linux-sg2042/drivers/iio/light/rpr0521.c

1137 lines
27 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* RPR-0521 ROHM Ambient Light and Proximity Sensor
*
* Copyright (c) 2015, Intel Corporation.
*
* IIO driver for RPR-0521RS (7-bit I2C slave address 0x38).
*
* TODO: illuminance channel
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/delay.h>
#include <linux/acpi.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/sysfs.h>
#include <linux/pm_runtime.h>
#define RPR0521_REG_SYSTEM_CTRL 0x40
#define RPR0521_REG_MODE_CTRL 0x41
#define RPR0521_REG_ALS_CTRL 0x42
#define RPR0521_REG_PXS_CTRL 0x43
#define RPR0521_REG_PXS_DATA 0x44 /* 16-bit, little endian */
#define RPR0521_REG_ALS_DATA0 0x46 /* 16-bit, little endian */
#define RPR0521_REG_ALS_DATA1 0x48 /* 16-bit, little endian */
#define RPR0521_REG_INTERRUPT 0x4A
#define RPR0521_REG_PS_OFFSET_LSB 0x53
#define RPR0521_REG_ID 0x92
#define RPR0521_MODE_ALS_MASK BIT(7)
#define RPR0521_MODE_PXS_MASK BIT(6)
#define RPR0521_MODE_MEAS_TIME_MASK GENMASK(3, 0)
#define RPR0521_ALS_DATA0_GAIN_MASK GENMASK(5, 4)
#define RPR0521_ALS_DATA0_GAIN_SHIFT 4
#define RPR0521_ALS_DATA1_GAIN_MASK GENMASK(3, 2)
#define RPR0521_ALS_DATA1_GAIN_SHIFT 2
#define RPR0521_PXS_GAIN_MASK GENMASK(5, 4)
#define RPR0521_PXS_GAIN_SHIFT 4
#define RPR0521_PXS_PERSISTENCE_MASK GENMASK(3, 0)
#define RPR0521_INTERRUPT_INT_TRIG_PS_MASK BIT(0)
#define RPR0521_INTERRUPT_INT_TRIG_ALS_MASK BIT(1)
#define RPR0521_INTERRUPT_INT_REASSERT_MASK BIT(3)
#define RPR0521_INTERRUPT_ALS_INT_STATUS_MASK BIT(6)
#define RPR0521_INTERRUPT_PS_INT_STATUS_MASK BIT(7)
#define RPR0521_MODE_ALS_ENABLE BIT(7)
#define RPR0521_MODE_ALS_DISABLE 0x00
#define RPR0521_MODE_PXS_ENABLE BIT(6)
#define RPR0521_MODE_PXS_DISABLE 0x00
#define RPR0521_PXS_PERSISTENCE_DRDY 0x00
#define RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE BIT(0)
#define RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE 0x00
#define RPR0521_INTERRUPT_INT_TRIG_ALS_ENABLE BIT(1)
#define RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE 0x00
#define RPR0521_INTERRUPT_INT_REASSERT_ENABLE BIT(3)
#define RPR0521_INTERRUPT_INT_REASSERT_DISABLE 0x00
#define RPR0521_MANUFACT_ID 0xE0
#define RPR0521_DEFAULT_MEAS_TIME 0x06 /* ALS - 100ms, PXS - 100ms */
#define RPR0521_DRV_NAME "RPR0521"
#define RPR0521_IRQ_NAME "rpr0521_event"
#define RPR0521_REGMAP_NAME "rpr0521_regmap"
#define RPR0521_SLEEP_DELAY_MS 2000
#define RPR0521_ALS_SCALE_AVAIL "0.007812 0.015625 0.5 1"
#define RPR0521_PXS_SCALE_AVAIL "0.125 0.5 1"
struct rpr0521_gain {
int scale;
int uscale;
};
static const struct rpr0521_gain rpr0521_als_gain[4] = {
{1, 0}, /* x1 */
{0, 500000}, /* x2 */
{0, 15625}, /* x64 */
{0, 7812}, /* x128 */
};
