linux-sg2042/sound/ppc/pmac.c

1410 lines
36 KiB
C

/*
* PMac DBDMA lowlevel functions
*
* Copyright (c) by Takashi Iwai <tiwai@suse.de>
* code based on dmasound.c.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <sound/driver.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <sound/core.h>
#include "pmac.h"
#include <sound/pcm_params.h>
#include <asm/pmac_feature.h>
#include <asm/pci-bridge.h>
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
static int snd_pmac_register_sleep_notifier(pmac_t *chip);
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip);
static int snd_pmac_suspend(snd_card_t *card, pm_message_t state);
static int snd_pmac_resume(snd_card_t *card);
#endif
/* fixed frequency table for awacs, screamer, burgundy, DACA (44100 max) */
static int awacs_freqs[8] = {
44100, 29400, 22050, 17640, 14700, 11025, 8820, 7350
};
/* fixed frequency table for tumbler */
static int tumbler_freqs[1] = {
44100
};
/*
* allocate DBDMA command arrays
*/
static int snd_pmac_dbdma_alloc(pmac_t *chip, pmac_dbdma_t *rec, int size)
{
unsigned int rsize = sizeof(struct dbdma_cmd) * (size + 1);
rec->space = dma_alloc_coherent(&chip->pdev->dev, rsize,
&rec->dma_base, GFP_KERNEL);
if (rec->space == NULL)
return -ENOMEM;
rec->size = size;
memset(rec->space, 0, rsize);
rec->cmds = (void __iomem *)DBDMA_ALIGN(rec->space);
rec->addr = rec->dma_base + (unsigned long)((char *)rec->cmds - (char *)rec->space);
return 0;
}
static void snd_pmac_dbdma_free(pmac_t *chip, pmac_dbdma_t *rec)
{
if (rec) {
unsigned int rsize = sizeof(struct dbdma_cmd) * (rec->size + 1);
dma_free_coherent(&chip->pdev->dev, rsize, rec->space, rec->dma_base);
}
}
/*
* pcm stuff
*/
/*
* look up frequency table
*/
unsigned int snd_pmac_rate_index(pmac_t *chip, pmac_stream_t *rec, unsigned int rate)
{
int i, ok, found;
ok = rec->cur_freqs;
if (rate > chip->freq_table[0])
return 0;
found = 0;
for (i = 0; i < chip->num_freqs; i++, ok >>= 1) {
if (! (ok & 1)) continue;
found = i;
if (rate >= chip->freq_table[i])
break;
}
return found;
}
/*
* check whether another stream is active
*/
static inline int another_stream(int stream)
{
return (stream == SNDRV_PCM_STREAM_PLAYBACK) ?
SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
}
/*
* allocate buffers
*/
static int snd_pmac_pcm_hw_params(snd_pcm_substream_t *subs,
snd_pcm_hw_params_t *hw_params)
{
return snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw_params));
}
/*
* release buffers
*/
static int snd_pmac_pcm_hw_free(snd_pcm_substream_t *subs)
{
snd_pcm_lib_free_pages(subs);
return 0;
}
/*
* get a stream of the opposite direction
*/
static pmac_stream_t *snd_pmac_get_stream(pmac_t *chip, int stream)
{
switch (stream) {
case SNDRV_PCM_STREAM_PLAYBACK:
return &chip->playback;
case SNDRV_PCM_STREAM_CAPTURE:
return &chip->capture;
default:
snd_BUG();
return NULL;
}
}
/*
* wait while run status is on
*/
inline static void
snd_pmac_wait_ack(pmac_stream_t *rec)
{
int timeout = 50000;
while ((in_le32(&rec->dma->status) & RUN) && timeout-- > 0)
udelay(1);
}
/*
* set the format and rate to the chip.
* call the lowlevel function if defined (e.g. for AWACS).
*/
static void snd_pmac_pcm_set_format(pmac_t *chip)
{
/* set up frequency and format */
out_le32(&chip->awacs->control, chip->control_mask | (chip->rate_index << 8));
out_le32(&chip->awacs->byteswap, chip->format == SNDRV_PCM_FORMAT_S16_LE ? 1 : 0);
if (chip->set_format)
chip->set_format(chip);
}
/*
* stop the DMA transfer
*/
inline static void snd_pmac_dma_stop(pmac_stream_t *rec)
{
out_le32(&rec->dma->control, (RUN|WAKE|FLUSH|PAUSE) << 16);
snd_pmac_wait_ack(rec);
}
/*
* set the command pointer address
*/
inline static void snd_pmac_dma_set_command(pmac_stream_t *rec, pmac_dbdma_t *cmd)
{
out_le32(&rec->dma->cmdptr, cmd->addr);
}
/*
* start the DMA
*/
inline static void snd_pmac_dma_run(pmac_stream_t *rec, int status)
{
out_le32(&rec->dma->control, status | (status << 16));
}
/*
* prepare playback/capture stream
*/
static int snd_pmac_pcm_prepare(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
int i;
volatile struct dbdma_cmd __iomem *cp;
snd_pcm_runtime_t *runtime = subs->runtime;
int rate_index;
long offset;
pmac_stream_t *astr;
rec->dma_size = snd_pcm_lib_buffer_bytes(subs);
rec->period_size = snd_pcm_lib_period_bytes(subs);
rec->nperiods = rec->dma_size / rec->period_size;
rec->cur_period = 0;
rate_index = snd_pmac_rate_index(chip, rec, runtime->rate);
/* set up constraints */
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
snd_runtime_check(astr, return -EINVAL);
astr->cur_freqs = 1 << rate_index;
astr->cur_formats = 1 << runtime->format;
chip->rate_index = rate_index;
chip->format = runtime->format;
/* We really want to execute a DMA stop command, after the AWACS
* is initialized.
