linux-sg2042/fs/ubifs/file.c

1636 lines
46 KiB
C

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
/*
* This file implements VFS file and inode operations for regular files, device
* nodes and symlinks as well as address space operations.
*
* UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
* the page is dirty and is used for optimization purposes - dirty pages are
* not budgeted so the flag shows that 'ubifs_write_end()' should not release
* the budget for this page. The @PG_checked flag is set if full budgeting is
* required for the page e.g., when it corresponds to a file hole or it is
* beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
* it is OK to fail in this function, and the budget is released in
* 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
* information about how the page was budgeted, to make it possible to release
* the budget properly.
*
* A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
* implement. However, this is not true for 'ubifs_writepage()', which may be
* called with @i_mutex unlocked. For example, when flusher thread is doing
* background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
* At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
* in the "sys_write -> alloc_pages -> direct reclaim path". So, in
* 'ubifs_writepage()' we are only guaranteed that the page is locked.
*
* Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
* read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
* ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
* set as well. However, UBIFS disables readahead.
*/
#include "ubifs.h"
#include <linux/mount.h>
#include <linux/slab.h>
static int read_block(struct inode *inode, void *addr, unsigned int block,
struct ubifs_data_node *dn)
{
struct ubifs_info *c = inode->i_sb->s_fs_info;
int err, len, out_len;
union ubifs_key key;
unsigned int dlen;
data_key_init(c, &key, inode->i_ino, block);
err = ubifs_tnc_lookup(c, &key, dn);
if (err) {
if (err == -ENOENT)
/* Not found, so it must be a hole */
memset(addr, 0, UBIFS_BLOCK_SIZE);
return err;
}
ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
ubifs_inode(inode)->creat_sqnum);
len = le32_to_cpu(dn->size);
if (len <= 0 || len > UBIFS_BLOCK_SIZE)
goto dump;
dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
out_len = UBIFS_BLOCK_SIZE;
err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
le16_to_cpu(dn->compr_type));
if (err || len != out_len)
goto dump;
/*
* Data length can be less than a full block, even for blocks that are
* not the last in the file (e.g., as a result of making a hole and
* appending data). Ensure that the remainder is zeroed out.
*/
if (len < UBIFS_BLOCK_SIZE)
memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
return 0;
dump:
ubifs_err(c, "bad data node (block %u, inode %lu)",
block, inode->i_ino);
ubifs_dump_node(c, dn);
return -EINVAL;
}
static int do_readpage(struct page *page)
{
void *addr;
int err = 0, i;
unsigned int block, beyond;
struct ubifs_data_node *dn;
struct inode *inode = page->mapping->host;
loff_t i_size = i_size_read(inode);
dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
inode->i_ino, page->index, i_size, page->flags);
ubifs_assert(!PageChecked(page));
ubifs_assert(!PagePrivate(page));
addr = kmap(page);
block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
if (block >= beyond) {
/* Reading beyond inode */
SetPageChecked(page);
memset(addr, 0, PAGE_CACHE_SIZE);
goto out;
}
dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
if (!dn) {
err = -ENOMEM;
goto error;
}
i = 0;
while (1) {
int ret;
if (block >= beyond) {
/* Reading beyond inode */
err = -ENOENT;
memset(addr, 0, UBIFS_BLOCK_SIZE);
} else {
ret = read_block(inode, addr, block, dn);
if (ret) {
err = ret;
if (err != -ENOENT)
break;
} else if (block + 1 == beyond) {
int dlen = le32_to_cpu(dn->size);
int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
if (ilen && ilen < dlen)
memset(addr + ilen, 0, dlen - ilen);
}
}
if (++i >= UBIFS_BLOCKS_PER_PAGE)
break;
block += 1;
addr += UBIFS_BLOCK_SIZE;
}
if (err) {
struct ubifs_info *c = inode->i_sb->s_fs_info;
if (err == -ENOENT) {
/* Not found, so it must be a hole */
SetPageChecked(page);
dbg_gen("hole");
goto out_free;
}
ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
page->index, inode->i_ino, err);
goto error;
}
out_free:
kfree(dn);
out:
SetPageUptodate(page);
ClearPageError(page);
flush_dcache_page(page);
kunmap(page);
return 0;
error:
kfree(dn);
ClearPageUptodate(page);
SetPageError(page);
flush_dcache_page(page);
kunmap(page);
return err;
}
/**
* release_new_page_budget - release budget of a new page.
* @c: UBIFS file-system description object
*
* This is a helper function which releases budget corresponding to the budget
* of one new page of data.
*/
static void release_new_page_budget(struct ubifs_info *c)
{
struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
ubifs_release_budget(c, &req);
}
/**
* release_existing_page_budget - release budget of an existing page.
* @c: UBIFS file-system description object
*
* This is a helper function which releases budget corresponding to the budget
* of changing one one page of data which already exists on the flash media.