static const struct rpr0521_gain rpr0521_pxs_gain[3] = {
{1, 0}, /* x1 */
{0, 500000}, /* x2 */
{0, 125000}, /* x4 */
};
enum rpr0521_channel {
RPR0521_CHAN_PXS,
RPR0521_CHAN_ALS_DATA0,
RPR0521_CHAN_ALS_DATA1,
};
struct rpr0521_reg_desc {
u8 address;
u8 device_mask;
};
static const struct rpr0521_reg_desc rpr0521_data_reg[] = {
[RPR0521_CHAN_PXS] = {
.address = RPR0521_REG_PXS_DATA,
.device_mask = RPR0521_MODE_PXS_MASK,
},
[RPR0521_CHAN_ALS_DATA0] = {
.address = RPR0521_REG_ALS_DATA0,
.device_mask = RPR0521_MODE_ALS_MASK,
},
[RPR0521_CHAN_ALS_DATA1] = {
.address = RPR0521_REG_ALS_DATA1,
.device_mask = RPR0521_MODE_ALS_MASK,
},
};
static const struct rpr0521_gain_info {
u8 reg;
u8 mask;
u8 shift;
const struct rpr0521_gain *gain;
int size;
} rpr0521_gain[] = {
[RPR0521_CHAN_PXS] = {
.reg = RPR0521_REG_PXS_CTRL,
.mask = RPR0521_PXS_GAIN_MASK,
.shift = RPR0521_PXS_GAIN_SHIFT,
.gain = rpr0521_pxs_gain,
.size = ARRAY_SIZE(rpr0521_pxs_gain),
},
[RPR0521_CHAN_ALS_DATA0] = {
.reg = RPR0521_REG_ALS_CTRL,
.mask = RPR0521_ALS_DATA0_GAIN_MASK,
.shift = RPR0521_ALS_DATA0_GAIN_SHIFT,
.gain = rpr0521_als_gain,
.size = ARRAY_SIZE(rpr0521_als_gain),
},
[RPR0521_CHAN_ALS_DATA1] = {
.reg = RPR0521_REG_ALS_CTRL,
.mask = RPR0521_ALS_DATA1_GAIN_MASK,
.shift = RPR0521_ALS_DATA1_GAIN_SHIFT,
.gain = rpr0521_als_gain,
.size = ARRAY_SIZE(rpr0521_als_gain),
},
};
struct rpr0521_samp_freq {
int als_hz;
int als_uhz;
int pxs_hz;
int pxs_uhz;
};
static const struct rpr0521_samp_freq rpr0521_samp_freq_i[13] = {
/* {ALS, PXS}, W==currently writable option */
{0, 0, 0, 0}, /* W0000, 0=standby */
{0, 0, 100, 0}, /* 0001 */
{0, 0, 25, 0}, /* 0010 */
{0, 0, 10, 0}, /* 0011 */
{0, 0, 2, 500000}, /* 0100 */
{10, 0, 20, 0}, /* 0101 */
{10, 0, 10, 0}, /* W0110 */
{10, 0, 2, 500000}, /* 0111 */
{2, 500000, 20, 0}, /* 1000, measurement 100ms, sleep 300ms */
{2, 500000, 10, 0}, /* 1001, measurement 100ms, sleep 300ms */
{2, 500000, 0, 0}, /* 1010, high sensitivity mode */
{2, 500000, 2, 500000}, /* W1011, high sensitivity mode */
{20, 0, 20, 0} /* 1100, ALS_data x 0.5, see specification P.18 */
};
struct rpr0521_data {
struct i2c_client *client;
/* protect device params updates (e.g state, gain) */
struct mutex lock;
/* device active status */
bool als_dev_en;
bool pxs_dev_en;
struct iio_trigger *drdy_trigger0;
s64 irq_timestamp;
/* optimize runtime pm ops - enable/disable device only if needed */
bool als_ps_need_en;
bool pxs_ps_need_en;
bool als_need_dis;
bool pxs_need_dis;
struct regmap *regmap;
};
static IIO_CONST_ATTR(in_intensity_scale_available, RPR0521_ALS_SCALE_AVAIL);
static IIO_CONST_ATTR(in_proximity_scale_available, RPR0521_PXS_SCALE_AVAIL);
/*
* Start with easy freq first, whole table of freq combinations is more
* complicated.
