1615 lines
40 KiB
C
1615 lines
40 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Firmware Assisted dump: A robust mechanism to get reliable kernel crash
|
|
* dump with assistance from firmware. This approach does not use kexec,
|
|
* instead firmware assists in booting the kdump kernel while preserving
|
|
* memory contents. The most of the code implementation has been adapted
|
|
* from phyp assisted dump implementation written by Linas Vepstas and
|
|
* Manish Ahuja
|
|
*
|
|
* Copyright 2011 IBM Corporation
|
|
* Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
|
|
*/
|
|
|
|
#undef DEBUG
|
|
#define pr_fmt(fmt) "fadump: " fmt
|
|
|
|
#include <linux/string.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include <asm/debugfs.h>
|
|
#include <asm/page.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/fadump.h>
|
|
#include <asm/fadump-internal.h>
|
|
#include <asm/setup.h>
|
|
|
|
static struct fw_dump fw_dump;
|
|
|
|
static void __init fadump_reserve_crash_area(u64 base);
|
|
|
|
struct kobject *fadump_kobj;
|
|
|
|
#ifndef CONFIG_PRESERVE_FA_DUMP
|
|
static DEFINE_MUTEX(fadump_mutex);
|
|
struct fadump_mrange_info crash_mrange_info = { "crash", NULL, 0, 0, 0 };
|
|
struct fadump_mrange_info reserved_mrange_info = { "reserved", NULL, 0, 0, 0 };
|
|
|
|
#ifdef CONFIG_CMA
|
|
static struct cma *fadump_cma;
|
|
|
|
/*
|
|
* fadump_cma_init() - Initialize CMA area from a fadump reserved memory
|
|
*
|
|
* This function initializes CMA area from fadump reserved memory.
|
|
* The total size of fadump reserved memory covers for boot memory size
|
|
* + cpu data size + hpte size and metadata.
|
|
* Initialize only the area equivalent to boot memory size for CMA use.
|
|
* The reamining portion of fadump reserved memory will be not given
|
|
* to CMA and pages for thoes will stay reserved. boot memory size is
|
|
* aligned per CMA requirement to satisy cma_init_reserved_mem() call.
|
|
* But for some reason even if it fails we still have the memory reservation
|
|
* with us and we can still continue doing fadump.
|
|
*/
|
|
int __init fadump_cma_init(void)
|
|
{
|
|
unsigned long long base, size;
|
|
int rc;
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
/*
|
|
* Do not use CMA if user has provided fadump=nocma kernel parameter.
|
|
* Return 1 to continue with fadump old behaviour.
|
|
*/
|
|
if (fw_dump.nocma)
|
|
return 1;
|
|
|
|
base = fw_dump.reserve_dump_area_start;
|
|
size = fw_dump.boot_memory_size;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
rc = cma_init_reserved_mem(base, size, 0, "fadump_cma", &fadump_cma);
|
|
if (rc) {
|
|
pr_err("Failed to init cma area for firmware-assisted dump,%d\n", rc);
|
|
/*
|
|
* Though the CMA init has failed we still have memory
|
|
* reservation with us. The reserved memory will be
|
|
* blocked from production system usage. Hence return 1,
|
|
* so that we can continue with fadump.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* So we now have successfully initialized cma area for fadump.
|
|
*/
|
|
pr_info("Initialized 0x%lx bytes cma area at %ldMB from 0x%lx "
|
|
"bytes of memory reserved for firmware-assisted dump\n",
|
|
cma_get_size(fadump_cma),
|
|
(unsigned long)cma_get_base(fadump_cma) >> 20,
|
|
fw_dump.reserve_dump_area_size);
|
|
return 1;
|
|
}
|
|
#else
|
|
static int __init fadump_cma_init(void) { return 1; }
|
|
#endif /* CONFIG_CMA */
|
|
|
|
/* Scan the Firmware Assisted dump configuration details. */
|
|
int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
if (depth != 1)
|
|
return 0;
|
|
|
|
if (strcmp(uname, "rtas") == 0) {
|
|
rtas_fadump_dt_scan(&fw_dump, node);
|
|
return 1;
|
|
}
|
|
|
|
if (strcmp(uname, "ibm,opal") == 0) {
|
|
opal_fadump_dt_scan(&fw_dump, node);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If fadump is registered, check if the memory provided
|
|
* falls within boot memory area and reserved memory area.
|
|
*/
|
|
int is_fadump_memory_area(u64 addr, unsigned long size)
|
|
{
|
|
u64 d_start, d_end;
|
|
|
|
if (!fw_dump.dump_registered)
|
|
return 0;
|
|
|
|
if (!size)
|
|
return 0;
|
|
|
|
d_start = fw_dump.reserve_dump_area_start;
|
|
d_end = d_start + fw_dump.reserve_dump_area_size;
|
|
if (((addr + size) > d_start) && (addr <= d_end))
|
|
return 1;
|
|
|
|
return (addr <= fw_dump.boot_mem_top);
|
|
}
|
|
|
|
int should_fadump_crash(void)
|
|
{
|
|
if (!fw_dump.dump_registered || !fw_dump.fadumphdr_addr)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int is_fadump_active(void)
|
|
{
|
|
return fw_dump.dump_active;
|
|
}
|
|
|
|
/*
|
|
* Returns true, if there are no holes in memory area between d_start to d_end,
|
|
* false otherwise.
|
|
*/
|
|
static bool is_fadump_mem_area_contiguous(u64 d_start, u64 d_end)
|
|
{
|
|
struct memblock_region *reg;
|
|
bool ret = false;
|
|
u64 start, end;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
start = max_t(u64, d_start, reg->base);
|
|
end = min_t(u64, d_end, (reg->base + reg->size));
|
|
if (d_start < end) {
|
|
/* Memory hole from d_start to start */
|
|
if (start > d_start)
|
|
break;
|
|
|
|
if (end == d_end) {
|
|
ret = true;
|
|
break;
|
|
}
|
|
|
|
d_start = end + 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns true, if there are no holes in boot memory area,
|
|
* false otherwise.
|
|
*/
|
|
bool is_fadump_boot_mem_contiguous(void)
|
|
{
|
|
unsigned long d_start, d_end;
|
|
bool ret = false;
|
|
int i;
|
|
|
|
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
|
|
d_start = fw_dump.boot_mem_addr[i];
|
|
d_end = d_start + fw_dump.boot_mem_sz[i];
|
|
|
|
ret = is_fadump_mem_area_contiguous(d_start, d_end);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns true, if there are no holes in reserved memory area,
|
|
* false otherwise.