*/
static void release_existing_page_budget(struct ubifs_info *c)
{
struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
ubifs_release_budget(c, &req);
}
static int write_begin_slow(struct address_space *mapping,
loff_t pos, unsigned len, struct page **pagep,
unsigned flags)
{
struct inode *inode = mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
struct ubifs_budget_req req = { .new_page = 1 };
int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
struct page *page;
dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
inode->i_ino, pos, len, inode->i_size);
/*
* At the slow path we have to budget before locking the page, because
* budgeting may force write-back, which would wait on locked pages and
* deadlock if we had the page locked. At this point we do not know
* anything about the page, so assume that this is a new page which is
* written to a hole. This corresponds to largest budget. Later the
* budget will be amended if this is not true.
*/
if (appending)
/* We are appending data, budget for inode change */
req.dirtied_ino = 1;
err = ubifs_budget_space(c, &req);
if (unlikely(err))
return err;
page = grab_cache_page_write_begin(mapping, index, flags);
if (unlikely(!page)) {
ubifs_release_budget(c, &req);
return -ENOMEM;
}
if (!PageUptodate(page)) {
if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
SetPageChecked(page);
else {
err = do_readpage(page);
if (err) {
unlock_page(page);
page_cache_release(page);
ubifs_release_budget(c, &req);
return err;
}
}
SetPageUptodate(page);
ClearPageError(page);
}
if (PagePrivate(page))
/*
* The page is dirty, which means it was budgeted twice:
* o first time the budget was allocated by the task which
* made the page dirty and set the PG_private flag;
* o and then we budgeted for it for the second time at the
* very beginning of this function.
*
* So what we have to do is to release the page budget we
* allocated.
*/
release_new_page_budget(c);
else if (!PageChecked(page))
/*
* We are changing a page which already exists on the media.
* This means that changing the page does not make the amount
* of indexing information larger, and this part of the budget
* which we have already acquired may be released.
*/
ubifs_convert_page_budget(c);
if (appending) {
struct ubifs_inode *ui = ubifs_inode(inode);
/*
* 'ubifs_write_end()' is optimized from the fast-path part of
* 'ubifs_write_begin()' and expects the @ui_mutex to be locked
* if data is appended.
*/
mutex_lock(&ui->ui_mutex);
if (ui->dirty)
/*
* The inode is dirty already, so we may free the
* budget we allocated.
*/
ubifs_release_dirty_inode_budget(c, ui);
}
*pagep = page;
return 0;
}
/**
* allocate_budget - allocate budget for 'ubifs_write_begin()'.
* @c: UBIFS file-system description object
* @page: page to allocate budget for
* @ui: UBIFS inode object the page belongs to
* @appending: non-zero if the page is appended
*
* This is a helper function for 'ubifs_write_begin()' which allocates budget
* for the operation. The budget is allocated differently depending on whether
* this is appending, whether the page is dirty or not, and so on. This
* function leaves the @ui->ui_mutex locked in case of appending. Returns zero
* in case of success and %-ENOSPC in case of failure.
*/
static int allocate_budget(struct ubifs_info *c, struct page *page,
struct ubifs_inode *ui, int appending)
{
struct ubifs_budget_req req = { .fast = 1 };
if (PagePrivate(page)) {
if (!appending)
/*
* The page is dirty and we are not appending, which
* means no budget is needed at all.
*/
return 0;
mutex_lock(&ui->ui_mutex);
if (ui->dirty)
/*
* The page is dirty and we are appending, so the inode
* has to be marked as dirty. However, it is already
* dirty, so we do not need any budget. We may return,
* but @ui->ui_mutex hast to be left locked because we
* should prevent write-back from flushing the inode
* and freeing the budget. The lock will be released in
* 'ubifs_write_end()'.
*/
return 0;
/*
* The page is dirty, we are appending, the inode is clean, so
* we need to budget the inode change.
*/
req.dirtied_ino = 1;
} else {
if (PageChecked(page))
/*
* The page corresponds to a hole and does not
* exist on the media. So changing it makes
* make the amount of indexing information
* larger, and we have to budget for a new
* page.
*/
req.new_page = 1;
else
/*
* Not a hole, the change will not add any new
* indexing information, budget for page
* change.
*/
req.dirtied_page = 1;
if (appending) {
mutex_lock(&ui->ui_mutex);
if (!ui->dirty)
/*
* The inode is clean but we will have to mark
* it as dirty because we are appending. This
* needs a budget.
*/
req.dirtied_ino = 1;
}
}
return ubifs_budget_space(c, &req);
}
/*
* This function is called when a page of data is going to be written. Since
* the page of data will not necessarily go to the flash straight away, UBIFS
* has to reserve space on the media for it, which is done by means of
* budgeting.
*
* This is the hot-path of the file-system and we are trying to optimize it as
* much as possible. For this reasons it is split on 2 parts - slow and fast.