*/
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("2.5 10");
static struct attribute *rpr0521_attributes[] = {
&iio_const_attr_in_intensity_scale_available.dev_attr.attr,
&iio_const_attr_in_proximity_scale_available.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group rpr0521_attribute_group = {
.attrs = rpr0521_attributes,
};
/* Order of the channel data in buffer */
enum rpr0521_scan_index_order {
RPR0521_CHAN_INDEX_PXS,
RPR0521_CHAN_INDEX_BOTH,
RPR0521_CHAN_INDEX_IR,
};
static const unsigned long rpr0521_available_scan_masks[] = {
BIT(RPR0521_CHAN_INDEX_PXS) | BIT(RPR0521_CHAN_INDEX_BOTH) |
BIT(RPR0521_CHAN_INDEX_IR),
0
};
static const struct iio_chan_spec rpr0521_channels[] = {
{
.type = IIO_PROXIMITY,
.address = RPR0521_CHAN_PXS,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_OFFSET) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.scan_index = RPR0521_CHAN_INDEX_PXS,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
},
{
.type = IIO_INTENSITY,
.modified = 1,
.address = RPR0521_CHAN_ALS_DATA0,
.channel2 = IIO_MOD_LIGHT_BOTH,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.scan_index = RPR0521_CHAN_INDEX_BOTH,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
},
{
.type = IIO_INTENSITY,
.modified = 1,
.address = RPR0521_CHAN_ALS_DATA1,
.channel2 = IIO_MOD_LIGHT_IR,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.scan_index = RPR0521_CHAN_INDEX_IR,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_LE,
},
},
};
static int rpr0521_als_enable(struct rpr0521_data *data, u8 status)
{
int ret;
ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
RPR0521_MODE_ALS_MASK,
status);
if (ret < 0)
return ret;
if (status & RPR0521_MODE_ALS_MASK)
data->als_dev_en = true;
else
data->als_dev_en = false;
return 0;
}
static int rpr0521_pxs_enable(struct rpr0521_data *data, u8 status)
{
int ret;
ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
RPR0521_MODE_PXS_MASK,
status);
if (ret < 0)
return ret;
if (status & RPR0521_MODE_PXS_MASK)
data->pxs_dev_en = true;
else
data->pxs_dev_en = false;
return 0;
}
/**
* rpr0521_set_power_state - handles runtime PM state and sensors enabled status
*
* @data: rpr0521 device private data
* @on: state to be set for devices in @device_mask
* @device_mask: bitmask specifying for which device we need to update @on state
*
* Calls for this function must be balanced so that each ON should have matching
* OFF. Otherwise pm usage_count gets out of sync.
*/
static int rpr0521_set_power_state(struct rpr0521_data *data, bool on,
u8 device_mask)
{
#ifdef CONFIG_PM
int ret;
if (device_mask & RPR0521_MODE_ALS_MASK) {
data->als_ps_need_en = on;
data->als_need_dis = !on;
}
if (device_mask & RPR0521_MODE_PXS_MASK) {
data->pxs_ps_need_en = on;
data->pxs_need_dis = !on;
}
/*
* On: _resume() is called only when we are suspended
* Off: _suspend() is called after delay if _resume() is not
* called before that.
* Note: If either measurement is re-enabled before _suspend(),
* both stay enabled until _suspend().
