0x07) && convrate <= 0x07)
name = "max6654";
break;
case 0x09:
/*
* The chip_id of the MAX6690 holds the revision of the chip.
* The lowest 3 bits of the config1 register are unused and
* should return zero when read.
* Note that MAX6654 and MAX6690 are practically the same chips.
* The only diference is the rated accuracy. Rev. 1 of the
* MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
* MAX6654 was observed to have a chip ID of 0x09.
*/
if (common_address && !(config1 & 0x07) && convrate <= 0x07)
name = "max6690";
break;
case 0x4d:
/*
* MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
* register. Reading from that address will return the last
* read value, which in our case is those of the man_id
* register, or 0x4d.
* MAX6642 does not have a conversion rate register, nor low
* limit registers. Reading from those registers returns the
* last read value.
*
* For MAX6657, MAX6658 and MAX6659, the config1 register lacks
* a low nibble, so the value will be those of the previous
* read, so in our case again those of the man_id register.
* MAX6659 has a third set of upper temperature limit registers.
* Those registers also return values on MAX6657 and MAX6658,
* thus the only way to detect MAX6659 is by its address.
* For this reason it will be mis-detected as MAX6657 if its
* address is 0x4c.
*/
if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
!(config1 & 0x0f)) {
int regval;
/*
* We know that this is not a MAX6657/58/59 because its
* configuration register has the wrong value and it does
* not appear to have a conversion rate register.
*/
/* re-read manufacturer ID to have a good baseline */
if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
break;
/* check various non-existing registers */
if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
break;
/* check for unused status register bits */
regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
if (regval < 0 || (regval & 0x2b))
break;
/* re-check unsupported registers */
if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
break;
name = "max6642";
} else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
(config1 & 0x1f) == 0x0d && convrate <= 0x09) {
if (address == 0x4c)
name = "max6657";
else
name = "max6659";
}
break;
case 0x59:
/*
* The chip_id register of the MAX6646/6647/6649 holds the
* revision of the chip. The lowest 6 bits of the config1
* register are unused and should return zero when read.
* The I2C address of MAX6648/6692 is fixed at 0x4c.
* MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
* and MAX6649 is at address 0x4c. A slight difference between
* the two sets of chips is that the remote temperature register
* reports different values if the DXP pin is open or shorted.
* We can use that information to help distinguish between the
* chips. MAX6648 will be mis-detected as MAX6649 if the remote
* diode is connected, but there isn't really anything we can
* do about that.
*/
if (!(config1 & 0x3f) && convrate <= 0x07) {
int temp;
switch (address) {
case 0x4c:
/*
* MAX6649 reports an external temperature
* value of 0xff if DXP is open or shorted.
* MAX6648 reports 0x80 in that case.
*/
temp = i2c_smbus_read_byte_data(client,
LM90_REG_REMOTE_TEMPH);
if (temp == 0x80)
name = "max6648";
else
name = "max6649";
break;
case 0x4d:
name = "max6646";
break;
case 0x4e:
name = "max6647";
break;
default:
break;
}
}
break;
default:
break;
}
return name;
}
static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
int config1, int convrate)
{
int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
int address = client->addr;
const char *name = NULL;
if (config2 < 0)
return NULL;
if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
if (chip_id == 0x01 && convrate <= 0x09) {
/* W83L771W/G */
name = "w83l771";
} else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
/* W83L771AWG/ASG */
name = "w83l771";
}
}
return name;
}
static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
int chip_id, int config1, int convrate)
{
int address = client->addr;
const char *name = NULL;
int config2;
switch (chip_id) {
case 0x00:
config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
if (config2 < 0)
return NULL;
if (address >= 0x48 && address <= 0x4f &&
!(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
name = "sa56004";
break;
case 0x80:
if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
name = "ne1618";
break;
default:
break;
}
return name;
}
static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
int config1, int convrate)
{
int address = client->addr;
/*
* According to the datasheet, G781 is supposed to be at I2C Address
* 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
* address 0x4d and have a chip ID of 0x03. However, when support
* for G781 was added, chips at 0x4c and 0x4d were found to have a
* chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
* chip ID 0x03.
* To avoid detection failures, accept chip ID 0x01 and 0x03 at both
* addresses.
* G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
* datasheet is not available. Extensive testing suggests that
* the chip appears to be fully compatible with G781.
* Available register dumps show that G751 also reports manufacturer
* ID 0x47 and chip ID 0x01 even though that chip does not officially
* support those registers. This makes chip detection somewhat
* vulnerable. To improve detection quality, read the offset low byte
* and alert fault queue registers and verify that only expected bits
* are set.