*
* There many budgeting cases:
* o a new page is appended - we have to budget for a new page and for
* changing the inode; however, if the inode is already dirty, there is
* no need to budget for it;
* o an existing clean page is changed - we have budget for it; if the page
* does not exist on the media (a hole), we have to budget for a new
* page; otherwise, we may budget for changing an existing page; the
* difference between these cases is that changing an existing page does
* not introduce anything new to the FS indexing information, so it does
* not grow, and smaller budget is acquired in this case;
* o an existing dirty page is changed - no need to budget at all, because
* the page budget has been acquired by earlier, when the page has been
* marked dirty.
*
* UBIFS budgeting sub-system may force write-back if it thinks there is no
* space to reserve. This imposes some locking restrictions and makes it
* impossible to take into account the above cases, and makes it impossible to
* optimize budgeting.
*
* The solution for this is that the fast path of 'ubifs_write_begin()' assumes
* there is a plenty of flash space and the budget will be acquired quickly,
* without forcing write-back. The slow path does not make this assumption.
*/
static int ubifs_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_inode *ui = ubifs_inode(inode);
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
int skipped_read = 0;
struct page *page;
ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
ubifs_assert(!c->ro_media && !c->ro_mount);
if (unlikely(c->ro_error))
return -EROFS;
/* Try out the fast-path part first */
page = grab_cache_page_write_begin(mapping, index, flags);
if (unlikely(!page))
return -ENOMEM;
if (!PageUptodate(page)) {
/* The page is not loaded from the flash */
if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
/*
* We change whole page so no need to load it. But we
* do not know whether this page exists on the media or
* not, so we assume the latter because it requires
* larger budget. The assumption is that it is better
* to budget a bit more than to read the page from the
* media. Thus, we are setting the @PG_checked flag
* here.
*/
SetPageChecked(page);
skipped_read = 1;
} else {
err = do_readpage(page);
if (err) {
unlock_page(page);
page_cache_release(page);
return err;
}
}
SetPageUptodate(page);
ClearPageError(page);
}
err = allocate_budget(c, page, ui, appending);
if (unlikely(err)) {
ubifs_assert(err == -ENOSPC);
/*
* If we skipped reading the page because we were going to
* write all of it, then it is not up to date.
*/
if (skipped_read) {
ClearPageChecked(page);
ClearPageUptodate(page);
}
/*
* Budgeting failed which means it would have to force
* write-back but didn't, because we set the @fast flag in the
* request. Write-back cannot be done now, while we have the
* page locked, because it would deadlock. Unlock and free
* everything and fall-back to slow-path.
*/
if (appending) {
ubifs_assert(mutex_is_locked(&ui->ui_mutex));
mutex_unlock(&ui->ui_mutex);
}
unlock_page(page);
page_cache_release(page);
return write_begin_slow(mapping, pos, len, pagep, flags);
}
/*
* Whee, we acquired budgeting quickly - without involving
* garbage-collection, committing or forcing write-back. We return
* with @ui->ui_mutex locked if we are appending pages, and unlocked
* otherwise. This is an optimization (slightly hacky though).
*/
*pagep = page;
return 0;
}
/**
* cancel_budget - cancel budget.
* @c: UBIFS file-system description object
* @page: page to cancel budget for
* @ui: UBIFS inode object the page belongs to
* @appending: non-zero if the page is appended
*
* This is a helper function for a page write operation. It unlocks the
* @ui->ui_mutex in case of appending.
*/
static void cancel_budget(struct ubifs_info *c, struct page *page,
struct ubifs_inode *ui, int appending)
{
if (appending) {
if (!ui->dirty)
ubifs_release_dirty_inode_budget(c, ui);
mutex_unlock(&ui->ui_mutex);
}
if (!PagePrivate(page)) {
if (PageChecked(page))
release_new_page_budget(c);
else
release_existing_page_budget(c);
}
}
static int ubifs_write_end(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = mapping->host;
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_info *c = inode->i_sb->s_fs_info;
loff_t end_pos = pos + len;
int appending = !!(end_pos > inode->i_size);
dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
inode->i_ino, pos, page->index, len, copied, inode->i_size);
if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
/*
* VFS copied less data to the page that it intended and
* declared in its '->write_begin()' call via the @len
* argument. If the page was not up-to-date, and @len was
* @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
* not load it from the media (for optimization reasons). This
* means that part of the page contains garbage. So read the
* page now.
*/
dbg_gen("copied %d instead of %d, read page and repeat",
copied, len);
cancel_budget(c, page, ui, appending);
ClearPageChecked(page);
/*
* Return 0 to force VFS to repeat the whole operation, or the
* error code if 'do_readpage()' fails.
*/
copied = do_readpage(page);
goto out;
}
if (!PagePrivate(page)) {
SetPagePrivate(page);
atomic_long_inc(&c->dirty_pg_cnt);
__set_page_dirty_nobuffers(page);
}
if (appending) {
i_size_write(inode, end_pos);
ui->ui_size = end_pos;
/*
* Note, we do not set @I_DIRTY_PAGES (which means that the
* inode has dirty pages), this has been done in
* '__set_page_dirty_nobuffers()'.