*/
if (on) {
ret = pm_runtime_get_sync(&data->client->dev);
} else {
pm_runtime_mark_last_busy(&data->client->dev);
ret = pm_runtime_put_autosuspend(&data->client->dev);
}
if (ret < 0) {
dev_err(&data->client->dev,
"Failed: rpr0521_set_power_state for %d, ret %d\n",
on, ret);
if (on)
pm_runtime_put_noidle(&data->client->dev);
return ret;
}
if (on) {
/* If _resume() was not called, enable measurement now. */
if (data->als_ps_need_en) {
ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
if (ret)
return ret;
data->als_ps_need_en = false;
}
if (data->pxs_ps_need_en) {
ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
if (ret)
return ret;
data->pxs_ps_need_en = false;
}
}
#endif
return 0;
}
/* Interrupt register tells if this sensor caused the interrupt or not. */
static inline bool rpr0521_is_triggered(struct rpr0521_data *data)
{
int ret;
int reg;
ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, &reg);
if (ret < 0)
return false; /* Reg read failed. */
if (reg &
(RPR0521_INTERRUPT_ALS_INT_STATUS_MASK |
RPR0521_INTERRUPT_PS_INT_STATUS_MASK))
return true;
else
return false; /* Int not from this sensor. */
}
/* IRQ to trigger handler */
static irqreturn_t rpr0521_drdy_irq_handler(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct rpr0521_data *data = iio_priv(indio_dev);
data->irq_timestamp = iio_get_time_ns(indio_dev);
/*
* We need to wake the thread to read the interrupt reg. It
* is not possible to do that here because regmap_read takes a
* mutex.
*/
return IRQ_WAKE_THREAD;
}
static irqreturn_t rpr0521_drdy_irq_thread(int irq, void *private)
{
struct iio_dev *indio_dev = private;
struct rpr0521_data *data = iio_priv(indio_dev);
if (rpr0521_is_triggered(data)) {
iio_trigger_poll_chained(data->drdy_trigger0);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static irqreturn_t rpr0521_trigger_consumer_store_time(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
/* Other trigger polls store time here. */
if (!iio_trigger_using_own(indio_dev))
pf->timestamp = iio_get_time_ns(indio_dev);
return IRQ_WAKE_THREAD;
}
static irqreturn_t rpr0521_trigger_consumer_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct rpr0521_data *data = iio_priv(indio_dev);
int err;
u8 buffer[16]; /* 3 16-bit channels + padding + ts */
/* Use irq timestamp when reasonable. */
if (iio_trigger_using_own(indio_dev) && data->irq_timestamp) {
pf->timestamp = data->irq_timestamp;
data->irq_timestamp = 0;
}
/* Other chained trigger polls get timestamp only here. */
if (!pf->timestamp)
pf->timestamp = iio_get_time_ns(indio_dev);
err = regmap_bulk_read(data->regmap, RPR0521_REG_PXS_DATA,
&buffer,
(3 * 2) + 1); /* 3 * 16-bit + (discarded) int clear reg. */
if (!err)
iio_push_to_buffers_with_timestamp(indio_dev,
buffer, pf->timestamp);
else
dev_err(&data->client->dev,
"Trigger consumer can't read from sensor.\n");
pf->timestamp = 0;
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int rpr0521_write_int_enable(struct rpr0521_data *data)
{
int err;
/* Interrupt after each measurement */
err = regmap_update_bits(data->regmap, RPR0521_REG_PXS_CTRL,
RPR0521_PXS_PERSISTENCE_MASK,
RPR0521_PXS_PERSISTENCE_DRDY);
if (err) {
dev_err(&data->client->dev, "PS control reg write fail.\n");
return -EBUSY;
}
/* Ignore latch and mode because of drdy */
err = regmap_write(data->regmap, RPR0521_REG_INTERRUPT,
RPR0521_INTERRUPT_INT_REASSERT_DISABLE |
RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE |
RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE
);
if (err) {
dev_err(&data->client->dev, "Interrupt setup write fail.\n");
return -EBUSY;
}
return 0;
}
static int rpr0521_write_int_disable(struct rpr0521_data *data)
{
/* Don't care of clearing mode, assert and latch. */
return regmap_write(data->regmap, RPR0521_REG_INTERRUPT,
RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE |
RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE
);
}
/*
* Trigger producer enable / disable. Note that there will be trigs only when
* measurement data is ready to be read.