*/
if ((chip_id == 0x01 || chip_id == 0x03) &&
(address == 0x4c || address == 0x4d) &&
!(config1 & 0x3f) && convrate <= 0x08) {
int reg;
reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
if (reg < 0 || reg & 0x1f)
return NULL;
reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
if (reg < 0 || reg & 0xf1)
return NULL;
return "g781";
}
return NULL;
}
static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
int chip_id, int config1, int convrate)
{
if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
/* THMC10: Unsupported registers return 0xff */
if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
return "thmc10";
}
return NULL;
}
static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
int config1, int convrate)
{
int address = client->addr;
const char *name = NULL;
if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
int local_ext, conalert, chen, dfc;
local_ext = i2c_smbus_read_byte_data(client,
TMP451_REG_LOCAL_TEMPL);
conalert = i2c_smbus_read_byte_data(client,
TMP451_REG_CONALERT);
chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
(chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
if (address == 0x4c && !(chen & 0x03))
name = "tmp451";
else if (address >= 0x48 && address <= 0x4f)
name = "tmp461";
}
}
return name;
}
/* Return 0 if detection is successful, -ENODEV otherwise */
static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
{
struct i2c_adapter *adapter = client->adapter;
int man_id, chip_id, config1, convrate, lhigh;
const char *name = NULL;
int address = client->addr;
bool common_address =
(address >= 0x18 && address <= 0x1a) ||
(address >= 0x29 && address <= 0x2b) ||
(address >= 0x4c && address <= 0x4e);
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/*
* Get well defined register value for chips with neither man_id nor
* chip_id registers.
*/
lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
/* detection and identification */
man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
return -ENODEV;
/* Bail out immediately if all register report the same value */
if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
return -ENODEV;
/*
* If reading man_id and chip_id both return the same value as lhigh,
* the chip may not support those registers and return the most recent read
* value. Check again with a different register and handle accordingly.
*/
if (man_id == lhigh && chip_id == lhigh) {
convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
if (convrate < 0 || man_id < 0 || chip_id < 0)
return -ENODEV;
if (man_id == convrate && chip_id == convrate)
man_id = -1;
}
switch (man_id) {
case -1: /* Chip does not support man_id / chip_id */
if (common_address && !convrate && !(config1 & 0x7f))
name = lm90_detect_lm84(client);
break;
case 0x01: /* National Semiconductor */
name = lm90_detect_national(client, chip_id, config1, convrate);
break;
case 0x1a: /* ON */
name = lm90_detect_on(client, chip_id, config1, convrate);
break;
case 0x23: /* Genesys Logic */
if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
name = "gl523sm";
break;
case 0x41: /* Analog Devices */
name = lm90_detect_analog(client, common_address, chip_id, config1,
convrate);
break;
case 0x47: /* GMT */
name = lm90_detect_gmt(client, chip_id, config1, convrate);
break;
case 0x49: /* TI */
name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
break;
case 0x4d: /* Maxim Integrated */
name = lm90_detect_maxim(client, common_address, chip_id,
config1, convrate);
break;
case 0x54: /* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
name = "mc1066";
break;
case 0x55: /* TI */
name = lm90_detect_ti(client, chip_id, config1, convrate);
break;
case 0x5c: /* Winbond/Nuvoton */
name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
break;
case 0xa1: /* NXP Semiconductor/Philips */
name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
break;
case 0xff: /* MAX1617, G767, NE1617 */
if (common_address && chip_id == 0xff && convrate < 8)
name = lm90_detect_max1617(client, config1);
break;
default:
break;
}
if (!name) { /* identification failed */
dev_dbg(&adapter->dev,
"Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
client->addr, man_id, chip_id);
return -ENODEV;
}
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static void lm90_restore_conf(void *_data)
{
struct lm90_data *data = _data;
struct i2c_client *client = data->client;
cancel_delayed_work_sync(&data->alert_work);
cancel_work_sync(&data->report_work);
/* Restore initial configuration */
if (data->flags & LM90_HAVE_CONVRATE)
lm90_write_convrate(data, data->convrate_orig);
lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
}
static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
{
struct device_node *np = client->dev.of_node;
int config, convrate;
if (data->flags & LM90_HAVE_CONVRATE) {
convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
if (convrate < 0)
return convrate;
data->convrate_orig = convrate;
lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
} else {
data->update_interval = 500;
}
/*
* Start the conversions.
*/
config = lm90_read_reg(client, LM90_REG_CONFIG1);
if (config < 0)
return config;
data->config_orig = config;
data->config = config;
/* Check Temperature Range Select */
if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
if (of_property_read_bool(np, "ti,extended-range-enable"))
config |= 0x04;
if (!(config & 0x04))
data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
}
/*
* Put MAX6680/MAX8881 into extended resolution (bit 0x10,
* 0.125 degree resolution) and range (0x08, extend range
* to -64 degree) mode for the remote temperature sensor.