|
|
*/
|
|
bool is_fadump_reserved_mem_contiguous(void)
|
|
{
|
|
u64 d_start, d_end;
|
|
|
|
d_start = fw_dump.reserve_dump_area_start;
|
|
d_end = d_start + fw_dump.reserve_dump_area_size;
|
|
return is_fadump_mem_area_contiguous(d_start, d_end);
|
|
}
|
|
|
|
/* Print firmware assisted dump configurations for debugging purpose. */
|
|
static void fadump_show_config(void)
|
|
{
|
|
int i;
|
|
|
|
pr_debug("Support for firmware-assisted dump (fadump): %s\n",
|
|
(fw_dump.fadump_supported ? "present" : "no support"));
|
|
|
|
if (!fw_dump.fadump_supported)
|
|
return;
|
|
|
|
pr_debug("Fadump enabled : %s\n",
|
|
(fw_dump.fadump_enabled ? "yes" : "no"));
|
|
pr_debug("Dump Active : %s\n",
|
|
(fw_dump.dump_active ? "yes" : "no"));
|
|
pr_debug("Dump section sizes:\n");
|
|
pr_debug(" CPU state data size: %lx\n", fw_dump.cpu_state_data_size);
|
|
pr_debug(" HPTE region size : %lx\n", fw_dump.hpte_region_size);
|
|
pr_debug(" Boot memory size : %lx\n", fw_dump.boot_memory_size);
|
|
pr_debug(" Boot memory top : %llx\n", fw_dump.boot_mem_top);
|
|
pr_debug("Boot memory regions cnt: %llx\n", fw_dump.boot_mem_regs_cnt);
|
|
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
|
|
pr_debug("[%03d] base = %llx, size = %llx\n", i,
|
|
fw_dump.boot_mem_addr[i], fw_dump.boot_mem_sz[i]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fadump_calculate_reserve_size(): reserve variable boot area 5% of System RAM
|
|
*
|
|
* Function to find the largest memory size we need to reserve during early
|
|
* boot process. This will be the size of the memory that is required for a
|
|
* kernel to boot successfully.
|
|
*
|
|
* This function has been taken from phyp-assisted dump feature implementation.
|
|
*
|
|
* returns larger of 256MB or 5% rounded down to multiples of 256MB.
|
|
*
|
|
* TODO: Come up with better approach to find out more accurate memory size
|
|
* that is required for a kernel to boot successfully.
|
|
*
|
|
*/
|
|
static inline u64 fadump_calculate_reserve_size(void)
|
|
{
|
|
u64 base, size, bootmem_min;
|
|
int ret;
|
|
|
|
if (fw_dump.reserve_bootvar)
|
|
pr_warn("'fadump_reserve_mem=' parameter is deprecated in favor of 'crashkernel=' parameter.\n");
|
|
|
|
/*
|
|
* Check if the size is specified through crashkernel= cmdline
|
|
* option. If yes, then use that but ignore base as fadump reserves
|
|
* memory at a predefined offset.
|
|
*/
|
|
ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
|
|
&size, &base);
|
|
if (ret == 0 && size > 0) {
|
|
unsigned long max_size;
|
|
|
|
if (fw_dump.reserve_bootvar)
|
|
pr_info("Using 'crashkernel=' parameter for memory reservation.\n");
|
|
|
|
fw_dump.reserve_bootvar = (unsigned long)size;
|
|
|
|
/*
|
|
* Adjust if the boot memory size specified is above
|
|
* the upper limit.
|
|
*/
|
|
max_size = memblock_phys_mem_size() / MAX_BOOT_MEM_RATIO;
|
|
if (fw_dump.reserve_bootvar > max_size) {
|
|
fw_dump.reserve_bootvar = max_size;
|
|
pr_info("Adjusted boot memory size to %luMB\n",
|
|
(fw_dump.reserve_bootvar >> 20));
|
|
}
|
|
|
|
return fw_dump.reserve_bootvar;
|
|
} else if (fw_dump.reserve_bootvar) {
|
|
/*
|
|
* 'fadump_reserve_mem=' is being used to reserve memory
|
|
* for firmware-assisted dump.
|
|
*/
|
|
return fw_dump.reserve_bootvar;
|
|
}
|
|
|
|
/* divide by 20 to get 5% of value */
|
|
size = memblock_phys_mem_size() / 20;
|
|
|
|
/* round it down in multiples of 256 */
|
|
size = size & ~0x0FFFFFFFUL;
|
|
|
|
/* Truncate to memory_limit. We don't want to over reserve the memory.*/
|
|
if (memory_limit && size > memory_limit)
|
|
size = memory_limit;
|
|
|
|
bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
|
|
return (size > bootmem_min ? size : bootmem_min);
|
|
}
|
|
|
|
/*
|
|
* Calculate the total memory size required to be reserved for
|
|
* firmware-assisted dump registration.
|
|
*/
|
|
static unsigned long get_fadump_area_size(void)
|
|
{
|
|
unsigned long size = 0;
|
|
|
|
size += fw_dump.cpu_state_data_size;
|
|
size += fw_dump.hpte_region_size;
|
|
size += fw_dump.boot_memory_size;
|
|
size += sizeof(struct fadump_crash_info_header);
|
|
size += sizeof(struct elfhdr); /* ELF core header.*/
|
|
size += sizeof(struct elf_phdr); /* place holder for cpu notes */
|
|
/* Program headers for crash memory regions. */
|
|
size += sizeof(struct elf_phdr) * (memblock_num_regions(memory) + 2);
|
|
|
|
size = PAGE_ALIGN(size);
|
|
|
|
/* This is to hold kernel metadata on platforms that support it */
|
|
size += (fw_dump.ops->fadump_get_metadata_size ?
|
|
fw_dump.ops->fadump_get_metadata_size() : 0);
|
|
return size;
|
|
}
|
|
|
|
static int __init add_boot_mem_region(unsigned long rstart,
|
|
unsigned long rsize)
|
|
{
|
|
int i = fw_dump.boot_mem_regs_cnt++;
|
|
|
|
if (fw_dump.boot_mem_regs_cnt > FADUMP_MAX_MEM_REGS) {
|
|
fw_dump.boot_mem_regs_cnt = FADUMP_MAX_MEM_REGS;
|
|
return 0;
|
|
}
|
|
|
|
pr_debug("Added boot memory range[%d] [%#016lx-%#016lx)\n",
|
|
i, rstart, (rstart + rsize));
|
|
fw_dump.boot_mem_addr[i] = rstart;
|
|
fw_dump.boot_mem_sz[i] = rsize;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Firmware usually has a hard limit on the data it can copy per region.
|
|
* Honour that by splitting a memory range into multiple regions.