*/
static int rpr0521_pxs_drdy_set_state(struct iio_trigger *trigger,
bool enable_drdy)
{
struct iio_dev *indio_dev = iio_trigger_get_drvdata(trigger);
struct rpr0521_data *data = iio_priv(indio_dev);
int err;
if (enable_drdy)
err = rpr0521_write_int_enable(data);
else
err = rpr0521_write_int_disable(data);
if (err)
dev_err(&data->client->dev, "rpr0521_pxs_drdy_set_state failed\n");
return err;
}
static const struct iio_trigger_ops rpr0521_trigger_ops = {
.set_trigger_state = rpr0521_pxs_drdy_set_state,
};
static int rpr0521_buffer_preenable(struct iio_dev *indio_dev)
{
int err;
struct rpr0521_data *data = iio_priv(indio_dev);
mutex_lock(&data->lock);
err = rpr0521_set_power_state(data, true,
(RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK));
mutex_unlock(&data->lock);
if (err)
dev_err(&data->client->dev, "_buffer_preenable fail\n");
return err;
}
static int rpr0521_buffer_postdisable(struct iio_dev *indio_dev)
{
int err;
struct rpr0521_data *data = iio_priv(indio_dev);
mutex_lock(&data->lock);
err = rpr0521_set_power_state(data, false,
(RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK));
mutex_unlock(&data->lock);
if (err)
dev_err(&data->client->dev, "_buffer_postdisable fail\n");
return err;
}
static const struct iio_buffer_setup_ops rpr0521_buffer_setup_ops = {
.preenable = rpr0521_buffer_preenable,
.postdisable = rpr0521_buffer_postdisable,
};
static int rpr0521_get_gain(struct rpr0521_data *data, int chan,
int *val, int *val2)
{
int ret, reg, idx;
ret = regmap_read(data->regmap, rpr0521_gain[chan].reg, &reg);
if (ret < 0)
return ret;
idx = (rpr0521_gain[chan].mask & reg) >> rpr0521_gain[chan].shift;
*val = rpr0521_gain[chan].gain[idx].scale;
*val2 = rpr0521_gain[chan].gain[idx].uscale;
return 0;
}
static int rpr0521_set_gain(struct rpr0521_data *data, int chan,
int val, int val2)
{
int i, idx = -EINVAL;
/* get gain index */
for (i = 0; i < rpr0521_gain[chan].size; i++)
if (val == rpr0521_gain[chan].gain[i].scale &&
val2 == rpr0521_gain[chan].gain[i].uscale) {
idx = i;
break;
}
if (idx < 0)
return idx;
return regmap_update_bits(data->regmap, rpr0521_gain[chan].reg,
rpr0521_gain[chan].mask,
idx << rpr0521_gain[chan].shift);
}
static int rpr0521_read_samp_freq(struct rpr0521_data *data,
enum iio_chan_type chan_type,
int *val, int *val2)
{
int reg, ret;
ret = regmap_read(data->regmap, RPR0521_REG_MODE_CTRL, &reg);
if (ret < 0)
return ret;
reg &= RPR0521_MODE_MEAS_TIME_MASK;
if (reg >= ARRAY_SIZE(rpr0521_samp_freq_i))
return -EINVAL;
switch (chan_type) {
case IIO_INTENSITY:
*val = rpr0521_samp_freq_i[reg].als_hz;
*val2 = rpr0521_samp_freq_i[reg].als_uhz;
return 0;
case IIO_PROXIMITY:
*val = rpr0521_samp_freq_i[reg].pxs_hz;
*val2 = rpr0521_samp_freq_i[reg].pxs_uhz;
return 0;
default:
return -EINVAL;
}
}
static int rpr0521_write_samp_freq_common(struct rpr0521_data *data,
enum iio_chan_type chan_type,
int val, int val2)
{
int i;
/*
* Ignore channel
* both pxs and als are setup only to same freq because of simplicity
*/
switch (val) {
case 0:
i = 0;
break;
case 2:
if (val2 != 500000)