*/
__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
ubifs_assert(mutex_is_locked(&ui->ui_mutex));
mutex_unlock(&ui->ui_mutex);
}
out:
unlock_page(page);
page_cache_release(page);
return copied;
}
/**
* populate_page - copy data nodes into a page for bulk-read.
* @c: UBIFS file-system description object
* @page: page
* @bu: bulk-read information
* @n: next zbranch slot
*
* This function returns %0 on success and a negative error code on failure.
*/
static int populate_page(struct ubifs_info *c, struct page *page,
struct bu_info *bu, int *n)
{
int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
struct inode *inode = page->mapping->host;
loff_t i_size = i_size_read(inode);
unsigned int page_block;
void *addr, *zaddr;
pgoff_t end_index;
dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
inode->i_ino, page->index, i_size, page->flags);
addr = zaddr = kmap(page);
end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
if (!i_size || page->index > end_index) {
hole = 1;
memset(addr, 0, PAGE_CACHE_SIZE);
goto out_hole;
}
page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
while (1) {
int err, len, out_len, dlen;
if (nn >= bu->cnt) {
hole = 1;
memset(addr, 0, UBIFS_BLOCK_SIZE);
} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
struct ubifs_data_node *dn;
dn = bu->buf + (bu->zbranch[nn].offs - offs);
ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
ubifs_inode(inode)->creat_sqnum);
len = le32_to_cpu(dn->size);
if (len <= 0 || len > UBIFS_BLOCK_SIZE)
goto out_err;
dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
out_len = UBIFS_BLOCK_SIZE;
err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
le16_to_cpu(dn->compr_type));
if (err || len != out_len)
goto out_err;
if (len < UBIFS_BLOCK_SIZE)
memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
nn += 1;
read = (i << UBIFS_BLOCK_SHIFT) + len;
} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
nn += 1;
continue;
} else {
hole = 1;
memset(addr, 0, UBIFS_BLOCK_SIZE);
}
if (++i >= UBIFS_BLOCKS_PER_PAGE)
break;
addr += UBIFS_BLOCK_SIZE;
page_block += 1;
}
if (end_index == page->index) {
int len = i_size & (PAGE_CACHE_SIZE - 1);
if (len && len < read)
memset(zaddr + len, 0, read - len);
}
out_hole:
if (hole) {
SetPageChecked(page);
dbg_gen("hole");
}
SetPageUptodate(page);
ClearPageError(page);
flush_dcache_page(page);
kunmap(page);
*n = nn;
return 0;
out_err:
ClearPageUptodate(page);
SetPageError(page);
flush_dcache_page(page);
kunmap(page);
ubifs_err(c, "bad data node (block %u, inode %lu)",
page_block, inode->i_ino);
return -EINVAL;
}
/**
* ubifs_do_bulk_read - do bulk-read.
* @c: UBIFS file-system description object
* @bu: bulk-read information
* @page1: first page to read
*
* This function returns %1 if the bulk-read is done, otherwise %0 is returned.
*/
static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
struct page *page1)
{
pgoff_t offset = page1->index, end_index;
struct address_space *mapping = page1->mapping;
struct inode *inode = mapping->host;
struct ubifs_inode *ui = ubifs_inode(inode);
int err, page_idx, page_cnt, ret = 0, n = 0;
int allocate = bu->buf ? 0 : 1;
loff_t isize;
err = ubifs_tnc_get_bu_keys(c, bu);
if (err)
goto out_warn;
if (bu->eof) {
/* Turn off bulk-read at the end of the file */
ui->read_in_a_row = 1;
ui->bulk_read = 0;
}
page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
if (!page_cnt) {
/*
* This happens when there are multiple blocks per page and the
* blocks for the first page we are looking for, are not
* together. If all the pages were like this, bulk-read would
* reduce performance, so we turn it off for a while.
*/
goto out_bu_off;
}
if (bu->cnt) {
if (allocate) {
/*
* Allocate bulk-read buffer depending on how many data
* nodes we are going to read.
*/
bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
bu->zbranch[bu->cnt - 1].len -
bu->zbranch[0].offs;
ubifs_assert(bu->buf_len > 0);
ubifs_assert(bu->buf_len <= c->leb_size);
bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
if (!bu->buf)
goto out_bu_off;
}
err = ubifs_tnc_bulk_read(c, bu);
if (err)
goto out_warn;
}
err = populate_page(c, page1, bu, &n);
if (err)
goto out_warn;
unlock_page(page1);
ret = 1;
isize = i_size_read(inode);
if (isize == 0)
goto out_free;
end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
for (page_idx = 1; page_idx < page_cnt; page_idx++) {
pgoff_t page_offset = offset + page_idx;
struct page *page;
if (page_offset > end_index)
break;
page = find_or_create_page(mapping, page_offset,
GFP_NOFS | __GFP_COLD);
if (!page)
break;
if (!PageUptodate(page))
err = populate_page(c, page, bu, &n);
unlock_page(page);
page_cache_release(page);
if (err)
break;
}
ui->last_page_read = offset + page_idx - 1;
out_free:
if (allocate)
kfree(bu->buf);
return ret;
out_warn:
ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
goto out_free;
out_bu_off:
ui->read_in_a_row = ui->bulk_read = 0;
goto out_free;
}
/**
* ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
* @page: page from which to start bulk-read.