|
|
*/
|
|
static int __init add_boot_mem_regions(unsigned long mstart,
|
|
unsigned long msize)
|
|
{
|
|
unsigned long rstart, rsize, max_size;
|
|
int ret = 1;
|
|
|
|
rstart = mstart;
|
|
max_size = fw_dump.max_copy_size ? fw_dump.max_copy_size : msize;
|
|
while (msize) {
|
|
if (msize > max_size)
|
|
rsize = max_size;
|
|
else
|
|
rsize = msize;
|
|
|
|
ret = add_boot_mem_region(rstart, rsize);
|
|
if (!ret)
|
|
break;
|
|
|
|
msize -= rsize;
|
|
rstart += rsize;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init fadump_get_boot_mem_regions(void)
|
|
{
|
|
unsigned long base, size, cur_size, hole_size, last_end;
|
|
unsigned long mem_size = fw_dump.boot_memory_size;
|
|
struct memblock_region *reg;
|
|
int ret = 1;
|
|
|
|
fw_dump.boot_mem_regs_cnt = 0;
|
|
|
|
last_end = 0;
|
|
hole_size = 0;
|
|
cur_size = 0;
|
|
for_each_memblock(memory, reg) {
|
|
base = reg->base;
|
|
size = reg->size;
|
|
hole_size += (base - last_end);
|
|
|
|
if ((cur_size + size) >= mem_size) {
|
|
size = (mem_size - cur_size);
|
|
ret = add_boot_mem_regions(base, size);
|
|
break;
|
|
}
|
|
|
|
mem_size -= size;
|
|
cur_size += size;
|
|
ret = add_boot_mem_regions(base, size);
|
|
if (!ret)
|
|
break;
|
|
|
|
last_end = base + size;
|
|
}
|
|
fw_dump.boot_mem_top = PAGE_ALIGN(fw_dump.boot_memory_size + hole_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __init fadump_reserve_mem(void)
|
|
{
|
|
u64 base, size, mem_boundary, bootmem_min, align = PAGE_SIZE;
|
|
bool is_memblock_bottom_up = memblock_bottom_up();
|
|
int ret = 1;
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
if (!fw_dump.fadump_supported) {
|
|
pr_info("Firmware-Assisted Dump is not supported on this hardware\n");
|
|
goto error_out;
|
|
}
|
|
|
|
/*
|
|
* Initialize boot memory size
|
|
* If dump is active then we have already calculated the size during
|
|
* first kernel.
|
|
*/
|
|
if (!fw_dump.dump_active) {
|
|
fw_dump.boot_memory_size =
|
|
PAGE_ALIGN(fadump_calculate_reserve_size());
|
|
#ifdef CONFIG_CMA
|
|
if (!fw_dump.nocma) {
|
|
align = FADUMP_CMA_ALIGNMENT;
|
|
fw_dump.boot_memory_size =
|
|
ALIGN(fw_dump.boot_memory_size, align);
|
|
}
|
|
#endif
|
|
|
|
bootmem_min = fw_dump.ops->fadump_get_bootmem_min();
|
|
if (fw_dump.boot_memory_size < bootmem_min) {
|
|
pr_err("Can't enable fadump with boot memory size (0x%lx) less than 0x%llx\n",
|
|
fw_dump.boot_memory_size, bootmem_min);
|
|
goto error_out;
|
|
}
|
|
|
|
if (!fadump_get_boot_mem_regions()) {
|
|
pr_err("Too many holes in boot memory area to enable fadump\n");
|
|
goto error_out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the memory boundary.
|
|
* If memory_limit is less than actual memory boundary then reserve
|
|
* the memory for fadump beyond the memory_limit and adjust the
|
|
* memory_limit accordingly, so that the running kernel can run with
|
|
* specified memory_limit.
|
|
*/
|
|
if (memory_limit && memory_limit < memblock_end_of_DRAM()) {
|
|
size = get_fadump_area_size();
|
|
if ((memory_limit + size) < memblock_end_of_DRAM())
|
|
memory_limit += size;
|
|
else
|
|
memory_limit = memblock_end_of_DRAM();
|
|
printk(KERN_INFO "Adjusted memory_limit for firmware-assisted"
|
|
" dump, now %#016llx\n", memory_limit);
|
|
}
|
|
if (memory_limit)
|
|
mem_boundary = memory_limit;
|
|
else
|
|
mem_boundary = memblock_end_of_DRAM();
|
|
|
|
base = fw_dump.boot_mem_top;
|
|
size = get_fadump_area_size();
|
|
fw_dump.reserve_dump_area_size = size;
|
|
if (fw_dump.dump_active) {
|
|
pr_info("Firmware-assisted dump is active.\n");
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/*
|
|
* FADump capture kernel doesn't care much about hugepages.
|
|
* In fact, handling hugepages in capture kernel is asking for
|
|
* trouble. So, disable HugeTLB support when fadump is active.
|
|
*/
|
|
hugetlb_disabled = true;
|
|
#endif
|
|
/*
|
|
* If last boot has crashed then reserve all the memory
|
|
* above boot memory size so that we don't touch it until
|
|
* dump is written to disk by userspace tool. This memory
|
|
* can be released for general use by invalidating fadump.
|
|
*/
|
|
fadump_reserve_crash_area(base);
|
|
|
|
pr_debug("fadumphdr_addr = %#016lx\n", fw_dump.fadumphdr_addr);
|
|
pr_debug("Reserve dump area start address: 0x%lx\n",
|
|
fw_dump.reserve_dump_area_start);
|
|
} else {
|
|
/*
|
|
* Reserve memory at an offset closer to bottom of the RAM to
|
|
* minimize the impact of memory hot-remove operation.
|
|
*/
|
|
memblock_set_bottom_up(true);
|
|
base = memblock_find_in_range(base, mem_boundary, size, align);
|
|
|
|
/* Restore the previous allocation mode */
|
|
memblock_set_bottom_up(is_memblock_bottom_up);
|
|
|
|
if (!base) {
|
|
pr_err("Failed to find memory chunk for reservation!\n");
|
|
goto error_out;
|
|
}
|
|
fw_dump.reserve_dump_area_start = base;
|
|
|
|
/*
|
|
* Calculate the kernel metadata address and register it with
|
|
* f/w if the platform supports.
|
|
*/
|
|
if (fw_dump.ops->fadump_setup_metadata &&
|
|
(fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
|
|
goto error_out;
|
|
|
|
if (memblock_reserve(base, size)) {
|
|
pr_err("Failed to reserve memory!\n");
|
|
goto error_out;
|
|
}
|
|
|
|
pr_info("Reserved %lldMB of memory at %#016llx (System RAM: %lldMB)\n",
|
|
(size >> 20), base, (memblock_phys_mem_size() >> 20));
|
|
|
|
ret = fadump_cma_init();
|
|
}
|
|
|
|
return ret;
|
|
error_out:
|
|
fw_dump.fadump_enabled = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* Look for fadump= cmdline option. */
|
|
static int __init early_fadump_param(char *p)
|
|
{
|
|
if (!p)
|
|
return 1;
|
|
|
|
if (strncmp(p, "on", 2) == 0)
|
|
fw_dump.fadump_enabled = 1;
|
|
else if (strncmp(p, "off", 3) == 0)
|
|
fw_dump.fadump_enabled = 0;
|
|
else if (strncmp(p, "nocma", 5) == 0) {
|
|
fw_dump.fadump_enabled = 1;
|
|
fw_dump.nocma = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("fadump", early_fadump_param);
|
|
|
|
/*
|
|
* Look for fadump_reserve_mem= cmdline option
|
|
* TODO: Remove references to 'fadump_reserve_mem=' parameter,
|
|
* the sooner 'crashkernel=' parameter is accustomed to.
|
|
*/
|
|
static int __init early_fadump_reserve_mem(char *p)
|
|
{
|
|
if (p)
|
|
fw_dump.reserve_bootvar = memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("fadump_reserve_mem", early_fadump_reserve_mem);
|
|
|
|
void crash_fadump(struct pt_regs *regs, const char *str)
|
|
{
|
|
struct fadump_crash_info_header *fdh = NULL;
|
|
int old_cpu, this_cpu;
|
|
|
|
if (!should_fadump_crash())
|
|
return;
|
|
|
|
/*
|
|
* old_cpu == -1 means this is the first CPU which has come here,
|
|
* go ahead and trigger fadump.