return -EINVAL;
i = 11;
break;
case 10:
i = 6;
break;
default:
return -EINVAL;
}
return regmap_update_bits(data->regmap,
RPR0521_REG_MODE_CTRL,
RPR0521_MODE_MEAS_TIME_MASK,
i);
}
static int rpr0521_read_ps_offset(struct rpr0521_data *data, int *offset)
{
int ret;
__le16 buffer;
ret = regmap_bulk_read(data->regmap,
RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer));
if (ret < 0) {
dev_err(&data->client->dev, "Failed to read PS OFFSET register\n");
return ret;
}
*offset = le16_to_cpu(buffer);
return ret;
}
static int rpr0521_write_ps_offset(struct rpr0521_data *data, int offset)
{
int ret;
__le16 buffer;
buffer = cpu_to_le16(offset & 0x3ff);
ret = regmap_raw_write(data->regmap,
RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer));
if (ret < 0) {
dev_err(&data->client->dev, "Failed to write PS OFFSET register\n");
return ret;
}
return ret;
}
static int rpr0521_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct rpr0521_data *data = iio_priv(indio_dev);
int ret;
int busy;
u8 device_mask;
__le16 raw_data;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (chan->type != IIO_INTENSITY && chan->type != IIO_PROXIMITY)
return -EINVAL;
busy = iio_device_claim_direct_mode(indio_dev);
if (busy)
return -EBUSY;
device_mask = rpr0521_data_reg[chan->address].device_mask;
mutex_lock(&data->lock);
ret = rpr0521_set_power_state(data, true, device_mask);
if (ret < 0)
goto rpr0521_read_raw_out;
ret = regmap_bulk_read(data->regmap,
rpr0521_data_reg[chan->address].address,
&raw_data, sizeof(raw_data));
if (ret < 0) {
rpr0521_set_power_state(data, false, device_mask);
goto rpr0521_read_raw_out;
}
ret = rpr0521_set_power_state(data, false, device_mask);
rpr0521_read_raw_out:
mutex_unlock(&data->lock);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
*val = le16_to_cpu(raw_data);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
mutex_lock(&data->lock);
ret = rpr0521_get_gain(data, chan->address, val, val2);
mutex_unlock(&data->lock);
if (ret < 0)
return ret;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->lock);
ret = rpr0521_read_samp_freq(data, chan->type, val, val2);
mutex_unlock(&data->lock);
if (ret < 0)
return ret;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_OFFSET:
mutex_lock(&data->lock);
ret = rpr0521_read_ps_offset(data, val);
mutex_unlock(&data->lock);
if (ret < 0)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int rpr0521_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct rpr0521_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_SCALE:
mutex_lock(&data->lock);
ret = rpr0521_set_gain(data, chan->address, val, val2);
mutex_unlock(&data->lock);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
mutex_lock(&data->lock);
ret = rpr0521_write_samp_freq_common(data, chan->type,
val, val2);
mutex_unlock(&data->lock);
return ret;
case IIO_CHAN_INFO_OFFSET:
mutex_lock(&data->lock);
ret = rpr0521_write_ps_offset(data, val);
mutex_unlock(&data->lock);
return ret;
default:
return -EINVAL;
}
}
static const struct iio_info rpr0521_info = {
.read_raw = rpr0521_read_raw,
