linux-sg2042/drivers/firmware/arm_scmi/perf.c

751 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Performance Protocol
*
* Copyright (C) 2018 ARM Ltd.
*/
#include <linux/bits.h>
#include <linux/of.h>
#include <linux/io.h>
#include <linux/io-64-nonatomic-hi-lo.h>
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/sort.h>
#include "common.h"
enum scmi_performance_protocol_cmd {
PERF_DOMAIN_ATTRIBUTES = 0x3,
PERF_DESCRIBE_LEVELS = 0x4,
PERF_LIMITS_SET = 0x5,
PERF_LIMITS_GET = 0x6,
PERF_LEVEL_SET = 0x7,
PERF_LEVEL_GET = 0x8,
PERF_NOTIFY_LIMITS = 0x9,
PERF_NOTIFY_LEVEL = 0xa,
PERF_DESCRIBE_FASTCHANNEL = 0xb,
};
struct scmi_opp {
u32 perf;
u32 power;
u32 trans_latency_us;
};
struct scmi_msg_resp_perf_attributes {
__le16 num_domains;
__le16 flags;
#define POWER_SCALE_IN_MILLIWATT(x) ((x) & BIT(0))
__le32 stats_addr_low;
__le32 stats_addr_high;
__le32 stats_size;
};
struct scmi_msg_resp_perf_domain_attributes {
__le32 flags;
#define SUPPORTS_SET_LIMITS(x) ((x) & BIT(31))
#define SUPPORTS_SET_PERF_LVL(x) ((x) & BIT(30))
#define SUPPORTS_PERF_LIMIT_NOTIFY(x) ((x) & BIT(29))
#define SUPPORTS_PERF_LEVEL_NOTIFY(x) ((x) & BIT(28))
#define SUPPORTS_PERF_FASTCHANNELS(x) ((x) & BIT(27))
__le32 rate_limit_us;
__le32 sustained_freq_khz;
__le32 sustained_perf_level;
u8 name[SCMI_MAX_STR_SIZE];
};
struct scmi_msg_perf_describe_levels {
__le32 domain;
__le32 level_index;
};
struct scmi_perf_set_limits {
__le32 domain;
__le32 max_level;
__le32 min_level;
};
struct scmi_perf_get_limits {
__le32 max_level;
__le32 min_level;
};
struct scmi_perf_set_level {
__le32 domain;
__le32 level;
};
struct scmi_perf_notify_level_or_limits {
__le32 domain;
__le32 notify_enable;
};
struct scmi_msg_resp_perf_describe_levels {
__le16 num_returned;
__le16 num_remaining;
struct {
__le32 perf_val;
__le32 power;
__le16 transition_latency_us;
__le16 reserved;
} opp[0];
};
struct scmi_perf_get_fc_info {
__le32 domain;
__le32 message_id;
};
struct scmi_msg_resp_perf_desc_fc {
__le32 attr;
#define SUPPORTS_DOORBELL(x) ((x) & BIT(0))
#define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x))
__le32 rate_limit;
__le32 chan_addr_low;
__le32 chan_addr_high;
__le32 chan_size;
__le32 db_addr_low;
__le32 db_addr_high;
__le32 db_set_lmask;
__le32 db_set_hmask;
__le32 db_preserve_lmask;
__le32 db_preserve_hmask;
};
struct scmi_fc_db_info {
int width;
u64 set;
u64 mask;
void __iomem *addr;
};
struct scmi_fc_info {
void __iomem *level_set_addr;
void __iomem *limit_set_addr;
void __iomem *level_get_addr;
void __iomem *limit_get_addr;
struct scmi_fc_db_info *level_set_db;
struct scmi_fc_db_info *limit_set_db;
};
struct perf_dom_info {
bool set_limits;
bool set_perf;
bool perf_limit_notify;
bool perf_level_notify;
bool perf_fastchannels;
u32 opp_count;
u32 sustained_freq_khz;
u32 sustained_perf_level;
u32 mult_factor;
char name[SCMI_MAX_STR_SIZE];
struct scmi_opp opp[MAX_OPPS];
struct scmi_fc_info *fc_info;
};
struct scmi_perf_info {
int num_domains;
bool power_scale_mw;
u64 stats_addr;
u32 stats_size;
struct perf_dom_info *dom_info;
};
static int scmi_perf_attributes_get(const struct scmi_handle *handle,
struct scmi_perf_info *pi)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_perf_attributes *attr;
ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_PERF, 0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
u16 flags = le16_to_cpu(attr->flags);
pi->num_domains = le16_to_cpu(attr->num_domains);