* Note that expeciments with an actual chip do not show a difference
* if bit 3 is set or not.
*/
if (data->kind == max6680)
config |= 0x18;
/*
* Put MAX6654 into extended range (0x20, extend minimum range from
* 0 degrees to -64 degrees). Note that extended resolution is not
* possible on the MAX6654 unless conversion rate is set to 1 Hz or
* slower, which is intentionally not done by default.
*/
if (data->kind == max6654)
config |= 0x20;
/*
* Select external channel 0 for devices with three sensors
*/
if (data->flags & LM90_HAVE_TEMP3)
config &= ~0x08;
/*
* Interrupt is enabled by default on reset, but it may be disabled
* by bootloader, unmask it.
*/
if (client->irq)
config &= ~0x80;
config &= 0xBF; /* run */
lm90_update_confreg(data, config);
return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
}
static bool lm90_is_tripped(struct i2c_client *client)
{
struct lm90_data *data = i2c_get_clientdata(client);
int ret;
ret = lm90_update_alarms(data, true);
if (ret < 0)
return false;
return !!data->current_alarms;
}
static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
if (lm90_is_tripped(client))
return IRQ_HANDLED;
else
return IRQ_NONE;
}
static void lm90_remove_pec(void *dev)
{
device_remove_file(dev, &dev_attr_pec);
}
static void lm90_regulator_disable(void *regulator)
{
regulator_disable(regulator);
}
static int lm90_probe_channel_from_dt(struct i2c_client *client,
struct device_node *child,
struct lm90_data *data)
{
u32 id;
s32 val;
int err;
struct device *dev = &client->dev;
err = of_property_read_u32(child, "reg", &id);
if (err) {
dev_err(dev, "missing reg property of %pOFn\n", child);
return err;
}
if (id >= MAX_CHANNELS) {
dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
return -EINVAL;
}
err = of_property_read_string(child, "label", &data->channel_label[id]);
if (err == -ENODATA || err == -EILSEQ) {
dev_err(dev, "invalid label property in %pOFn\n", child);
return err;
}
if (data->channel_label[id])
data->channel_config[id] |= HWMON_T_LABEL;
err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
if (!err) {
if (id == 0) {
dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
return -EINVAL;
}
err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
if (err) {
dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
val, id, err);
return err;
}
}
return 0;
}
static int lm90_parse_dt_channel_info(struct i2c_client *client,
struct lm90_data *data)
{
int err;
struct device_node *child;
struct device *dev = &client->dev;
const struct device_node *np = dev->of_node;
for_each_child_of_node(np, child) {
if (strcmp(child->name, "channel"))
continue;
err = lm90_probe_channel_from_dt(client, child, data);
if (err) {
of_node_put(child);
return err;
}
}
return 0;
}
static const struct hwmon_ops lm90_ops = {
.is_visible = lm90_is_visible,
.read = lm90_read,
.read_string = lm90_read_string,
.write = lm90_write,
};
static int lm90_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct i2c_adapter *adapter = client->adapter;
struct hwmon_channel_info *info;
struct regulator *regulator;
struct device *hwmon_dev;
struct lm90_data *data;
int err;
regulator = devm_regulator_get(dev, "vcc");
if (IS_ERR(regulator))
return PTR_ERR(regulator);
err = regulator_enable(regulator);
if (err < 0) {
dev_err(dev, "Failed to enable regulator: %d\n", err);
return err;
}
err = devm_add_action_or_reset(dev, lm90_regulator_disable, regulator);
if (err)
return err;
data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->client = client;
i2c_set_clientdata(client, data);
mutex_init(&data->update_lock);
INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
INIT_WORK(&data->report_work, lm90_report_alarms);
/* Set the device type */
if (client->dev.of_node)
data->kind = (enum chips)of_device_get_match_data(&client->dev);
else
data->kind = i2c_match_id(lm90_id, client)->driver_data;
/*
* Different devices have different alarm bits triggering the
* ALERT# output
*/
data->alert_alarms = lm90_params[data->kind].alert_alarms;
data->resolution = lm90_params[data->kind].resolution ? : 11;
/* Set chip capabilities */
data->flags = lm90_params[data->kind].flags;
if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
data->flags &= ~LM90_HAVE_PARTIAL_PEC;
data->chip.ops = &lm90_ops;
data->chip.info = data->info;
data->info[0] = &data->chip_info;
info = &data->chip_info;
info->type = hwmon_chip;
info->config = data->chip_config;
data->chip_config[0] = HWMON_C_REGISTER_TZ;