.write_raw = rpr0521_write_raw,
.attrs = &rpr0521_attribute_group,
};
static int rpr0521_init(struct rpr0521_data *data)
{
int ret;
int id;
ret = regmap_read(data->regmap, RPR0521_REG_ID, &id);
if (ret < 0) {
dev_err(&data->client->dev, "Failed to read REG_ID register\n");
return ret;
}
if (id != RPR0521_MANUFACT_ID) {
dev_err(&data->client->dev, "Wrong id, got %x, expected %x\n",
id, RPR0521_MANUFACT_ID);
return -ENODEV;
}
/* set default measurement time - 100 ms for both ALS and PS */
ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
RPR0521_MODE_MEAS_TIME_MASK,
RPR0521_DEFAULT_MEAS_TIME);
if (ret) {
pr_err("regmap_update_bits returned %d\n", ret);
return ret;
}
#ifndef CONFIG_PM
ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
if (ret < 0)
return ret;
ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
if (ret < 0)
return ret;
#endif
data->irq_timestamp = 0;
return 0;
}
static int rpr0521_poweroff(struct rpr0521_data *data)
{
int ret;
int tmp;
ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL,
RPR0521_MODE_ALS_MASK |
RPR0521_MODE_PXS_MASK,
RPR0521_MODE_ALS_DISABLE |
RPR0521_MODE_PXS_DISABLE);
if (ret < 0)
return ret;
data->als_dev_en = false;
data->pxs_dev_en = false;
/*
* Int pin keeps state after power off. Set pin to high impedance
* mode to prevent power drain.
*/
ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, &tmp);
if (ret) {
dev_err(&data->client->dev, "Failed to reset int pin.\n");
return ret;
}
return 0;
}
static bool rpr0521_is_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case RPR0521_REG_MODE_CTRL:
case RPR0521_REG_ALS_CTRL:
case RPR0521_REG_PXS_CTRL:
return false;
default:
return true;
}
}
static const struct regmap_config rpr0521_regmap_config = {
.name = RPR0521_REGMAP_NAME,
.reg_bits = 8,
.val_bits = 8,
.max_register = RPR0521_REG_ID,
.cache_type = REGCACHE_RBTREE,
.volatile_reg = rpr0521_is_volatile_reg,
};
static int rpr0521_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct rpr0521_data *data;
struct iio_dev *indio_dev;
struct regmap *regmap;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
regmap = devm_regmap_init_i2c(client, &rpr0521_regmap_config);
if (IS_ERR(regmap)) {
dev_err(&client->dev, "regmap_init failed!\n");
return PTR_ERR(regmap);
}
data = iio_priv(indio_dev);
i2c_set_clientdata(client, indio_dev);
data->client = client;
data->regmap = regmap;
mutex_init(&data->lock);
indio_dev->info = &rpr0521_info;
indio_dev->name = RPR0521_DRV_NAME;
indio_dev->channels = rpr0521_channels;
indio_dev->num_channels = ARRAY_SIZE(rpr0521_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
ret = rpr0521_init(data);
if (ret < 0) {
dev_err(&client->dev, "rpr0521 chip init failed\n");
return ret;
}
ret = pm_runtime_set_active(&client->dev);
if (ret < 0)
goto err_poweroff;
pm_runtime_enable(&client->dev);
pm_runtime_set_autosuspend_delay(&client->dev, RPR0521_SLEEP_DELAY_MS);
pm_runtime_use_autosuspend(&client->dev);
/*
* If sensor write/read is needed in _probe after _use_autosuspend,
* sensor needs to be _resumed first using rpr0521_set_power_state().