pi->power_scale_mw = POWER_SCALE_IN_MILLIWATT(flags);
pi->stats_addr = le32_to_cpu(attr->stats_addr_low) |
(u64)le32_to_cpu(attr->stats_addr_high) << 32;
pi->stats_size = le32_to_cpu(attr->stats_size);
}
scmi_xfer_put(handle, t);
return ret;
}
static int
scmi_perf_domain_attributes_get(const struct scmi_handle *handle, u32 domain,
struct perf_dom_info *dom_info)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_perf_domain_attributes *attr;
ret = scmi_xfer_get_init(handle, PERF_DOMAIN_ATTRIBUTES,
SCMI_PROTOCOL_PERF, sizeof(domain),
sizeof(*attr), &t);
if (ret)
return ret;
put_unaligned_le32(domain, t->tx.buf);
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
u32 flags = le32_to_cpu(attr->flags);
dom_info->set_limits = SUPPORTS_SET_LIMITS(flags);
dom_info->set_perf = SUPPORTS_SET_PERF_LVL(flags);
dom_info->perf_limit_notify = SUPPORTS_PERF_LIMIT_NOTIFY(flags);
dom_info->perf_level_notify = SUPPORTS_PERF_LEVEL_NOTIFY(flags);
dom_info->perf_fastchannels = SUPPORTS_PERF_FASTCHANNELS(flags);
dom_info->sustained_freq_khz =
le32_to_cpu(attr->sustained_freq_khz);
dom_info->sustained_perf_level =
le32_to_cpu(attr->sustained_perf_level);
if (!dom_info->sustained_freq_khz ||
!dom_info->sustained_perf_level)
/* CPUFreq converts to kHz, hence default 1000 */
dom_info->mult_factor = 1000;
else
dom_info->mult_factor =
(dom_info->sustained_freq_khz * 1000) /
dom_info->sustained_perf_level;
strlcpy(dom_info->name, attr->name, SCMI_MAX_STR_SIZE);
}
scmi_xfer_put(handle, t);
return ret;
}
static int opp_cmp_func(const void *opp1, const void *opp2)
{
const struct scmi_opp *t1 = opp1, *t2 = opp2;
return t1->perf - t2->perf;
}
static int
scmi_perf_describe_levels_get(const struct scmi_handle *handle, u32 domain,
struct perf_dom_info *perf_dom)
{
int ret, cnt;
u32 tot_opp_cnt = 0;
u16 num_returned, num_remaining;
struct scmi_xfer *t;
struct scmi_opp *opp;
struct scmi_msg_perf_describe_levels *dom_info;
struct scmi_msg_resp_perf_describe_levels *level_info;
ret = scmi_xfer_get_init(handle, PERF_DESCRIBE_LEVELS,
SCMI_PROTOCOL_PERF, sizeof(*dom_info), 0, &t);
if (ret)
return ret;
dom_info = t->tx.buf;
level_info = t->rx.buf;
do {
dom_info->domain = cpu_to_le32(domain);
/* Set the number of OPPs to be skipped/already read */
dom_info->level_index = cpu_to_le32(tot_opp_cnt);
ret = scmi_do_xfer(handle, t);
if (ret)
break;
num_returned = le16_to_cpu(level_info->num_returned);
num_remaining = le16_to_cpu(level_info->num_remaining);
if (tot_opp_cnt + num_returned > MAX_OPPS) {
dev_err(handle->dev, "No. of OPPs exceeded MAX_OPPS");
break;
}
opp = &perf_dom->opp[tot_opp_cnt];
for (cnt = 0; cnt < num_returned; cnt++, opp++) {
opp->perf = le32_to_cpu(level_info->opp[cnt].perf_val);
opp->power = le32_to_cpu(level_info->opp[cnt].power);
opp->trans_latency_us = le16_to_cpu
(level_info->opp[cnt].transition_latency_us);
dev_dbg(handle->dev, "Level %d Power %d Latency %dus\n",
opp->perf, opp->power, opp->trans_latency_us);
}
tot_opp_cnt += num_returned;
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
perf_dom->opp_count = tot_opp_cnt;
scmi_xfer_put(handle, t);
sort(perf_dom->opp, tot_opp_cnt, sizeof(*opp), opp_cmp_func, NULL);
return ret;
}
#define SCMI_PERF_FC_RING_DB(w) \
do { \
u##w val = 0; \
\
if (db->mask) \
val = ioread##w(db->addr) & db->mask; \
iowrite##w((u##w)db->set | val, db->addr); \
} while (0)
static void scmi_perf_fc_ring_db(struct scmi_fc_db_info *db)