|
|
*
|
|
* old_cpu != -1 means some other CPU has already on it's way
|
|
* to trigger fadump, just keep looping here.
|
|
*/
|
|
this_cpu = smp_processor_id();
|
|
old_cpu = cmpxchg(&crashing_cpu, -1, this_cpu);
|
|
|
|
if (old_cpu != -1) {
|
|
/*
|
|
* We can't loop here indefinitely. Wait as long as fadump
|
|
* is in force. If we race with fadump un-registration this
|
|
* loop will break and then we go down to normal panic path
|
|
* and reboot. If fadump is in force the first crashing
|
|
* cpu will definitely trigger fadump.
|
|
*/
|
|
while (fw_dump.dump_registered)
|
|
cpu_relax();
|
|
return;
|
|
}
|
|
|
|
fdh = __va(fw_dump.fadumphdr_addr);
|
|
fdh->crashing_cpu = crashing_cpu;
|
|
crash_save_vmcoreinfo();
|
|
|
|
if (regs)
|
|
fdh->regs = *regs;
|
|
else
|
|
ppc_save_regs(&fdh->regs);
|
|
|
|
fdh->online_mask = *cpu_online_mask;
|
|
|
|
fw_dump.ops->fadump_trigger(fdh, str);
|
|
}
|
|
|
|
u32 *fadump_regs_to_elf_notes(u32 *buf, struct pt_regs *regs)
|
|
{
|
|
struct elf_prstatus prstatus;
|
|
|
|
memset(&prstatus, 0, sizeof(prstatus));
|
|
/*
|
|
* FIXME: How do i get PID? Do I really need it?
|
|
* prstatus.pr_pid = ????
|
|
*/
|
|
elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
|
|
buf = append_elf_note(buf, CRASH_CORE_NOTE_NAME, NT_PRSTATUS,
|
|
&prstatus, sizeof(prstatus));
|
|
return buf;
|
|
}
|
|
|
|
void fadump_update_elfcore_header(char *bufp)
|
|
{
|
|
struct elfhdr *elf;
|
|
struct elf_phdr *phdr;
|
|
|
|
elf = (struct elfhdr *)bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
|
|
/* First note is a place holder for cpu notes info. */
|
|
phdr = (struct elf_phdr *)bufp;
|
|
|
|
if (phdr->p_type == PT_NOTE) {
|
|
phdr->p_paddr = __pa(fw_dump.cpu_notes_buf_vaddr);
|
|
phdr->p_offset = phdr->p_paddr;
|
|
phdr->p_filesz = fw_dump.cpu_notes_buf_size;
|
|
phdr->p_memsz = fw_dump.cpu_notes_buf_size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void *fadump_alloc_buffer(unsigned long size)
|
|
{
|
|
unsigned long count, i;
|
|
struct page *page;
|
|
void *vaddr;
|
|
|
|
vaddr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
|
|
if (!vaddr)
|
|
return NULL;
|
|
|
|
count = PAGE_ALIGN(size) / PAGE_SIZE;
|
|
page = virt_to_page(vaddr);
|
|
for (i = 0; i < count; i++)
|
|
mark_page_reserved(page + i);
|
|
return vaddr;
|
|
}
|
|
|
|
static void fadump_free_buffer(unsigned long vaddr, unsigned long size)
|
|
{
|
|
free_reserved_area((void *)vaddr, (void *)(vaddr + size), -1, NULL);
|
|
}
|
|
|
|
s32 fadump_setup_cpu_notes_buf(u32 num_cpus)
|
|
{
|
|
/* Allocate buffer to hold cpu crash notes. */
|
|
fw_dump.cpu_notes_buf_size = num_cpus * sizeof(note_buf_t);
|
|
fw_dump.cpu_notes_buf_size = PAGE_ALIGN(fw_dump.cpu_notes_buf_size);
|
|
fw_dump.cpu_notes_buf_vaddr =
|
|
(unsigned long)fadump_alloc_buffer(fw_dump.cpu_notes_buf_size);
|
|
if (!fw_dump.cpu_notes_buf_vaddr) {
|
|
pr_err("Failed to allocate %ld bytes for CPU notes buffer\n",
|
|
fw_dump.cpu_notes_buf_size);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pr_debug("Allocated buffer for cpu notes of size %ld at 0x%lx\n",
|
|
fw_dump.cpu_notes_buf_size,
|
|
fw_dump.cpu_notes_buf_vaddr);
|
|
return 0;
|
|
}
|
|
|
|
void fadump_free_cpu_notes_buf(void)
|
|
{
|
|
if (!fw_dump.cpu_notes_buf_vaddr)
|
|
return;
|
|
|
|
fadump_free_buffer(fw_dump.cpu_notes_buf_vaddr,
|
|
fw_dump.cpu_notes_buf_size);
|
|
fw_dump.cpu_notes_buf_vaddr = 0;
|
|
fw_dump.cpu_notes_buf_size = 0;
|
|
}
|
|
|
|
static void fadump_free_mem_ranges(struct fadump_mrange_info *mrange_info)
|
|
{
|
|
kfree(mrange_info->mem_ranges);
|
|
mrange_info->mem_ranges = NULL;
|
|
mrange_info->mem_ranges_sz = 0;
|
|
mrange_info->max_mem_ranges = 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate or reallocate mem_ranges array in incremental units
|
|
* of PAGE_SIZE.
|
|
*/
|
|
static int fadump_alloc_mem_ranges(struct fadump_mrange_info *mrange_info)
|
|
{
|
|
struct fadump_memory_range *new_array;
|
|
u64 new_size;
|
|
|
|
new_size = mrange_info->mem_ranges_sz + PAGE_SIZE;
|
|
pr_debug("Allocating %llu bytes of memory for %s memory ranges\n",
|
|
new_size, mrange_info->name);
|
|
|
|
new_array = krealloc(mrange_info->mem_ranges, new_size, GFP_KERNEL);
|
|
if (new_array == NULL) {
|
|
pr_err("Insufficient memory for setting up %s memory ranges\n",
|
|
mrange_info->name);
|
|
fadump_free_mem_ranges(mrange_info);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mrange_info->mem_ranges = new_array;
|
|
mrange_info->mem_ranges_sz = new_size;
|
|
mrange_info->max_mem_ranges = (new_size /
|
|
sizeof(struct fadump_memory_range));
|
|
return 0;
|
|
}
|
|
|
|
static inline int fadump_add_mem_range(struct fadump_mrange_info *mrange_info,
|
|
u64 base, u64 end)
|
|
{
|
|
struct fadump_memory_range *mem_ranges = mrange_info->mem_ranges;
|
|
bool is_adjacent = false;
|
|
u64 start, size;
|
|
|
|
if (base == end)
|
|
return 0;
|
|
|
|
/*
|
|
* Fold adjacent memory ranges to bring down the memory ranges/
|
|
* PT_LOAD segments count.