*
* Some flash media are capable of reading sequentially at faster rates. UBIFS
* bulk-read facility is designed to take advantage of that, by reading in one
* go consecutive data nodes that are also located consecutively in the same
* LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
*/
static int ubifs_bulk_read(struct page *page)
{
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_inode *ui = ubifs_inode(inode);
pgoff_t index = page->index, last_page_read = ui->last_page_read;
struct bu_info *bu;
int err = 0, allocated = 0;
ui->last_page_read = index;
if (!c->bulk_read)
return 0;
/*
* Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
* so don't bother if we cannot lock the mutex.
*/
if (!mutex_trylock(&ui->ui_mutex))
return 0;
if (index != last_page_read + 1) {
/* Turn off bulk-read if we stop reading sequentially */
ui->read_in_a_row = 1;
if (ui->bulk_read)
ui->bulk_read = 0;
goto out_unlock;
}
if (!ui->bulk_read) {
ui->read_in_a_row += 1;
if (ui->read_in_a_row < 3)
goto out_unlock;
/* Three reads in a row, so switch on bulk-read */
ui->bulk_read = 1;
}
/*
* If possible, try to use pre-allocated bulk-read information, which
* is protected by @c->bu_mutex.
*/
if (mutex_trylock(&c->bu_mutex))
bu = &c->bu;
else {
bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
if (!bu)
goto out_unlock;
bu->buf = NULL;
allocated = 1;
}
bu->buf_len = c->max_bu_buf_len;
data_key_init(c, &bu->key, inode->i_ino,
page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
err = ubifs_do_bulk_read(c, bu, page);
if (!allocated)
mutex_unlock(&c->bu_mutex);
else
kfree(bu);
out_unlock:
mutex_unlock(&ui->ui_mutex);
return err;
}
static int ubifs_readpage(struct file *file, struct page *page)
{
if (ubifs_bulk_read(page))
return 0;
do_readpage(page);
unlock_page(page);
return 0;
}
static int do_writepage(struct page *page, int len)
{
int err = 0, i, blen;
unsigned int block;
void *addr;
union ubifs_key key;
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
#ifdef UBIFS_DEBUG
struct ubifs_inode *ui = ubifs_inode(inode);
spin_lock(&ui->ui_lock);
ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT);
spin_unlock(&ui->ui_lock);
#endif
/* Update radix tree tags */
set_page_writeback(page);
addr = kmap(page);
block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
i = 0;
while (len) {
blen = min_t(int, len, UBIFS_BLOCK_SIZE);
data_key_init(c, &key, inode->i_ino, block);
err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
if (err)
break;
if (++i >= UBIFS_BLOCKS_PER_PAGE)
break;
block += 1;
addr += blen;
len -= blen;
}
if (err) {
SetPageError(page);
ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
page->index, inode->i_ino, err);
ubifs_ro_mode(c, err);
}
ubifs_assert(PagePrivate(page));
if (PageChecked(page))
release_new_page_budget(c);
else
release_existing_page_budget(c);
atomic_long_dec(&c->dirty_pg_cnt);
ClearPagePrivate(page);
ClearPageChecked(page);
kunmap(page);
unlock_page(page);
end_page_writeback(page);
return err;
}
/*
* When writing-back dirty inodes, VFS first writes-back pages belonging to the
* inode, then the inode itself. For UBIFS this may cause a problem. Consider a
* situation when a we have an inode with size 0, then a megabyte of data is
* appended to the inode, then write-back starts and flushes some amount of the
* dirty pages, the journal becomes full, commit happens and finishes, and then
* an unclean reboot happens. When the file system is mounted next time, the
* inode size would still be 0, but there would be many pages which are beyond
* the inode size, they would be indexed and consume flash space. Because the
* journal has been committed, the replay would not be able to detect this
* situation and correct the inode size. This means UBIFS would have to scan
* whole index and correct all inode sizes, which is long an unacceptable.
*
* To prevent situations like this, UBIFS writes pages back only if they are
* within the last synchronized inode size, i.e. the size which has been
* written to the flash media last time. Otherwise, UBIFS forces inode
* write-back, thus making sure the on-flash inode contains current inode size,
* and then keeps writing pages back.
*
* Some locking issues explanation. 'ubifs_writepage()' first is called with
* the page locked, and it locks @ui_mutex. However, write-back does take inode
* @i_mutex, which means other VFS operations may be run on this inode at the
* same time. And the problematic one is truncation to smaller size, from where
* we have to call 'truncate_setsize()', which first changes @inode->i_size,
* then drops the truncated pages. And while dropping the pages, it takes the
* page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
* with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
* This means that @inode->i_size is changed while @ui_mutex is unlocked.