*/
/* IRQ to trigger setup */
if (client->irq) {
/* Trigger0 producer setup */
data->drdy_trigger0 = devm_iio_trigger_alloc(
indio_dev->dev.parent,
"%s-dev%d", indio_dev->name, indio_dev->id);
if (!data->drdy_trigger0) {
ret = -ENOMEM;
goto err_pm_disable;
}
data->drdy_trigger0->dev.parent = indio_dev->dev.parent;
data->drdy_trigger0->ops = &rpr0521_trigger_ops;
indio_dev->available_scan_masks = rpr0521_available_scan_masks;
iio_trigger_set_drvdata(data->drdy_trigger0, indio_dev);
/* Ties irq to trigger producer handler. */
ret = devm_request_threaded_irq(&client->dev, client->irq,
rpr0521_drdy_irq_handler, rpr0521_drdy_irq_thread,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
RPR0521_IRQ_NAME, indio_dev);
if (ret < 0) {
dev_err(&client->dev, "request irq %d for trigger0 failed\n",
client->irq);
goto err_pm_disable;
}
ret = devm_iio_trigger_register(indio_dev->dev.parent,
data->drdy_trigger0);
if (ret) {
dev_err(&client->dev, "iio trigger register failed\n");
goto err_pm_disable;
}
/*
* Now whole pipe from physical interrupt (irq defined by
* devicetree to device) to trigger0 output is set up.
*/
/* Trigger consumer setup */
ret = devm_iio_triggered_buffer_setup(indio_dev->dev.parent,
indio_dev,
rpr0521_trigger_consumer_store_time,
rpr0521_trigger_consumer_handler,
&rpr0521_buffer_setup_ops);
if (ret < 0) {
dev_err(&client->dev, "iio triggered buffer setup failed\n");
goto err_pm_disable;
}
}
ret = iio_device_register(indio_dev);
if (ret)
goto err_pm_disable;
return 0;
err_pm_disable:
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
err_poweroff:
rpr0521_poweroff(data);
return ret;
}
static int rpr0521_remove(struct i2c_client *client)
{
struct iio_dev *indio_dev = i2c_get_clientdata(client);
iio_device_unregister(indio_dev);
pm_runtime_disable(&client->dev);
pm_runtime_set_suspended(&client->dev);
pm_runtime_put_noidle(&client->dev);
rpr0521_poweroff(iio_priv(indio_dev));
return 0;
}
#ifdef CONFIG_PM
static int rpr0521_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct rpr0521_data *data = iio_priv(indio_dev);
int ret;
mutex_lock(&data->lock);
/* If measurements are enabled, enable them on resume */
if (!data->als_need_dis)
data->als_ps_need_en = data->als_dev_en;
if (!data->pxs_need_dis)
data->pxs_ps_need_en = data->pxs_dev_en;
/* disable channels and sets {als,pxs}_dev_en to false */
ret = rpr0521_poweroff(data);
regcache_mark_dirty(data->regmap);
mutex_unlock(&data->lock);
return ret;
}
static int rpr0521_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
struct rpr0521_data *data = iio_priv(indio_dev);
int ret;
regcache_sync(data->regmap);
if (data->als_ps_need_en) {
ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE);
if (ret < 0)
return ret;
data->als_ps_need_en = false;
}
if (data->pxs_ps_need_en) {
ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE);
if (ret < 0)
return ret;
data->pxs_ps_need_en = false;
}
msleep(100); //wait for first measurement result
return 0;
}
#endif
static const struct dev_pm_ops rpr0521_pm_ops = {
SET_RUNTIME_PM_OPS(rpr0521_runtime_suspend,
rpr0521_runtime_resume, NULL)
};
static const struct acpi_device_id rpr0521_acpi_match[] = {
{"RPR0521", 0},
{ }
};
MODULE_DEVICE_TABLE(acpi, rpr0521_acpi_match);
static const struct i2c_device_id rpr0521_id[] = {
{"rpr0521", 0},
{ }
};
MODULE_DEVICE_TABLE(i2c, rpr0521_id);
static struct i2c_driver rpr0521_driver = {
.driver = {
.name = RPR0521_DRV_NAME,
.pm = &rpr0521_pm_ops,
.acpi_match_table = ACPI_PTR(rpr0521_acpi_match),
},
.probe = rpr0521_probe,
.remove = rpr0521_remove,
.id_table = rpr0521_id,
};
module_i2c_driver(rpr0521_driver);
MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
MODULE_DESCRIPTION("RPR0521 ROHM Ambient Light and Proximity Sensor driver");
MODULE_LICENSE("GPL v2");