|
|
*/
|
|
if (mrange_info->mem_range_cnt) {
|
|
start = mem_ranges[mrange_info->mem_range_cnt - 1].base;
|
|
size = mem_ranges[mrange_info->mem_range_cnt - 1].size;
|
|
|
|
if ((start + size) == base)
|
|
is_adjacent = true;
|
|
}
|
|
if (!is_adjacent) {
|
|
/* resize the array on reaching the limit */
|
|
if (mrange_info->mem_range_cnt == mrange_info->max_mem_ranges) {
|
|
int ret;
|
|
|
|
ret = fadump_alloc_mem_ranges(mrange_info);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Update to the new resized array */
|
|
mem_ranges = mrange_info->mem_ranges;
|
|
}
|
|
|
|
start = base;
|
|
mem_ranges[mrange_info->mem_range_cnt].base = start;
|
|
mrange_info->mem_range_cnt++;
|
|
}
|
|
|
|
mem_ranges[mrange_info->mem_range_cnt - 1].size = (end - start);
|
|
pr_debug("%s_memory_range[%d] [%#016llx-%#016llx], %#llx bytes\n",
|
|
mrange_info->name, (mrange_info->mem_range_cnt - 1),
|
|
start, end - 1, (end - start));
|
|
return 0;
|
|
}
|
|
|
|
static int fadump_exclude_reserved_area(u64 start, u64 end)
|
|
{
|
|
u64 ra_start, ra_end;
|
|
int ret = 0;
|
|
|
|
ra_start = fw_dump.reserve_dump_area_start;
|
|
ra_end = ra_start + fw_dump.reserve_dump_area_size;
|
|
|
|
if ((ra_start < end) && (ra_end > start)) {
|
|
if ((start < ra_start) && (end > ra_end)) {
|
|
ret = fadump_add_mem_range(&crash_mrange_info,
|
|
start, ra_start);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = fadump_add_mem_range(&crash_mrange_info,
|
|
ra_end, end);
|
|
} else if (start < ra_start) {
|
|
ret = fadump_add_mem_range(&crash_mrange_info,
|
|
start, ra_start);
|
|
} else if (ra_end < end) {
|
|
ret = fadump_add_mem_range(&crash_mrange_info,
|
|
ra_end, end);
|
|
}
|
|
} else
|
|
ret = fadump_add_mem_range(&crash_mrange_info, start, end);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int fadump_init_elfcore_header(char *bufp)
|
|
{
|
|
struct elfhdr *elf;
|
|
|
|
elf = (struct elfhdr *) bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
memcpy(elf->e_ident, ELFMAG, SELFMAG);
|
|
elf->e_ident[EI_CLASS] = ELF_CLASS;
|
|
elf->e_ident[EI_DATA] = ELF_DATA;
|
|
elf->e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf->e_ident[EI_OSABI] = ELF_OSABI;
|
|
memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD);
|
|
elf->e_type = ET_CORE;
|
|
elf->e_machine = ELF_ARCH;
|
|
elf->e_version = EV_CURRENT;
|
|
elf->e_entry = 0;
|
|
elf->e_phoff = sizeof(struct elfhdr);
|
|
elf->e_shoff = 0;
|
|
#if defined(_CALL_ELF)
|
|
elf->e_flags = _CALL_ELF;
|
|
#else
|
|
elf->e_flags = 0;
|
|
#endif
|
|
elf->e_ehsize = sizeof(struct elfhdr);
|
|
elf->e_phentsize = sizeof(struct elf_phdr);
|
|
elf->e_phnum = 0;
|
|
elf->e_shentsize = 0;
|
|
elf->e_shnum = 0;
|
|
elf->e_shstrndx = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Traverse through memblock structure and setup crash memory ranges. These
|
|
* ranges will be used create PT_LOAD program headers in elfcore header.
|
|
*/
|
|
static int fadump_setup_crash_memory_ranges(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
u64 start, end;
|
|
int i, ret;
|
|
|
|
pr_debug("Setup crash memory ranges.\n");
|
|
crash_mrange_info.mem_range_cnt = 0;
|
|
|
|
/*
|
|
* Boot memory region(s) registered with firmware are moved to
|
|
* different location at the time of crash. Create separate program
|
|
* header(s) for this memory chunk(s) with the correct offset.
|
|
*/
|
|
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
|
|
start = fw_dump.boot_mem_addr[i];
|
|
end = start + fw_dump.boot_mem_sz[i];
|
|
ret = fadump_add_mem_range(&crash_mrange_info, start, end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for_each_memblock(memory, reg) {
|
|
start = (u64)reg->base;
|
|
end = start + (u64)reg->size;
|
|
|
|
/*
|
|
* skip the memory chunk that is already added
|
|
* (0 through boot_memory_top).
|
|
*/
|
|
if (start < fw_dump.boot_mem_top) {
|
|
if (end > fw_dump.boot_mem_top)
|
|
start = fw_dump.boot_mem_top;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/* add this range excluding the reserved dump area. */
|
|
ret = fadump_exclude_reserved_area(start, end);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the given physical address falls within the boot memory region then
|
|
* return the relocated address that points to the dump region reserved
|
|
* for saving initial boot memory contents.
|
|
*/
|
|
static inline unsigned long fadump_relocate(unsigned long paddr)
|
|
{
|
|
unsigned long raddr, rstart, rend, rlast, hole_size;
|
|
int i;
|
|
|
|
hole_size = 0;
|
|
rlast = 0;
|
|
raddr = paddr;
|
|
for (i = 0; i < fw_dump.boot_mem_regs_cnt; i++) {
|
|
rstart = fw_dump.boot_mem_addr[i];
|
|
rend = rstart + fw_dump.boot_mem_sz[i];
|
|
hole_size += (rstart - rlast);
|
|
|
|
if (paddr >= rstart && paddr < rend) {
|
|
raddr += fw_dump.boot_mem_dest_addr - hole_size;
|
|
break;
|
|
}
|
|
|
|
rlast = rend;
|
|
}
|
|
|
|
pr_debug("vmcoreinfo: paddr = 0x%lx, raddr = 0x%lx\n", paddr, raddr);
|
|
return raddr;
|
|
}
|
|
|
|
static int fadump_create_elfcore_headers(char *bufp)
|
|
{
|
|
unsigned long long raddr, offset;
|
|
struct elf_phdr *phdr;
|
|
struct elfhdr *elf;
|
|
int i, j;
|
|
|
|
fadump_init_elfcore_header(bufp);
|
|
elf = (struct elfhdr *)bufp;
|
|
bufp += sizeof(struct elfhdr);
|
|
|
|
/*
|
|
* setup ELF PT_NOTE, place holder for cpu notes info. The notes info
|
|
* will be populated during second kernel boot after crash. Hence
|
|
* this PT_NOTE will always be the first elf note.
|
|
*
|
|
* NOTE: Any new ELF note addition should be placed after this note.