* For reasons I don't understand, it stops the hissing noise
* common to many PowerBook G3 systems and random noise otherwise
* captured on iBook2's about every third time. -ReneR
*/
spin_lock_irq(&chip->reg_lock);
snd_pmac_dma_stop(rec);
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
spin_unlock_irq(&chip->reg_lock);
mdelay(5);
spin_lock_irq(&chip->reg_lock);
/* continuous DMA memory type doesn't provide the physical address,
* so we need to resolve the address here...
*/
offset = runtime->dma_addr;
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++) {
st_le32(&cp->phy_addr, offset);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
st_le16(&cp->xfer_status, 0);
offset += rec->period_size;
}
/* make loop */
st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
st_le32(&cp->cmd_dep, rec->cmd.addr);
snd_pmac_dma_stop(rec);
snd_pmac_dma_set_command(rec, &rec->cmd);
spin_unlock_irq(&chip->reg_lock);
return 0;
}
/*
* PCM trigger/stop
*/
static int snd_pmac_pcm_trigger(pmac_t *chip, pmac_stream_t *rec,
snd_pcm_substream_t *subs, int cmd)
{
volatile struct dbdma_cmd __iomem *cp;
int i, command;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
if (rec->running)
return -EBUSY;
command = (subs->stream == SNDRV_PCM_STREAM_PLAYBACK ?
OUTPUT_MORE : INPUT_MORE) + INTR_ALWAYS;
spin_lock(&chip->reg_lock);
snd_pmac_beep_stop(chip);
snd_pmac_pcm_set_format(chip);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, command);
snd_pmac_dma_set_command(rec, &rec->cmd);
(void)in_le32(&rec->dma->status);
snd_pmac_dma_run(rec, RUN|WAKE);
rec->running = 1;
spin_unlock(&chip->reg_lock);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
spin_lock(&chip->reg_lock);
rec->running = 0;
/*printk("stopped!!\n");*/
snd_pmac_dma_stop(rec);
for (i = 0, cp = rec->cmd.cmds; i < rec->nperiods; i++, cp++)
out_le16(&cp->command, DBDMA_STOP);
spin_unlock(&chip->reg_lock);
break;
default:
return -EINVAL;
}
return 0;
}
/*
* return the current pointer
*/
inline
static snd_pcm_uframes_t snd_pmac_pcm_pointer(pmac_t *chip, pmac_stream_t *rec,
snd_pcm_substream_t *subs)
{
int count = 0;
#if 1 /* hmm.. how can we get the current dma pointer?? */
int stat;
volatile struct dbdma_cmd __iomem *cp = &rec->cmd.cmds[rec->cur_period];
stat = ld_le16(&cp->xfer_status);
if (stat & (ACTIVE|DEAD)) {
count = in_le16(&cp->res_count);
if (count)
count = rec->period_size - count;
}
#endif
count += rec->cur_period * rec->period_size;
/*printk("pointer=%d\n", count);*/
return bytes_to_frames(subs->runtime, count);
}
/*
* playback
*/
static int snd_pmac_playback_prepare(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->playback, subs);
}
static int snd_pmac_playback_trigger(snd_pcm_substream_t *subs,
int cmd)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->playback, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_playback_pointer(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->playback, subs);
}
/*
* capture
*/
static int snd_pmac_capture_prepare(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_prepare(chip, &chip->capture, subs);
}
static int snd_pmac_capture_trigger(snd_pcm_substream_t *subs,
int cmd)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_trigger(chip, &chip->capture, subs, cmd);
}
static snd_pcm_uframes_t snd_pmac_capture_pointer(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_pointer(chip, &chip->capture, subs);
}
/*
* update playback/capture pointer from interrupts
*/
static void snd_pmac_pcm_update(pmac_t *chip, pmac_stream_t *rec)
{
volatile struct dbdma_cmd __iomem *cp;
int c;
int stat;
spin_lock(&chip->reg_lock);
if (rec->running) {
cp = &rec->cmd.cmds[rec->cur_period];
for (c = 0; c < rec->nperiods; c++) { /* at most all fragments */
stat = ld_le16(&cp->xfer_status);
if (! (stat & ACTIVE))
break;
/*printk("update frag %d\n", rec->cur_period);*/