if (data->flags & LM90_HAVE_ALARMS)
data->chip_config[0] |= HWMON_C_ALARMS;
if (data->flags & LM90_HAVE_CONVRATE)
data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
if (data->flags & LM90_HAVE_FAULTQUEUE)
data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
data->info[1] = &data->temp_info;
info = &data->temp_info;
info->type = hwmon_temp;
info->config = data->channel_config;
data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
HWMON_T_MAX_ALARM;
data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
HWMON_T_MAX_ALARM | HWMON_T_FAULT;
if (data->flags & LM90_HAVE_LOW) {
data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
}
if (data->flags & LM90_HAVE_CRIT) {
data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
}
if (data->flags & LM90_HAVE_OFFSET)
data->channel_config[1] |= HWMON_T_OFFSET;
if (data->flags & LM90_HAVE_EMERGENCY) {
data->channel_config[0] |= HWMON_T_EMERGENCY |
HWMON_T_EMERGENCY_HYST;
data->channel_config[1] |= HWMON_T_EMERGENCY |
HWMON_T_EMERGENCY_HYST;
}
if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
}
if (data->flags & LM90_HAVE_TEMP3) {
data->channel_config[2] = HWMON_T_INPUT |
HWMON_T_MIN | HWMON_T_MAX |
HWMON_T_CRIT | HWMON_T_CRIT_HYST |
HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
if (data->flags & LM90_HAVE_EMERGENCY) {
data->channel_config[2] |= HWMON_T_EMERGENCY |
HWMON_T_EMERGENCY_HYST;
}
if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
if (data->flags & LM90_HAVE_OFFSET)
data->channel_config[2] |= HWMON_T_OFFSET;
}
data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
if (data->flags & LM90_HAVE_REMOTE_EXT)
data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
data->reg_status2 = lm90_params[data->kind].reg_status2;
/* Set maximum conversion rate */
data->max_convrate = lm90_params[data->kind].max_convrate;
/* Parse device-tree channel information */
if (client->dev.of_node) {
err = lm90_parse_dt_channel_info(client, data);
if (err)
return err;
}
/* Initialize the LM90 chip */
err = lm90_init_client(client, data);
if (err < 0) {
dev_err(dev, "Failed to initialize device\n");
return err;
}
/*
* The 'pec' attribute is attached to the i2c device and thus created
* separately.
*/
if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
err = device_create_file(dev, &dev_attr_pec);
if (err)
return err;
err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
if (err)
return err;
}
hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
data, &data->chip,
NULL);
if (IS_ERR(hwmon_dev))
return PTR_ERR(hwmon_dev);
data->hwmon_dev = hwmon_dev;
if (client->irq) {
dev_dbg(dev, "IRQ: %d\n", client->irq);
err = devm_request_threaded_irq(dev, client->irq,
NULL, lm90_irq_thread,
IRQF_ONESHOT, "lm90", client);
if (err < 0) {
dev_err(dev, "cannot request IRQ %d\n", client->irq);
return err;
}
}
return 0;
}
static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
unsigned int flag)
{
if (type != I2C_PROTOCOL_SMBUS_ALERT)
return;
if (lm90_is_tripped(client)) {
/*
* Disable ALERT# output, because these chips don't implement
* SMBus alert correctly; they should only hold the alert line
* low briefly.
*/
struct lm90_data *data = i2c_get_clientdata(client);
if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
(data->current_alarms & data->alert_alarms)) {
if (!(data->config & 0x80)) {
dev_dbg(&client->dev, "Disabling ALERT#\n");
lm90_update_confreg(data, data->config | 0x80);
}
schedule_delayed_work(&data->alert_work,
max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
}
} else {
dev_dbg(&client->dev, "Everything OK\n");
}
}
static int __maybe_unused lm90_suspend(struct device *dev)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
if (client->irq)
disable_irq(client->irq);
return 0;
}
static int __maybe_unused lm90_resume(struct device *dev)
{
struct lm90_data *data = dev_get_drvdata(dev);
struct i2c_client *client = data->client;
if (client->irq)
enable_irq(client->irq);
return 0;
}
static SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
static struct i2c_driver lm90_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "lm90",
.of_match_table = of_match_ptr(lm90_of_match),
.pm = &lm90_pm_ops,
},
.probe_new = lm90_probe,
.alert = lm90_alert,
.id_table = lm90_id,
.detect = lm90_detect,
.address_list = normal_i2c,
};
module_i2c_driver(lm90_driver);
MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
MODULE_DESCRIPTION("LM90/ADM1032 driver");
MODULE_LICENSE("GPL");