|
|
*/
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_flags = 0;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_align = 0;
|
|
|
|
phdr->p_offset = 0;
|
|
phdr->p_paddr = 0;
|
|
phdr->p_filesz = 0;
|
|
phdr->p_memsz = 0;
|
|
|
|
(elf->e_phnum)++;
|
|
|
|
/* setup ELF PT_NOTE for vmcoreinfo */
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_flags = 0;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_align = 0;
|
|
|
|
phdr->p_paddr = fadump_relocate(paddr_vmcoreinfo_note());
|
|
phdr->p_offset = phdr->p_paddr;
|
|
phdr->p_memsz = phdr->p_filesz = VMCOREINFO_NOTE_SIZE;
|
|
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
|
|
/* setup PT_LOAD sections. */
|
|
j = 0;
|
|
offset = 0;
|
|
raddr = fw_dump.boot_mem_addr[0];
|
|
for (i = 0; i < crash_mrange_info.mem_range_cnt; i++) {
|
|
u64 mbase, msize;
|
|
|
|
mbase = crash_mrange_info.mem_ranges[i].base;
|
|
msize = crash_mrange_info.mem_ranges[i].size;
|
|
if (!msize)
|
|
continue;
|
|
|
|
phdr = (struct elf_phdr *)bufp;
|
|
bufp += sizeof(struct elf_phdr);
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_flags = PF_R|PF_W|PF_X;
|
|
phdr->p_offset = mbase;
|
|
|
|
if (mbase == raddr) {
|
|
/*
|
|
* The entire real memory region will be moved by
|
|
* firmware to the specified destination_address.
|
|
* Hence set the correct offset.
|
|
*/
|
|
phdr->p_offset = fw_dump.boot_mem_dest_addr + offset;
|
|
if (j < (fw_dump.boot_mem_regs_cnt - 1)) {
|
|
offset += fw_dump.boot_mem_sz[j];
|
|
raddr = fw_dump.boot_mem_addr[++j];
|
|
}
|
|
}
|
|
|
|
phdr->p_paddr = mbase;
|
|
phdr->p_vaddr = (unsigned long)__va(mbase);
|
|
phdr->p_filesz = msize;
|
|
phdr->p_memsz = msize;
|
|
phdr->p_align = 0;
|
|
|
|
/* Increment number of program headers. */
|
|
(elf->e_phnum)++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long init_fadump_header(unsigned long addr)
|
|
{
|
|
struct fadump_crash_info_header *fdh;
|
|
|
|
if (!addr)
|
|
return 0;
|
|
|
|
fdh = __va(addr);
|
|
addr += sizeof(struct fadump_crash_info_header);
|
|
|
|
memset(fdh, 0, sizeof(struct fadump_crash_info_header));
|
|
fdh->magic_number = FADUMP_CRASH_INFO_MAGIC;
|
|
fdh->elfcorehdr_addr = addr;
|
|
/* We will set the crashing cpu id in crash_fadump() during crash. */
|
|
fdh->crashing_cpu = FADUMP_CPU_UNKNOWN;
|
|
|
|
return addr;
|
|
}
|
|
|
|
static int register_fadump(void)
|
|
{
|
|
unsigned long addr;
|
|
void *vaddr;
|
|
int ret;
|
|
|
|
/*
|
|
* If no memory is reserved then we can not register for firmware-
|
|
* assisted dump.
|
|
*/
|
|
if (!fw_dump.reserve_dump_area_size)
|
|
return -ENODEV;
|
|
|
|
ret = fadump_setup_crash_memory_ranges();
|
|
if (ret)
|
|
return ret;
|
|
|
|
addr = fw_dump.fadumphdr_addr;
|
|
|
|
/* Initialize fadump crash info header. */
|
|
addr = init_fadump_header(addr);
|
|
vaddr = __va(addr);
|
|
|
|
pr_debug("Creating ELF core headers at %#016lx\n", addr);
|
|
fadump_create_elfcore_headers(vaddr);
|
|
|
|
/* register the future kernel dump with firmware. */
|
|
pr_debug("Registering for firmware-assisted kernel dump...\n");
|
|
return fw_dump.ops->fadump_register(&fw_dump);
|
|
}
|
|
|
|
void fadump_cleanup(void)
|
|
{
|
|
if (!fw_dump.fadump_supported)
|
|
return;
|
|
|
|
/* Invalidate the registration only if dump is active. */
|
|
if (fw_dump.dump_active) {
|
|
pr_debug("Invalidating firmware-assisted dump registration\n");
|
|
fw_dump.ops->fadump_invalidate(&fw_dump);
|
|
} else if (fw_dump.dump_registered) {
|
|
/* Un-register Firmware-assisted dump if it was registered. */
|
|
fw_dump.ops->fadump_unregister(&fw_dump);
|
|
fadump_free_mem_ranges(&crash_mrange_info);
|
|
}
|
|
|
|
if (fw_dump.ops->fadump_cleanup)
|
|
fw_dump.ops->fadump_cleanup(&fw_dump);
|
|
}
|
|
|
|
static void fadump_free_reserved_memory(unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long time_limit = jiffies + HZ;
|
|
|
|
pr_info("freeing reserved memory (0x%llx - 0x%llx)\n",
|
|
PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
|
free_reserved_page(pfn_to_page(pfn));
|
|
|
|
if (time_after(jiffies, time_limit)) {
|
|
cond_resched();
|
|
time_limit = jiffies + HZ;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Skip memory holes and free memory that was actually reserved.
|
|
*/
|
|
static void fadump_release_reserved_area(u64 start, u64 end)
|
|
{
|
|
u64 tstart, tend, spfn, epfn;
|
|
struct memblock_region *reg;
|
|
|
|
spfn = PHYS_PFN(start);
|
|
epfn = PHYS_PFN(end);
|
|
for_each_memblock(memory, reg) {
|
|
tstart = max_t(u64, spfn, memblock_region_memory_base_pfn(reg));
|
|
tend = min_t(u64, epfn, memblock_region_memory_end_pfn(reg));
|
|
if (tstart < tend) {
|
|
fadump_free_reserved_memory(tstart, tend);
|
|
|
|
if (tend == epfn)
|
|
break;
|
|
|
|
spfn = tend;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sort the mem ranges in-place and merge adjacent ranges
|
|
* to minimize the memory ranges count.