st_le16(&cp->xfer_status, 0);
st_le16(&cp->req_count, rec->period_size);
/*st_le16(&cp->res_count, 0);*/
rec->cur_period++;
if (rec->cur_period >= rec->nperiods) {
rec->cur_period = 0;
cp = rec->cmd.cmds;
} else
cp++;
spin_unlock(&chip->reg_lock);
snd_pcm_period_elapsed(rec->substream);
spin_lock(&chip->reg_lock);
}
}
spin_unlock(&chip->reg_lock);
}
/*
* hw info
*/
static snd_pcm_hardware_t snd_pmac_playback =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 131072,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 3,
.periods_max = PMAC_MAX_FRAGS,
};
static snd_pcm_hardware_t snd_pmac_capture =
{
.info = (SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_RESUME),
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S16_LE,
.rates = SNDRV_PCM_RATE_8000_44100,
.rate_min = 7350,
.rate_max = 44100,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = 131072,
.period_bytes_min = 256,
.period_bytes_max = 16384,
.periods_min = 3,
.periods_max = PMAC_MAX_FRAGS,
};
#if 0 // NYI
static int snd_pmac_hw_rule_rate(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
pmac_t *chip = rule->private;
pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);
int i, freq_table[8], num_freqs;
snd_runtime_check(rec, return -EINVAL);
num_freqs = 0;
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (rec->cur_freqs & (1 << i))
freq_table[num_freqs++] = chip->freq_table[i];
}
return snd_interval_list(hw_param_interval(params, rule->var),
num_freqs, freq_table, 0);
}
static int snd_pmac_hw_rule_format(snd_pcm_hw_params_t *params,
snd_pcm_hw_rule_t *rule)
{
pmac_t *chip = rule->private;
pmac_stream_t *rec = snd_pmac_get_stream(chip, rule->deps[0]);
snd_runtime_check(rec, return -EINVAL);
return snd_mask_refine_set(hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT),
rec->cur_formats);
}
#endif // NYI
static int snd_pmac_pcm_open(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
snd_pcm_runtime_t *runtime = subs->runtime;
int i, j, fflags;
static int typical_freqs[] = {
44100,
22050,
11025,
0,
};
static int typical_freq_flags[] = {
SNDRV_PCM_RATE_44100,
SNDRV_PCM_RATE_22050,
SNDRV_PCM_RATE_11025,
0,
};
/* look up frequency table and fill bit mask */
runtime->hw.rates = 0;
fflags = chip->freqs_ok;
for (i = 0; typical_freqs[i]; i++) {
for (j = 0; j < chip->num_freqs; j++) {
if ((chip->freqs_ok & (1 << j)) &&
chip->freq_table[j] == typical_freqs[i]) {
runtime->hw.rates |= typical_freq_flags[i];
fflags &= ~(1 << j);
break;
}
}
}
if (fflags) /* rest */
runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
/* check for minimum and maximum rates */
for (i = 0; i < chip->num_freqs; i++) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_max = chip->freq_table[i];
break;
}
}
for (i = chip->num_freqs - 1; i >= 0; i--) {
if (chip->freqs_ok & (1 << i)) {
runtime->hw.rate_min = chip->freq_table[i];
break;
}
}
runtime->hw.formats = chip->formats_ok;
if (chip->can_capture) {
if (! chip->can_duplex)
runtime->hw.info |= SNDRV_PCM_INFO_HALF_DUPLEX;
runtime->hw.info |= SNDRV_PCM_INFO_JOINT_DUPLEX;
}
runtime->private_data = rec;
rec->substream = subs;
#if 0 /* FIXME: still under development.. */
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
snd_pmac_hw_rule_rate, chip, rec->stream, -1);
snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
snd_pmac_hw_rule_format, chip, rec->stream, -1);
#endif
runtime->hw.periods_max = rec->cmd.size - 1;
if (chip->can_duplex)
snd_pcm_set_sync(subs);
/* constraints to fix choppy sound */
snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
return 0;
}
static int snd_pmac_pcm_close(pmac_t *chip, pmac_stream_t *rec, snd_pcm_substream_t *subs)
{
pmac_stream_t *astr;
snd_pmac_dma_stop(rec);
astr = snd_pmac_get_stream(chip, another_stream(rec->stream));
snd_runtime_check(astr, return -EINVAL);
/* reset constraints */