*
* XXX(truncate): with the new truncate sequence this is not true anymore,
* and the calls to truncate_setsize can be move around freely. They should
* be moved to the very end of the truncate sequence.
*
* But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
* inode size. How do we do this if @inode->i_size may became smaller while we
* are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
* @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
* internally and updates it under @ui_mutex.
*
* Q: why we do not worry that if we race with truncation, we may end up with a
* situation when the inode is truncated while we are in the middle of
* 'do_writepage()', so we do write beyond inode size?
* A: If we are in the middle of 'do_writepage()', truncation would be locked
* on the page lock and it would not write the truncated inode node to the
* journal before we have finished.
*/
static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
{
struct inode *inode = page->mapping->host;
struct ubifs_inode *ui = ubifs_inode(inode);
loff_t i_size = i_size_read(inode), synced_i_size;
pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
int err, len = i_size & (PAGE_CACHE_SIZE - 1);
void *kaddr;
dbg_gen("ino %lu, pg %lu, pg flags %#lx",
inode->i_ino, page->index, page->flags);
ubifs_assert(PagePrivate(page));
/* Is the page fully outside @i_size? (truncate in progress) */
if (page->index > end_index || (page->index == end_index && !len)) {
err = 0;
goto out_unlock;
}
spin_lock(&ui->ui_lock);
synced_i_size = ui->synced_i_size;
spin_unlock(&ui->ui_lock);
/* Is the page fully inside @i_size? */
if (page->index < end_index) {
if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
err = inode->i_sb->s_op->write_inode(inode, NULL);
if (err)
goto out_unlock;
/*
* The inode has been written, but the write-buffer has
* not been synchronized, so in case of an unclean
* reboot we may end up with some pages beyond inode
* size, but they would be in the journal (because
* commit flushes write buffers) and recovery would deal
* with this.
*/
}
return do_writepage(page, PAGE_CACHE_SIZE);
}
/*
* The page straddles @i_size. It must be zeroed out on each and every
* writepage invocation because it may be mmapped. "A file is mapped
* in multiples of the page size. For a file that is not a multiple of
* the page size, the remaining memory is zeroed when mapped, and
* writes to that region are not written out to the file."
*/
kaddr = kmap_atomic(page);
memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
flush_dcache_page(page);
kunmap_atomic(kaddr);
if (i_size > synced_i_size) {
err = inode->i_sb->s_op->write_inode(inode, NULL);
if (err)
goto out_unlock;
}
return do_writepage(page, len);
out_unlock:
unlock_page(page);
return err;
}
/**
* do_attr_changes - change inode attributes.
* @inode: inode to change attributes for
* @attr: describes attributes to change
*/
static void do_attr_changes(struct inode *inode, const struct iattr *attr)
{
if (attr->ia_valid & ATTR_UID)
inode->i_uid = attr->ia_uid;
if (attr->ia_valid & ATTR_GID)
inode->i_gid = attr->ia_gid;
if (attr->ia_valid & ATTR_ATIME)
inode->i_atime = timespec_trunc(attr->ia_atime,
inode->i_sb->s_time_gran);
if (attr->ia_valid & ATTR_MTIME)
inode->i_mtime = timespec_trunc(attr->ia_mtime,
inode->i_sb->s_time_gran);
if (attr->ia_valid & ATTR_CTIME)
inode->i_ctime = timespec_trunc(attr->ia_ctime,
inode->i_sb->s_time_gran);
if (attr->ia_valid & ATTR_MODE) {
umode_t mode = attr->ia_mode;
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
mode &= ~S_ISGID;
inode->i_mode = mode;
}
}
/**
* do_truncation - truncate an inode.
* @c: UBIFS file-system description object
* @inode: inode to truncate
* @attr: inode attribute changes description
*
* This function implements VFS '->setattr()' call when the inode is truncated
* to a smaller size. Returns zero in case of success and a negative error code
* in case of failure.
*/
static int do_truncation(struct ubifs_info *c, struct inode *inode,
const struct iattr *attr)
{
int err;
struct ubifs_budget_req req;
loff_t old_size = inode->i_size, new_size = attr->ia_size;
int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
struct ubifs_inode *ui = ubifs_inode(inode);
dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
memset(&req, 0, sizeof(struct ubifs_budget_req));
/*
* If this is truncation to a smaller size, and we do not truncate on a
* block boundary, budget for changing one data block, because the last
* block will be re-written.
*/
if (new_size & (UBIFS_BLOCK_SIZE - 1))
req.dirtied_page = 1;
req.dirtied_ino = 1;
/* A funny way to budget for truncation node */
req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
err = ubifs_budget_space(c, &req);
if (err) {
/*
* Treat truncations to zero as deletion and always allow them,
* just like we do for '->unlink()'.
*/
if (new_size || err != -ENOSPC)
return err;
budgeted = 0;
}
truncate_setsize(inode, new_size);
if (offset) {
pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
struct page *page;
page = find_lock_page(inode->i_mapping, index);
if (page) {
if (PageDirty(page)) {
/*
* 'ubifs_jnl_truncate()' will try to truncate
* the last data node, but it contains
* out-of-date data because the page is dirty.