{
if (!db || !db->addr)
return;
if (db->width == 1)
SCMI_PERF_FC_RING_DB(8);
else if (db->width == 2)
SCMI_PERF_FC_RING_DB(16);
else if (db->width == 4)
SCMI_PERF_FC_RING_DB(32);
else /* db->width == 8 */
#ifdef CONFIG_64BIT
SCMI_PERF_FC_RING_DB(64);
#else
{
u64 val = 0;
if (db->mask)
val = ioread64_hi_lo(db->addr) & db->mask;
iowrite64_hi_lo(db->set | val, db->addr);
}
#endif
}
static int scmi_perf_mb_limits_set(const struct scmi_handle *handle, u32 domain,
u32 max_perf, u32 min_perf)
{
int ret;
struct scmi_xfer *t;
struct scmi_perf_set_limits *limits;
ret = scmi_xfer_get_init(handle, PERF_LIMITS_SET, SCMI_PROTOCOL_PERF,
sizeof(*limits), 0, &t);
if (ret)
return ret;
limits = t->tx.buf;
limits->domain = cpu_to_le32(domain);
limits->max_level = cpu_to_le32(max_perf);
limits->min_level = cpu_to_le32(min_perf);
ret = scmi_do_xfer(handle, t);
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_perf_limits_set(const struct scmi_handle *handle, u32 domain,
u32 max_perf, u32 min_perf)
{
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
if (dom->fc_info && dom->fc_info->limit_set_addr) {
iowrite32(max_perf, dom->fc_info->limit_set_addr);
iowrite32(min_perf, dom->fc_info->limit_set_addr + 4);
scmi_perf_fc_ring_db(dom->fc_info->limit_set_db);
return 0;
}
return scmi_perf_mb_limits_set(handle, domain, max_perf, min_perf);
}
static int scmi_perf_mb_limits_get(const struct scmi_handle *handle, u32 domain,
u32 *max_perf, u32 *min_perf)
{
int ret;
struct scmi_xfer *t;
struct scmi_perf_get_limits *limits;
ret = scmi_xfer_get_init(handle, PERF_LIMITS_GET, SCMI_PROTOCOL_PERF,
sizeof(__le32), 0, &t);
if (ret)
return ret;
put_unaligned_le32(domain, t->tx.buf);
ret = scmi_do_xfer(handle, t);
if (!ret) {
limits = t->rx.buf;
*max_perf = le32_to_cpu(limits->max_level);
*min_perf = le32_to_cpu(limits->min_level);
}
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_perf_limits_get(const struct scmi_handle *handle, u32 domain,
u32 *max_perf, u32 *min_perf)
{
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
if (dom->fc_info && dom->fc_info->limit_get_addr) {
*max_perf = ioread32(dom->fc_info->limit_get_addr);
*min_perf = ioread32(dom->fc_info->limit_get_addr + 4);
return 0;
}
return scmi_perf_mb_limits_get(handle, domain, max_perf, min_perf);
}
static int scmi_perf_mb_level_set(const struct scmi_handle *handle, u32 domain,
u32 level, bool poll)
{
int ret;
struct scmi_xfer *t;
struct scmi_perf_set_level *lvl;
ret = scmi_xfer_get_init(handle, PERF_LEVEL_SET, SCMI_PROTOCOL_PERF,
sizeof(*lvl), 0, &t);
if (ret)
return ret;
t->hdr.poll_completion = poll;
lvl = t->tx.buf;
lvl->domain = cpu_to_le32(domain);
lvl->level = cpu_to_le32(level);
ret = scmi_do_xfer(handle, t);
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_perf_level_set(const struct scmi_handle *handle, u32 domain,
u32 level, bool poll)
{
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
if (dom->fc_info && dom->fc_info->level_set_addr) {
iowrite32(level, dom->fc_info->level_set_addr);
scmi_perf_fc_ring_db(dom->fc_info->level_set_db);
return 0;
}
return scmi_perf_mb_level_set(handle, domain, level, poll);
}
static int scmi_perf_mb_level_get(const struct scmi_handle *handle, u32 domain,
u32 *level, bool poll)
{
int ret;
struct scmi_xfer *t;
ret = scmi_xfer_get_init(handle, PERF_LEVEL_GET, SCMI_PROTOCOL_PERF,
sizeof(u32), sizeof(u32), &t);
if (ret)
return ret;