|
|
*/
|
|
static void sort_and_merge_mem_ranges(struct fadump_mrange_info *mrange_info)
|
|
{
|
|
struct fadump_memory_range *mem_ranges;
|
|
struct fadump_memory_range tmp_range;
|
|
u64 base, size;
|
|
int i, j, idx;
|
|
|
|
if (!reserved_mrange_info.mem_range_cnt)
|
|
return;
|
|
|
|
/* Sort the memory ranges */
|
|
mem_ranges = mrange_info->mem_ranges;
|
|
for (i = 0; i < mrange_info->mem_range_cnt; i++) {
|
|
idx = i;
|
|
for (j = (i + 1); j < mrange_info->mem_range_cnt; j++) {
|
|
if (mem_ranges[idx].base > mem_ranges[j].base)
|
|
idx = j;
|
|
}
|
|
if (idx != i) {
|
|
tmp_range = mem_ranges[idx];
|
|
mem_ranges[idx] = mem_ranges[i];
|
|
mem_ranges[i] = tmp_range;
|
|
}
|
|
}
|
|
|
|
/* Merge adjacent reserved ranges */
|
|
idx = 0;
|
|
for (i = 1; i < mrange_info->mem_range_cnt; i++) {
|
|
base = mem_ranges[i-1].base;
|
|
size = mem_ranges[i-1].size;
|
|
if (mem_ranges[i].base == (base + size))
|
|
mem_ranges[idx].size += mem_ranges[i].size;
|
|
else {
|
|
idx++;
|
|
if (i == idx)
|
|
continue;
|
|
|
|
mem_ranges[idx] = mem_ranges[i];
|
|
}
|
|
}
|
|
mrange_info->mem_range_cnt = idx + 1;
|
|
}
|
|
|
|
/*
|
|
* Scan reserved-ranges to consider them while reserving/releasing
|
|
* memory for FADump.
|
|
*/
|
|
static inline int fadump_scan_reserved_mem_ranges(void)
|
|
{
|
|
struct device_node *root;
|
|
const __be32 *prop;
|
|
int len, ret = -1;
|
|
unsigned long i;
|
|
|
|
root = of_find_node_by_path("/");
|
|
if (!root)
|
|
return ret;
|
|
|
|
prop = of_get_property(root, "reserved-ranges", &len);
|
|
if (!prop)
|
|
return ret;
|
|
|
|
/*
|
|
* Each reserved range is an (address,size) pair, 2 cells each,
|
|
* totalling 4 cells per range.
|
|
*/
|
|
for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
|
|
u64 base, size;
|
|
|
|
base = of_read_number(prop + (i * 4) + 0, 2);
|
|
size = of_read_number(prop + (i * 4) + 2, 2);
|
|
|
|
if (size) {
|
|
ret = fadump_add_mem_range(&reserved_mrange_info,
|
|
base, base + size);
|
|
if (ret < 0) {
|
|
pr_warn("some reserved ranges are ignored!\n");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Release the memory that was reserved during early boot to preserve the
|
|
* crash'ed kernel's memory contents except reserved dump area (permanent
|
|
* reservation) and reserved ranges used by F/W. The released memory will
|
|
* be available for general use.
|
|
*/
|
|
static void fadump_release_memory(u64 begin, u64 end)
|
|
{
|
|
u64 ra_start, ra_end, tstart;
|
|
int i, ret;
|
|
|
|
fadump_scan_reserved_mem_ranges();
|
|
|
|
ra_start = fw_dump.reserve_dump_area_start;
|
|
ra_end = ra_start + fw_dump.reserve_dump_area_size;
|
|
|
|
/*
|
|
* Add reserved dump area to reserved ranges list
|
|
* and exclude all these ranges while releasing memory.
|
|
*/
|
|
ret = fadump_add_mem_range(&reserved_mrange_info, ra_start, ra_end);
|
|
if (ret != 0) {
|
|
/*
|
|
* Not enough memory to setup reserved ranges but the system is
|
|
* running shortage of memory. So, release all the memory except
|
|
* Reserved dump area (reused for next fadump registration).
|
|
*/
|
|
if (begin < ra_end && end > ra_start) {
|
|
if (begin < ra_start)
|
|
fadump_release_reserved_area(begin, ra_start);
|
|
if (end > ra_end)
|
|
fadump_release_reserved_area(ra_end, end);
|
|
} else
|
|
fadump_release_reserved_area(begin, end);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Get the reserved ranges list in order first. */
|
|
sort_and_merge_mem_ranges(&reserved_mrange_info);
|
|
|
|
/* Exclude reserved ranges and release remaining memory */
|
|
tstart = begin;
|
|
for (i = 0; i < reserved_mrange_info.mem_range_cnt; i++) {
|
|
ra_start = reserved_mrange_info.mem_ranges[i].base;
|
|
ra_end = ra_start + reserved_mrange_info.mem_ranges[i].size;
|
|
|
|
if (tstart >= ra_end)
|
|
continue;
|
|
|
|
if (tstart < ra_start)
|
|
fadump_release_reserved_area(tstart, ra_start);
|
|
tstart = ra_end;
|
|
}
|
|
|
|
if (tstart < end)
|
|
fadump_release_reserved_area(tstart, end);
|
|
}
|
|
|
|
static void fadump_invalidate_release_mem(void)
|
|
{
|
|
mutex_lock(&fadump_mutex);
|
|
if (!fw_dump.dump_active) {
|
|
mutex_unlock(&fadump_mutex);
|
|
return;
|
|
}
|
|
|
|
fadump_cleanup();
|
|
mutex_unlock(&fadump_mutex);
|
|
|
|
fadump_release_memory(fw_dump.boot_mem_top, memblock_end_of_DRAM());
|
|
fadump_free_cpu_notes_buf();
|
|
|
|
/*
|
|
* Setup kernel metadata and initialize the kernel dump
|
|
* memory structure for FADump re-registration.
|
|
*/
|
|
if (fw_dump.ops->fadump_setup_metadata &&
|
|
(fw_dump.ops->fadump_setup_metadata(&fw_dump) < 0))
|
|
pr_warn("Failed to setup kernel metadata!\n");
|
|
fw_dump.ops->fadump_init_mem_struct(&fw_dump);
|
|
}
|
|
|
|
static ssize_t release_mem_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int input = -1;
|
|
|
|
if (!fw_dump.dump_active)
|
|
return -EPERM;
|
|
|
|
if (kstrtoint(buf, 0, &input))
|
|
return -EINVAL;
|
|
|
|
if (input == 1) {
|
|
/*
|
|
* Take away the '/proc/vmcore'. We are releasing the dump
|
|
* memory, hence it will not be valid anymore.