* Write the page now, so that
* 'ubifs_jnl_truncate()' will see an already
* truncated (and up to date) data node.
*/
ubifs_assert(PagePrivate(page));
clear_page_dirty_for_io(page);
if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
offset = new_size &
(PAGE_CACHE_SIZE - 1);
err = do_writepage(page, offset);
page_cache_release(page);
if (err)
goto out_budg;
/*
* We could now tell 'ubifs_jnl_truncate()' not
* to read the last block.
*/
} else {
/*
* We could 'kmap()' the page and pass the data
* to 'ubifs_jnl_truncate()' to save it from
* having to read it.
*/
unlock_page(page);
page_cache_release(page);
}
}
}
mutex_lock(&ui->ui_mutex);
ui->ui_size = inode->i_size;
/* Truncation changes inode [mc]time */
inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
/* Other attributes may be changed at the same time as well */
do_attr_changes(inode, attr);
err = ubifs_jnl_truncate(c, inode, old_size, new_size);
mutex_unlock(&ui->ui_mutex);
out_budg:
if (budgeted)
ubifs_release_budget(c, &req);
else {
c->bi.nospace = c->bi.nospace_rp = 0;
smp_wmb();
}
return err;
}
/**
* do_setattr - change inode attributes.
* @c: UBIFS file-system description object
* @inode: inode to change attributes for
* @attr: inode attribute changes description
*
* This function implements VFS '->setattr()' call for all cases except
* truncations to smaller size. Returns zero in case of success and a negative
* error code in case of failure.
*/
static int do_setattr(struct ubifs_info *c, struct inode *inode,
const struct iattr *attr)
{
int err, release;
loff_t new_size = attr->ia_size;
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_budget_req req = { .dirtied_ino = 1,
.dirtied_ino_d = ALIGN(ui->data_len, 8) };
err = ubifs_budget_space(c, &req);
if (err)
return err;
if (attr->ia_valid & ATTR_SIZE) {
dbg_gen("size %lld -> %lld", inode->i_size, new_size);
truncate_setsize(inode, new_size);
}
mutex_lock(&ui->ui_mutex);
if (attr->ia_valid & ATTR_SIZE) {
/* Truncation changes inode [mc]time */
inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
/* 'truncate_setsize()' changed @i_size, update @ui_size */
ui->ui_size = inode->i_size;
}
do_attr_changes(inode, attr);
release = ui->dirty;
if (attr->ia_valid & ATTR_SIZE)
/*
* Inode length changed, so we have to make sure
* @I_DIRTY_DATASYNC is set.
*/
__mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
else
mark_inode_dirty_sync(inode);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_budget(c, &req);
if (IS_SYNC(inode))
err = inode->i_sb->s_op->write_inode(inode, NULL);
return err;
}
int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
{
int err;
struct inode *inode = d_inode(dentry);
struct ubifs_info *c = inode->i_sb->s_fs_info;
dbg_gen("ino %lu, mode %#x, ia_valid %#x",
inode->i_ino, inode->i_mode, attr->ia_valid);
err = inode_change_ok(inode, attr);
if (err)
return err;
err = dbg_check_synced_i_size(c, inode);
if (err)
return err;
if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
/* Truncation to a smaller size */
err = do_truncation(c, inode, attr);
else
err = do_setattr(c, inode, attr);
return err;
}
static void ubifs_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
struct inode *inode = page->mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
ubifs_assert(PagePrivate(page));
if (offset || length < PAGE_CACHE_SIZE)
/* Partial page remains dirty */
return;
if (PageChecked(page))
release_new_page_budget(c);
else
release_existing_page_budget(c);
atomic_long_dec(&c->dirty_pg_cnt);
ClearPagePrivate(page);
ClearPageChecked(page);
}
int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct ubifs_info *c = inode->i_sb->s_fs_info;
int err;
dbg_gen("syncing inode %lu", inode->i_ino);
if (c->ro_mount)
/*
* For some really strange reasons VFS does not filter out
* 'fsync()' for R/O mounted file-systems as per 2.6.39.
*/
return 0;
err = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (err)
return err;
mutex_lock(&inode->i_mutex);
/* Synchronize the inode unless this is a 'datasync()' call. */
if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
err = inode->i_sb->s_op->write_inode(inode, NULL);
if (err)
goto out;
}
/*
* Nodes related to this inode may still sit in a write-buffer. Flush
* them.
*/
err = ubifs_sync_wbufs_by_inode(c, inode);
out:
mutex_unlock(&inode->i_mutex);
return err;
}
/**
* mctime_update_needed - check if mtime or ctime update is needed.
* @inode: the inode to do the check for
* @now: current time
*
* This helper function checks if the inode mtime/ctime should be updated or
* not. If current values of the time-stamps are within the UBIFS inode time
* granularity, they are not updated. This is an optimization.