astr->cur_freqs = chip->freqs_ok;
astr->cur_formats = chip->formats_ok;
return 0;
}
static int snd_pmac_playback_open(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_playback;
return snd_pmac_pcm_open(chip, &chip->playback, subs);
}
static int snd_pmac_capture_open(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
subs->runtime->hw = snd_pmac_capture;
return snd_pmac_pcm_open(chip, &chip->capture, subs);
}
static int snd_pmac_playback_close(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->playback, subs);
}
static int snd_pmac_capture_close(snd_pcm_substream_t *subs)
{
pmac_t *chip = snd_pcm_substream_chip(subs);
return snd_pmac_pcm_close(chip, &chip->capture, subs);
}
/*
*/
static snd_pcm_ops_t snd_pmac_playback_ops = {
.open = snd_pmac_playback_open,
.close = snd_pmac_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_playback_prepare,
.trigger = snd_pmac_playback_trigger,
.pointer = snd_pmac_playback_pointer,
};
static snd_pcm_ops_t snd_pmac_capture_ops = {
.open = snd_pmac_capture_open,
.close = snd_pmac_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_pmac_pcm_hw_params,
.hw_free = snd_pmac_pcm_hw_free,
.prepare = snd_pmac_capture_prepare,
.trigger = snd_pmac_capture_trigger,
.pointer = snd_pmac_capture_pointer,
};
static void pmac_pcm_free(snd_pcm_t *pcm)
{
snd_pcm_lib_preallocate_free_for_all(pcm);
}
int __init snd_pmac_pcm_new(pmac_t *chip)
{
snd_pcm_t *pcm;
int err;
int num_captures = 1;
if (! chip->can_capture)
num_captures = 0;
err = snd_pcm_new(chip->card, chip->card->driver, 0, 1, num_captures, &pcm);
if (err < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_pmac_playback_ops);
if (chip->can_capture)
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_pmac_capture_ops);
pcm->private_data = chip;
pcm->private_free = pmac_pcm_free;
pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
strcpy(pcm->name, chip->card->shortname);
chip->pcm = pcm;
chip->formats_ok = SNDRV_PCM_FMTBIT_S16_BE;
if (chip->can_byte_swap)
chip->formats_ok |= SNDRV_PCM_FMTBIT_S16_LE;
chip->playback.cur_formats = chip->formats_ok;
chip->capture.cur_formats = chip->formats_ok;
chip->playback.cur_freqs = chip->freqs_ok;
chip->capture.cur_freqs = chip->freqs_ok;
/* preallocate 64k buffer */
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
&chip->pdev->dev,
64 * 1024, 64 * 1024);
return 0;
}
static void snd_pmac_dbdma_reset(pmac_t *chip)
{
out_le32(&chip->playback.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->playback);
out_le32(&chip->capture.dma->control, (RUN|PAUSE|FLUSH|WAKE|DEAD) << 16);
snd_pmac_wait_ack(&chip->capture);
}
/*
* handling beep
*/
void snd_pmac_beep_dma_start(pmac_t *chip, int bytes, unsigned long addr, int speed)
{
pmac_stream_t *rec = &chip->playback;
snd_pmac_dma_stop(rec);
st_le16(&chip->extra_dma.cmds->req_count, bytes);
st_le16(&chip->extra_dma.cmds->xfer_status, 0);
st_le32(&chip->extra_dma.cmds->cmd_dep, chip->extra_dma.addr);
st_le32(&chip->extra_dma.cmds->phy_addr, addr);
st_le16(&chip->extra_dma.cmds->command, OUTPUT_MORE + BR_ALWAYS);
out_le32(&chip->awacs->control,
(in_le32(&chip->awacs->control) & ~0x1f00)
| (speed << 8));
out_le32(&chip->awacs->byteswap, 0);
snd_pmac_dma_set_command(rec, &chip->extra_dma);
snd_pmac_dma_run(rec, RUN);
}
void snd_pmac_beep_dma_stop(pmac_t *chip)
{
snd_pmac_dma_stop(&chip->playback);
st_le16(&chip->extra_dma.cmds->command, DBDMA_STOP);
snd_pmac_pcm_set_format(chip); /* reset format */
}
/*
* interrupt handlers
*/
static irqreturn_t
snd_pmac_tx_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = devid;
snd_pmac_pcm_update(chip, &chip->playback);
return IRQ_HANDLED;
}
static irqreturn_t
snd_pmac_rx_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = devid;
snd_pmac_pcm_update(chip, &chip->capture);
return IRQ_HANDLED;
}
static irqreturn_t