t->hdr.poll_completion = poll;
put_unaligned_le32(domain, t->tx.buf);
ret = scmi_do_xfer(handle, t);
if (!ret)
*level = get_unaligned_le32(t->rx.buf);
scmi_xfer_put(handle, t);
return ret;
}
static int scmi_perf_level_get(const struct scmi_handle *handle, u32 domain,
u32 *level, bool poll)
{
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
if (dom->fc_info && dom->fc_info->level_get_addr) {
*level = ioread32(dom->fc_info->level_get_addr);
return 0;
}
return scmi_perf_mb_level_get(handle, domain, level, poll);
}
static bool scmi_perf_fc_size_is_valid(u32 msg, u32 size)
{
if ((msg == PERF_LEVEL_GET || msg == PERF_LEVEL_SET) && size == 4)
return true;
if ((msg == PERF_LIMITS_GET || msg == PERF_LIMITS_SET) && size == 8)
return true;
return false;
}
static void
scmi_perf_domain_desc_fc(const struct scmi_handle *handle, u32 domain,
u32 message_id, void __iomem **p_addr,
struct scmi_fc_db_info **p_db)
{
int ret;
u32 flags;
u64 phys_addr;
u8 size;
void __iomem *addr;
struct scmi_xfer *t;
struct scmi_fc_db_info *db;
struct scmi_perf_get_fc_info *info;
struct scmi_msg_resp_perf_desc_fc *resp;
if (!p_addr)
return;
ret = scmi_xfer_get_init(handle, PERF_DESCRIBE_FASTCHANNEL,
SCMI_PROTOCOL_PERF,
sizeof(*info), sizeof(*resp), &t);
if (ret)
return;
info = t->tx.buf;
info->domain = cpu_to_le32(domain);
info->message_id = cpu_to_le32(message_id);
ret = scmi_do_xfer(handle, t);
if (ret)
goto err_xfer;
resp = t->rx.buf;
flags = le32_to_cpu(resp->attr);
size = le32_to_cpu(resp->chan_size);
if (!scmi_perf_fc_size_is_valid(message_id, size))
goto err_xfer;
phys_addr = le32_to_cpu(resp->chan_addr_low);
phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
addr = devm_ioremap(handle->dev, phys_addr, size);
if (!addr)
goto err_xfer;
*p_addr = addr;
if (p_db && SUPPORTS_DOORBELL(flags)) {
db = devm_kzalloc(handle->dev, sizeof(*db), GFP_KERNEL);
if (!db)
goto err_xfer;
size = 1 << DOORBELL_REG_WIDTH(flags);
phys_addr = le32_to_cpu(resp->db_addr_low);
phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
addr = devm_ioremap(handle->dev, phys_addr, size);
if (!addr)
goto err_xfer;
db->addr = addr;
db->width = size;
db->set = le32_to_cpu(resp->db_set_lmask);
db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
db->mask = le32_to_cpu(resp->db_preserve_lmask);
db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
*p_db = db;
}
err_xfer:
scmi_xfer_put(handle, t);
}
static void scmi_perf_domain_init_fc(const struct scmi_handle *handle,
u32 domain, struct scmi_fc_info **p_fc)
{
struct scmi_fc_info *fc;
fc = devm_kzalloc(handle->dev, sizeof(*fc), GFP_KERNEL);
if (!fc)
return;
scmi_perf_domain_desc_fc(handle, domain, PERF_LEVEL_SET,
&fc->level_set_addr, &fc->level_set_db);
scmi_perf_domain_desc_fc(handle, domain, PERF_LEVEL_GET,
&fc->level_get_addr, NULL);
scmi_perf_domain_desc_fc(handle, domain, PERF_LIMITS_SET,
&fc->limit_set_addr, &fc->limit_set_db);
scmi_perf_domain_desc_fc(handle, domain, PERF_LIMITS_GET,
&fc->limit_get_addr, NULL);
*p_fc = fc;
}
/* Device specific ops */
static int scmi_dev_domain_id(struct device *dev)
{
struct of_phandle_args clkspec;
if (of_parse_phandle_with_args(dev->of_node, "clocks", "#clock-cells",
0, &clkspec))
return -EINVAL;
return clkspec.args[0];
}
static int scmi_dvfs_device_opps_add(const struct scmi_handle *handle,
struct device *dev)
{
int idx, ret, domain;
unsigned long freq;
struct scmi_opp *opp;
struct perf_dom_info *dom;