|
|
*/
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
vmcore_cleanup();
|
|
#endif
|
|
fadump_invalidate_release_mem();
|
|
|
|
} else
|
|
return -EINVAL;
|
|
return count;
|
|
}
|
|
|
|
/* Release the reserved memory and disable the FADump */
|
|
static void unregister_fadump(void)
|
|
{
|
|
fadump_cleanup();
|
|
fadump_release_memory(fw_dump.reserve_dump_area_start,
|
|
fw_dump.reserve_dump_area_size);
|
|
fw_dump.fadump_enabled = 0;
|
|
kobject_put(fadump_kobj);
|
|
}
|
|
|
|
static ssize_t enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", fw_dump.fadump_enabled);
|
|
}
|
|
|
|
static ssize_t mem_reserved_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%ld\n", fw_dump.reserve_dump_area_size);
|
|
}
|
|
|
|
static ssize_t registered_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", fw_dump.dump_registered);
|
|
}
|
|
|
|
static ssize_t registered_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
int ret = 0;
|
|
int input = -1;
|
|
|
|
if (!fw_dump.fadump_enabled || fw_dump.dump_active)
|
|
return -EPERM;
|
|
|
|
if (kstrtoint(buf, 0, &input))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&fadump_mutex);
|
|
|
|
switch (input) {
|
|
case 0:
|
|
if (fw_dump.dump_registered == 0) {
|
|
goto unlock_out;
|
|
}
|
|
|
|
/* Un-register Firmware-assisted dump */
|
|
pr_debug("Un-register firmware-assisted dump\n");
|
|
fw_dump.ops->fadump_unregister(&fw_dump);
|
|
break;
|
|
case 1:
|
|
if (fw_dump.dump_registered == 1) {
|
|
/* Un-register Firmware-assisted dump */
|
|
fw_dump.ops->fadump_unregister(&fw_dump);
|
|
}
|
|
/* Register Firmware-assisted dump */
|
|
ret = register_fadump();
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
unlock_out:
|
|
mutex_unlock(&fadump_mutex);
|
|
return ret < 0 ? ret : count;
|
|
}
|
|
|
|
static int fadump_region_show(struct seq_file *m, void *private)
|
|
{
|
|
if (!fw_dump.fadump_enabled)
|
|
return 0;
|
|
|
|
mutex_lock(&fadump_mutex);
|
|
fw_dump.ops->fadump_region_show(&fw_dump, m);
|
|
mutex_unlock(&fadump_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static struct kobj_attribute release_attr = __ATTR_WO(release_mem);
|
|
static struct kobj_attribute enable_attr = __ATTR_RO(enabled);
|
|
static struct kobj_attribute register_attr = __ATTR_RW(registered);
|
|
static struct kobj_attribute mem_reserved_attr = __ATTR_RO(mem_reserved);
|
|
|
|
static struct attribute *fadump_attrs[] = {
|
|
&enable_attr.attr,
|
|
®ister_attr.attr,
|
|
&mem_reserved_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
ATTRIBUTE_GROUPS(fadump);
|
|
|
|
DEFINE_SHOW_ATTRIBUTE(fadump_region);
|
|
|
|
static void fadump_init_files(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
fadump_kobj = kobject_create_and_add("fadump", kernel_kobj);
|
|
if (!fadump_kobj) {
|
|
pr_err("failed to create fadump kobject\n");
|
|
return;
|
|
}
|
|
|
|
debugfs_create_file("fadump_region", 0444, powerpc_debugfs_root, NULL,
|
|
&fadump_region_fops);
|
|
|
|
if (fw_dump.dump_active) {
|
|
rc = sysfs_create_file(fadump_kobj, &release_attr.attr);
|
|
if (rc)
|
|
pr_err("unable to create release_mem sysfs file (%d)\n",
|
|
rc);
|
|
}
|
|
|
|
rc = sysfs_create_groups(fadump_kobj, fadump_groups);
|
|
if (rc) {
|
|
pr_err("sysfs group creation failed (%d), unregistering FADump",
|
|
rc);
|
|
unregister_fadump();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The FADump sysfs are moved from kernel_kobj to fadump_kobj need to
|
|
* create symlink at old location to maintain backward compatibility.
|
|
*
|
|
* - fadump_enabled -> fadump/enabled
|
|
* - fadump_registered -> fadump/registered
|
|
* - fadump_release_mem -> fadump/release_mem
|
|
*/
|
|
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
|
|
"enabled", "fadump_enabled");
|
|
if (rc) {
|
|
pr_err("unable to create fadump_enabled symlink (%d)", rc);
|
|
return;
|
|
}
|
|
|
|
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj, fadump_kobj,
|
|
"registered",
|
|
"fadump_registered");
|
|
if (rc) {
|
|
pr_err("unable to create fadump_registered symlink (%d)", rc);
|
|
sysfs_remove_link(kernel_kobj, "fadump_enabled");
|
|
return;
|
|
}
|
|
|
|
if (fw_dump.dump_active) {
|
|
rc = compat_only_sysfs_link_entry_to_kobj(kernel_kobj,
|
|
fadump_kobj,
|
|
"release_mem",
|
|
"fadump_release_mem");
|
|
if (rc)
|
|
pr_err("unable to create fadump_release_mem symlink (%d)",
|
|
rc);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Prepare for firmware-assisted dump.
|
|
*/
|
|
int __init setup_fadump(void)
|
|
{
|
|
if (!fw_dump.fadump_supported)
|
|
return 0;
|
|
|
|
fadump_init_files();
|
|
fadump_show_config();
|
|
|
|
if (!fw_dump.fadump_enabled)
|
|
return 1;
|
|
|
|
/*
|
|
* If dump data is available then see if it is valid and prepare for
|
|
* saving it to the disk.
|
|
*/
|
|
if (fw_dump.dump_active) {
|
|
/*
|
|
* if dump process fails then invalidate the registration
|
|
* and release memory before proceeding for re-registration.
|
|
*/
|
|
if (fw_dump.ops->fadump_process(&fw_dump) < 0)
|
|
fadump_invalidate_release_mem();
|
|
}
|
|
/* Initialize the kernel dump memory structure for FAD registration. */
|
|
else if (fw_dump.reserve_dump_area_size)
|
|
fw_dump.ops->fadump_init_mem_struct(&fw_dump);
|
|
|
|
return 1;
|
|
}
|
|
subsys_initcall(setup_fadump);
|
|
#else /* !CONFIG_PRESERVE_FA_DUMP */
|
|
|
|
/* Scan the Firmware Assisted dump configuration details. */
|
|
int __init early_init_dt_scan_fw_dump(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
if ((depth != 1) || (strcmp(uname, "ibm,opal") != 0))
|
|
return 0;
|
|
|
|
opal_fadump_dt_scan(&fw_dump, node);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* When dump is active but PRESERVE_FA_DUMP is enabled on the kernel,
|
|
* preserve crash data. The subsequent memory preserving kernel boot
|
|
* is likely to process this crash data.
|
|
*/
|
|
int __init fadump_reserve_mem(void)
|
|
{
|
|
if (fw_dump.dump_active) {
|
|
/*
|
|
* If last boot has crashed then reserve all the memory
|
|
* above boot memory to preserve crash data.
|
|
*/
|
|
pr_info("Preserving crash data for processing in next boot.\n");
|
|
fadump_reserve_crash_area(fw_dump.boot_mem_top);
|
|
} else
|
|
pr_debug("FADump-aware kernel..\n");
|
|
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_PRESERVE_FA_DUMP */
|
|
|
|
/* Preserve everything above the base address */
|
|
static void __init fadump_reserve_crash_area(u64 base)
|
|
{
|
|
struct memblock_region *reg;
|
|
u64 mstart, msize;
|
|
|
|
for_each_memblock(memory, reg) {
|
|
mstart = reg->base;
|
|
msize = reg->size;
|
|
|
|
if ((mstart + msize) < base)
|
|
continue;
|
|
|
|
if (mstart < base) {
|
|
msize -= (base - mstart);
|
|
mstart = base;
|
|
}
|
|
|
|
pr_info("Reserving %lluMB of memory at %#016llx for preserving crash data",
|
|
(msize >> 20), mstart);
|
|
memblock_reserve(mstart, msize);
|
|
}
|
|
}
|
|
|
|
unsigned long __init arch_reserved_kernel_pages(void)
|
|
{
|
|
return memblock_reserved_size() / PAGE_SIZE;
|
|
}
|