snd_pmac_ctrl_intr(int irq, void *devid, struct pt_regs *regs)
{
pmac_t *chip = devid;
int ctrl = in_le32(&chip->awacs->control);
/*printk("pmac: control interrupt.. 0x%x\n", ctrl);*/
if (ctrl & MASK_PORTCHG) {
/* do something when headphone is plugged/unplugged? */
if (chip->update_automute)
chip->update_automute(chip, 1);
}
if (ctrl & MASK_CNTLERR) {
int err = (in_le32(&chip->awacs->codec_stat) & MASK_ERRCODE) >> 16;
if (err && chip->model <= PMAC_SCREAMER)
snd_printk(KERN_DEBUG "error %x\n", err);
}
/* Writing 1s to the CNTLERR and PORTCHG bits clears them... */
out_le32(&chip->awacs->control, ctrl);
return IRQ_HANDLED;
}
/*
* a wrapper to feature call for compatibility
*/
static void snd_pmac_sound_feature(pmac_t *chip, int enable)
{
ppc_md.feature_call(PMAC_FTR_SOUND_CHIP_ENABLE, chip->node, 0, enable);
}
/*
* release resources
*/
static int snd_pmac_free(pmac_t *chip)
{
/* stop sounds */
if (chip->initialized) {
snd_pmac_dbdma_reset(chip);
/* disable interrupts from awacs interface */
out_le32(&chip->awacs->control, in_le32(&chip->awacs->control) & 0xfff);
}
snd_pmac_sound_feature(chip, 0);
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
snd_pmac_unregister_sleep_notifier(chip);
#endif
/* clean up mixer if any */
if (chip->mixer_free)
chip->mixer_free(chip);
snd_pmac_detach_beep(chip);
/* release resources */
if (chip->irq >= 0)
free_irq(chip->irq, (void*)chip);
if (chip->tx_irq >= 0)
free_irq(chip->tx_irq, (void*)chip);
if (chip->rx_irq >= 0)
free_irq(chip->rx_irq, (void*)chip);
snd_pmac_dbdma_free(chip, &chip->playback.cmd);
snd_pmac_dbdma_free(chip, &chip->capture.cmd);
snd_pmac_dbdma_free(chip, &chip->extra_dma);
if (chip->macio_base)
iounmap(chip->macio_base);
if (chip->latch_base)
iounmap(chip->latch_base);
if (chip->awacs)
iounmap(chip->awacs);
if (chip->playback.dma)
iounmap(chip->playback.dma);
if (chip->capture.dma)
iounmap(chip->capture.dma);
#ifndef CONFIG_PPC64
if (chip->node) {
int i;
for (i = 0; i < 3; i++) {
if (chip->of_requested & (1 << i)) {
if (chip->is_k2)
release_OF_resource(chip->node->parent,
i);
else
release_OF_resource(chip->node, i);
}
}
}
#endif /* CONFIG_PPC64 */
if (chip->pdev)
pci_dev_put(chip->pdev);
kfree(chip);
return 0;
}
/*
* free the device
*/
static int snd_pmac_dev_free(snd_device_t *device)
{
pmac_t *chip = device->device_data;
return snd_pmac_free(chip);
}
/*
* check the machine support byteswap (little-endian)
*/
static void __init detect_byte_swap(pmac_t *chip)
{
struct device_node *mio;
/* if seems that Keylargo can't byte-swap */
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0) {
if (device_is_compatible(mio, "Keylargo"))
chip->can_byte_swap = 0;
break;
}
}
/* it seems the Pismo & iBook can't byte-swap in hardware. */
if (machine_is_compatible("PowerBook3,1") ||
machine_is_compatible("PowerBook2,1"))
chip->can_byte_swap = 0 ;
if (machine_is_compatible("PowerBook2,1"))
chip->can_duplex = 0;
}
/*
* detect a sound chip
*/
static int __init snd_pmac_detect(pmac_t *chip)
{
struct device_node *sound;
unsigned int *prop, l;
struct macio_chip* macio;
u32 layout_id = 0;
if (_machine != _MACH_Pmac)
return -ENODEV;
chip->subframe = 0;
chip->revision = 0;
chip->freqs_ok = 0xff; /* all ok */
chip->model = PMAC_AWACS;
chip->can_byte_swap = 1;
chip->can_duplex = 1;
chip->can_capture = 1;
chip->num_freqs = ARRAY_SIZE(awacs_freqs);
chip->freq_table = awacs_freqs;
chip->control_mask = MASK_IEPC | MASK_IEE | 0x11; /* default */
/* check machine type */
if (machine_is_compatible("AAPL,3400/2400")
|| machine_is_compatible("AAPL,3500"))
chip->is_pbook_3400 = 1;
else if (machine_is_compatible("PowerBook1,1")
|| machine_is_compatible("AAPL,PowerBook1998"))
chip->is_pbook_G3 = 1;
chip->node = find_devices("awacs");
if (chip->node)
return 0; /* ok */
/*
* powermac G3 models have a node called "davbus"
* with a child called "sound".