struct scmi_perf_info *pi = handle->perf_priv;
domain = scmi_dev_domain_id(dev);
if (domain < 0)
return domain;
dom = pi->dom_info + domain;
for (opp = dom->opp, idx = 0; idx < dom->opp_count; idx++, opp++) {
freq = opp->perf * dom->mult_factor;
ret = dev_pm_opp_add(dev, freq, 0);
if (ret) {
dev_warn(dev, "failed to add opp %luHz\n", freq);
while (idx-- > 0) {
freq = (--opp)->perf * dom->mult_factor;
dev_pm_opp_remove(dev, freq);
}
return ret;
}
}
return 0;
}
static int scmi_dvfs_transition_latency_get(const struct scmi_handle *handle,
struct device *dev)
{
struct perf_dom_info *dom;
struct scmi_perf_info *pi = handle->perf_priv;
int domain = scmi_dev_domain_id(dev);
if (domain < 0)
return domain;
dom = pi->dom_info + domain;
/* uS to nS */
return dom->opp[dom->opp_count - 1].trans_latency_us * 1000;
}
static int scmi_dvfs_freq_set(const struct scmi_handle *handle, u32 domain,
unsigned long freq, bool poll)
{
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
return scmi_perf_level_set(handle, domain, freq / dom->mult_factor,
poll);
}
static int scmi_dvfs_freq_get(const struct scmi_handle *handle, u32 domain,
unsigned long *freq, bool poll)
{
int ret;
u32 level;
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom = pi->dom_info + domain;
ret = scmi_perf_level_get(handle, domain, &level, poll);
if (!ret)
*freq = level * dom->mult_factor;
return ret;
}
static int scmi_dvfs_est_power_get(const struct scmi_handle *handle, u32 domain,
unsigned long *freq, unsigned long *power)
{
struct scmi_perf_info *pi = handle->perf_priv;
struct perf_dom_info *dom;
unsigned long opp_freq;
int idx, ret = -EINVAL;
struct scmi_opp *opp;
dom = pi->dom_info + domain;
if (!dom)
return -EIO;
for (opp = dom->opp, idx = 0; idx < dom->opp_count; idx++, opp++) {
opp_freq = opp->perf * dom->mult_factor;
if (opp_freq < *freq)
continue;
*freq = opp_freq;
*power = opp->power;
ret = 0;
break;
}
return ret;
}
static struct scmi_perf_ops perf_ops = {
.limits_set = scmi_perf_limits_set,
.limits_get = scmi_perf_limits_get,
.level_set = scmi_perf_level_set,
.level_get = scmi_perf_level_get,
.device_domain_id = scmi_dev_domain_id,
.transition_latency_get = scmi_dvfs_transition_latency_get,
.device_opps_add = scmi_dvfs_device_opps_add,
.freq_set = scmi_dvfs_freq_set,
.freq_get = scmi_dvfs_freq_get,
.est_power_get = scmi_dvfs_est_power_get,
};
static int scmi_perf_protocol_init(struct scmi_handle *handle)
{
int domain;
u32 version;
struct scmi_perf_info *pinfo;
scmi_version_get(handle, SCMI_PROTOCOL_PERF, &version);
dev_dbg(handle->dev, "Performance Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
pinfo = devm_kzalloc(handle->dev, sizeof(*pinfo), GFP_KERNEL);
if (!pinfo)
return -ENOMEM;
scmi_perf_attributes_get(handle, pinfo);
pinfo->dom_info = devm_kcalloc(handle->dev, pinfo->num_domains,
sizeof(*pinfo->dom_info), GFP_KERNEL);
if (!pinfo->dom_info)
return -ENOMEM;
for (domain = 0; domain < pinfo->num_domains; domain++) {
struct perf_dom_info *dom = pinfo->dom_info + domain;
scmi_perf_domain_attributes_get(handle, domain, dom);
scmi_perf_describe_levels_get(handle, domain, dom);
if (dom->perf_fastchannels)
scmi_perf_domain_init_fc(handle, domain, &dom->fc_info);
}
handle->perf_ops = &perf_ops;
handle->perf_priv = pinfo;
return 0;
}
static int __init scmi_perf_init(void)
{
return scmi_protocol_register(SCMI_PROTOCOL_PERF,
&scmi_perf_protocol_init);
}
subsys_initcall(scmi_perf_init);