*/
chip->node = find_devices("davbus");
/*
* if we didn't find a davbus device, try 'i2s-a' since
* this seems to be what iBooks have
*/
if (! chip->node) {
chip->node = find_devices("i2s-a");
if (chip->node && chip->node->parent && chip->node->parent->parent) {
if (device_is_compatible(chip->node->parent->parent,
"K2-Keylargo"))
chip->is_k2 = 1;
}
}
if (! chip->node)
return -ENODEV;
sound = find_devices("sound");
while (sound && sound->parent != chip->node)
sound = sound->next;
if (! sound)
return -ENODEV;
prop = (unsigned int *) get_property(sound, "sub-frame", NULL);
if (prop && *prop < 16)
chip->subframe = *prop;
prop = (unsigned int *) get_property(sound, "layout-id", NULL);
if (prop)
layout_id = *prop;
/* This should be verified on older screamers */
if (device_is_compatible(sound, "screamer")) {
chip->model = PMAC_SCREAMER;
// chip->can_byte_swap = 0; /* FIXME: check this */
}
if (device_is_compatible(sound, "burgundy")) {
chip->model = PMAC_BURGUNDY;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "daca")) {
chip->model = PMAC_DACA;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "tumbler")) {
chip->model = PMAC_TUMBLER;
chip->can_capture = 0; /* no capture */
chip->can_duplex = 0;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "snapper")) {
chip->model = PMAC_SNAPPER;
// chip->can_byte_swap = 0; /* FIXME: check this */
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->freq_table = tumbler_freqs;
chip->control_mask = MASK_IEPC | 0x11; /* disable IEE */
}
if (device_is_compatible(sound, "AOAKeylargo") ||
device_is_compatible(sound, "AOAbase") ||
device_is_compatible(sound, "AOAK2")) {
/* For now, only support very basic TAS3004 based machines with
* single frequency until proper i2s control is implemented
*/
switch(layout_id) {
case 0x48:
case 0x46:
case 0x33:
case 0x29:
case 0x24:
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->model = PMAC_SNAPPER;
chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
break;
case 0x3a:
chip->num_freqs = ARRAY_SIZE(tumbler_freqs);
chip->model = PMAC_TOONIE;
chip->can_byte_swap = 0; /* FIXME: check this */
chip->control_mask = MASK_IEPC | 0x11;/* disable IEE */
break;
}
}
prop = (unsigned int *)get_property(sound, "device-id", NULL);
if (prop)
chip->device_id = *prop;
chip->has_iic = (find_devices("perch") != NULL);
/* We need the PCI device for DMA allocations, let's use a crude method
* for now ...
*/
macio = macio_find(chip->node, macio_unknown);
if (macio == NULL)
printk(KERN_WARNING "snd-powermac: can't locate macio !\n");
else {
struct pci_dev *pdev = NULL;
for_each_pci_dev(pdev) {
struct device_node *np = pci_device_to_OF_node(pdev);
if (np && np == macio->of_node) {
chip->pdev = pdev;
break;
}
}
}
if (chip->pdev == NULL)
printk(KERN_WARNING "snd-powermac: can't locate macio PCI device !\n");
detect_byte_swap(chip);
/* look for a property saying what sample rates
are available */
prop = (unsigned int *) get_property(sound, "sample-rates", &l);
if (! prop)
prop = (unsigned int *) get_property(sound, "output-frame-rates", &l);
if (prop) {
int i;
chip->freqs_ok = 0;
for (l /= sizeof(int); l > 0; --l) {
unsigned int r = *prop++;
/* Apple 'Fixed' format */
if (r >= 0x10000)
r >>= 16;
for (i = 0; i < chip->num_freqs; ++i) {
if (r == chip->freq_table[i]) {
chip->freqs_ok |= (1 << i);
break;
}
}
}
} else {
/* assume only 44.1khz */
chip->freqs_ok = 1;
}
return 0;
}
/*
* exported - boolean info callbacks for ease of programming
*/
int snd_pmac_boolean_stereo_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
int snd_pmac_boolean_mono_info(snd_kcontrol_t *kcontrol, snd_ctl_elem_info_t *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 1;
return 0;
}
#ifdef PMAC_SUPPORT_AUTOMUTE
/*
* auto-mute
*/
static int pmac_auto_mute_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
ucontrol->value.integer.value[0] = chip->auto_mute;
return 0;
}
static int pmac_auto_mute_put(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] != chip->auto_mute) {
chip->auto_mute = ucontrol->value.integer.value[0];
if (chip->update_automute)
chip->update_automute(chip, 1);
return 1;
}
return 0;
}
static int pmac_hp_detect_get(snd_kcontrol_t *kcontrol, snd_ctl_elem_value_t *ucontrol)
{
pmac_t *chip = snd_kcontrol_chip(kcontrol);
if (chip->detect_headphone)
ucontrol->value.integer.value[0] = chip->detect_headphone(chip);
else
ucontrol->value.integer.value[0] = 0;
return 0;
}
static snd_kcontrol_new_t auto_mute_controls[] __initdata = {
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Auto Mute Switch",
.info = snd_pmac_boolean_mono_info,
.get = pmac_auto_mute_get,
.put = pmac_auto_mute_put,
},
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Headphone Detection",
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = snd_pmac_boolean_mono_info,
.get = pmac_hp_detect_get,
},
};
int __init snd_pmac_add_automute(pmac_t *chip)
{
int err;
chip->auto_mute = 1;
err = snd_ctl_add(chip->card, snd_ctl_new1(&auto_mute_controls[0], chip));
if (err < 0) {
printk(KERN_ERR "snd-powermac: Failed to add automute control\n");
return err;
}
chip->hp_detect_ctl = snd_ctl_new1(&auto_mute_controls[1], chip);
return snd_ctl_add(chip->card, chip->hp_detect_ctl);
}
#endif /* PMAC_SUPPORT_AUTOMUTE */
/*
* create and detect a pmac chip record
*/
int __init snd_pmac_new(snd_card_t *card, pmac_t **chip_return)
{
pmac_t *chip;
struct device_node *np;
int i, err;
unsigned long ctrl_addr, txdma_addr, rxdma_addr;
static snd_device_ops_t ops = {
.dev_free = snd_pmac_dev_free,
};
snd_runtime_check(chip_return, return -EINVAL);
*chip_return = NULL;
chip = kcalloc(1, sizeof(*chip), GFP_KERNEL);
if (chip == NULL)
return -ENOMEM;
chip->card = card;
spin_lock_init(&chip->reg_lock);
chip->irq = chip->tx_irq = chip->rx_irq = -1;
chip->playback.stream = SNDRV_PCM_STREAM_PLAYBACK;
chip->capture.stream = SNDRV_PCM_STREAM_CAPTURE;
if ((err = snd_pmac_detect(chip)) < 0)
goto __error;
if (snd_pmac_dbdma_alloc(chip, &chip->playback.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(chip, &chip->capture.cmd, PMAC_MAX_FRAGS + 1) < 0 ||
snd_pmac_dbdma_alloc(chip, &chip->extra_dma, 2) < 0) {
err = -ENOMEM;
goto __error;
}
np = chip->node;
if (chip->is_k2) {
if (np->parent->n_addrs < 2 || np->n_intrs < 3) {
err = -ENODEV;
goto __error;
}
for (i = 0; i < 2; i++) {
#ifndef CONFIG_PPC64
static char *name[2] = { "- Control", "- DMA" };
if (! request_OF_resource(np->parent, i, name[i])) {
snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
err = -ENODEV;
goto __error;
}
chip->of_requested |= (1 << i);
#endif /* CONFIG_PPC64 */
ctrl_addr = np->parent->addrs[0].address;
txdma_addr = np->parent->addrs[1].address;
rxdma_addr = txdma_addr + 0x100;
}
} else {
if (np->n_addrs < 3 || np->n_intrs < 3) {
err = -ENODEV;
goto __error;
}
for (i = 0; i < 3; i++) {
#ifndef CONFIG_PPC64
static char *name[3] = { "- Control", "- Tx DMA", "- Rx DMA" };
if (! request_OF_resource(np, i, name[i])) {
snd_printk(KERN_ERR "pmac: can't request resource %d!\n", i);
err = -ENODEV;
goto __error;
}
chip->of_requested |= (1 << i);
#endif /* CONFIG_PPC64 */
ctrl_addr = np->addrs[0].address;
txdma_addr = np->addrs[1].address;
rxdma_addr = np->addrs[2].address;
}
}
chip->awacs = ioremap(ctrl_addr, 0x1000);
chip->playback.dma = ioremap(txdma_addr, 0x100);
chip->capture.dma = ioremap(rxdma_addr, 0x100);
if (chip->model <= PMAC_BURGUNDY) {
if (request_irq(np->intrs[0].line, snd_pmac_ctrl_intr, 0,
"PMac", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[0].line);
err = -EBUSY;
goto __error;
}
chip->irq = np->intrs[0].line;
}
if (request_irq(np->intrs[1].line, snd_pmac_tx_intr, 0,
"PMac Output", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[1].line);
err = -EBUSY;
goto __error;
}
chip->tx_irq = np->intrs[1].line;
if (request_irq(np->intrs[2].line, snd_pmac_rx_intr, 0,
"PMac Input", (void*)chip)) {
snd_printk(KERN_ERR "pmac: unable to grab IRQ %d\n", np->intrs[2].line);
err = -EBUSY;
goto __error;
}
chip->rx_irq = np->intrs[2].line;
snd_pmac_sound_feature(chip, 1);
/* reset */
if (chip->model == PMAC_AWACS)
out_le32(&chip->awacs->control, 0x11);
/* Powerbooks have odd ways of enabling inputs such as
an expansion-bay CD or sound from an internal modem
or a PC-card modem. */
if (chip->is_pbook_3400) {
/* Enable CD and PC-card sound inputs. */
/* This is done by reading from address
* f301a000, + 0x10 to enable the expansion-bay
* CD sound input, + 0x80 to enable the PC-card
* sound input. The 0x100 enables the SCSI bus
* terminator power.
*/
chip->latch_base = ioremap (0xf301a000, 0x1000);
in_8(chip->latch_base + 0x190);
} else if (chip->is_pbook_G3) {
struct device_node* mio;
for (mio = chip->node->parent; mio; mio = mio->parent) {
if (strcmp(mio->name, "mac-io") == 0
&& mio->n_addrs > 0) {
chip->macio_base = ioremap(mio->addrs[0].address, 0x40);
break;
}
}
/* Enable CD sound input. */
/* The relevant bits for writing to this byte are 0x8f.
* I haven't found out what the 0x80 bit does.
* For the 0xf bits, writing 3 or 7 enables the CD
* input, any other value disables it. Values
* 1, 3, 5, 7 enable the microphone. Values 0, 2,
* 4, 6, 8 - f enable the input from the modem.
*/
if (chip->macio_base)
out_8(chip->macio_base + 0x37, 3);
}
/* Reset dbdma channels */
snd_pmac_dbdma_reset(chip);
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
/* add sleep notifier */
if (! snd_pmac_register_sleep_notifier(chip))
snd_card_set_pm_callback(chip->card, snd_pmac_suspend, snd_pmac_resume, chip);
#endif
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0)
goto __error;
*chip_return = chip;
return 0;
__error:
if (chip->pdev)
pci_dev_put(chip->pdev);
snd_pmac_free(chip);
return err;
}
/*
* sleep notify for powerbook
*/
#if defined(CONFIG_PM) && defined(CONFIG_PMAC_PBOOK)
/*
* Save state when going to sleep, restore it afterwards.
*/
static int snd_pmac_suspend(snd_card_t *card, pm_message_t state)
{
pmac_t *chip = card->pm_private_data;
unsigned long flags;
if (chip->suspend)
chip->suspend(chip);
snd_pcm_suspend_all(chip->pcm);
spin_lock_irqsave(&chip->reg_lock, flags);
snd_pmac_beep_stop(chip);
spin_unlock_irqrestore(&chip->reg_lock, flags);
if (chip->irq >= 0)
disable_irq(chip->irq);
if (chip->tx_irq >= 0)
disable_irq(chip->tx_irq);
if (chip->rx_irq >= 0)
disable_irq(chip->rx_irq);
snd_pmac_sound_feature(chip, 0);
return 0;
}
static int snd_pmac_resume(snd_card_t *card)
{
pmac_t *chip = card->pm_private_data;
snd_pmac_sound_feature(chip, 1);
if (chip->resume)
chip->resume(chip);
/* enable CD sound input */
if (chip->macio_base && chip->is_pbook_G3) {
out_8(chip->macio_base + 0x37, 3);
} else if (chip->is_pbook_3400) {
in_8(chip->latch_base + 0x190);
}
snd_pmac_pcm_set_format(chip);
if (chip->irq >= 0)
enable_irq(chip->irq);
if (chip->tx_irq >= 0)
enable_irq(chip->tx_irq);
if (chip->rx_irq >= 0)
enable_irq(chip->rx_irq);
return 0;
}
/* the chip is stored statically by snd_pmac_register_sleep_notifier
* because we can't have any private data for notify callback.
*/
static pmac_t *sleeping_pmac = NULL;
static int snd_pmac_sleep_notify(struct pmu_sleep_notifier *self, int when)
{
pmac_t *chip;
chip = sleeping_pmac;
snd_runtime_check(chip, return 0);
switch (when) {
case PBOOK_SLEEP_NOW:
snd_pmac_suspend(chip->card, PMSG_SUSPEND);
break;
case PBOOK_WAKE:
snd_pmac_resume(chip->card);
break;
}
return PBOOK_SLEEP_OK;
}
static struct pmu_sleep_notifier snd_pmac_sleep_notifier = {
snd_pmac_sleep_notify, SLEEP_LEVEL_SOUND,
};
static int __init snd_pmac_register_sleep_notifier(pmac_t *chip)
{
/* should be protected here.. */
snd_assert(! sleeping_pmac, return -EBUSY);
sleeping_pmac = chip;
pmu_register_sleep_notifier(&snd_pmac_sleep_notifier);
return 0;
}
static int snd_pmac_unregister_sleep_notifier(pmac_t *chip)
{
/* should be protected here.. */
snd_assert(sleeping_pmac == chip, return -ENODEV);
pmu_unregister_sleep_notifier(&snd_pmac_sleep_notifier);
sleeping_pmac = NULL;
return 0;
}
#endif /* CONFIG_PM && CONFIG_PMAC_PBOOK */