*/
static inline int mctime_update_needed(const struct inode *inode,
const struct timespec *now)
{
if (!timespec_equal(&inode->i_mtime, now) ||
!timespec_equal(&inode->i_ctime, now))
return 1;
return 0;
}
#ifdef CONFIG_UBIFS_ATIME_SUPPORT
/**
* ubifs_update_time - update time of inode.
* @inode: inode to update
*
* This function updates time of the inode.
*/
int ubifs_update_time(struct inode *inode, struct timespec *time,
int flags)
{
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct ubifs_budget_req req = { .dirtied_ino = 1,
.dirtied_ino_d = ALIGN(ui->data_len, 8) };
int iflags = I_DIRTY_TIME;
int err, release;
err = ubifs_budget_space(c, &req);
if (err)
return err;
mutex_lock(&ui->ui_mutex);
if (flags & S_ATIME)
inode->i_atime = *time;
if (flags & S_CTIME)
inode->i_ctime = *time;
if (flags & S_MTIME)
inode->i_mtime = *time;
if (!(inode->i_sb->s_flags & MS_LAZYTIME))
iflags |= I_DIRTY_SYNC;
release = ui->dirty;
__mark_inode_dirty(inode, iflags);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_budget(c, &req);
return 0;
}
#endif
/**
* update_ctime - update mtime and ctime of an inode.
* @inode: inode to update
*
* This function updates mtime and ctime of the inode if it is not equivalent to
* current time. Returns zero in case of success and a negative error code in
* case of failure.
*/
static int update_mctime(struct inode *inode)
{
struct timespec now = ubifs_current_time(inode);
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_info *c = inode->i_sb->s_fs_info;
if (mctime_update_needed(inode, &now)) {
int err, release;
struct ubifs_budget_req req = { .dirtied_ino = 1,
.dirtied_ino_d = ALIGN(ui->data_len, 8) };
err = ubifs_budget_space(c, &req);
if (err)
return err;
mutex_lock(&ui->ui_mutex);
inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
release = ui->dirty;
mark_inode_dirty_sync(inode);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_budget(c, &req);
}
return 0;
}
static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
{
int err = update_mctime(file_inode(iocb->ki_filp));
if (err)
return err;
return generic_file_write_iter(iocb, from);
}
static int ubifs_set_page_dirty(struct page *page)
{
int ret;
ret = __set_page_dirty_nobuffers(page);
/*
* An attempt to dirty a page without budgeting for it - should not
* happen.
*/
ubifs_assert(ret == 0);
return ret;
}
static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
{
/*
* An attempt to release a dirty page without budgeting for it - should
* not happen.
*/
if (PageWriteback(page))
return 0;
ubifs_assert(PagePrivate(page));
ubifs_assert(0);
ClearPagePrivate(page);
ClearPageChecked(page);
return 1;
}
/*
* mmap()d file has taken write protection fault and is being made writable.
* UBIFS must ensure page is budgeted for.
*/
static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
struct vm_fault *vmf)
{
struct page *page = vmf->page;
struct inode *inode = file_inode(vma->vm_file);
struct ubifs_info *c = inode->i_sb->s_fs_info;
struct timespec now = ubifs_current_time(inode);
struct ubifs_budget_req req = { .new_page = 1 };
int err, update_time;
dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
i_size_read(inode));
ubifs_assert(!c->ro_media && !c->ro_mount);
if (unlikely(c->ro_error))
return VM_FAULT_SIGBUS; /* -EROFS */
/*
* We have not locked @page so far so we may budget for changing the
* page. Note, we cannot do this after we locked the page, because
* budgeting may cause write-back which would cause deadlock.
*
* At the moment we do not know whether the page is dirty or not, so we
* assume that it is not and budget for a new page. We could look at
* the @PG_private flag and figure this out, but we may race with write
* back and the page state may change by the time we lock it, so this
* would need additional care. We do not bother with this at the
* moment, although it might be good idea to do. Instead, we allocate
* budget for a new page and amend it later on if the page was in fact
* dirty.
*
* The budgeting-related logic of this function is similar to what we
* do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
* for more comments.
*/
update_time = mctime_update_needed(inode, &now);
if (update_time)
/*
* We have to change inode time stamp which requires extra
* budgeting.
*/
req.dirtied_ino = 1;
err = ubifs_budget_space(c, &req);
if (unlikely(err)) {
if (err == -ENOSPC)
ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
inode->i_ino);
return VM_FAULT_SIGBUS;
}
lock_page(page);
if (unlikely(page->mapping != inode->i_mapping ||
page_offset(page) > i_size_read(inode))) {
/* Page got truncated out from underneath us */
err = -EINVAL;
goto out_unlock;
}
if (PagePrivate(page))
release_new_page_budget(c);
else {
if (!PageChecked(page))
ubifs_convert_page_budget(c);
SetPagePrivate(page);
atomic_long_inc(&c->dirty_pg_cnt);
__set_page_dirty_nobuffers(page);
}
if (update_time) {
int release;
struct ubifs_inode *ui = ubifs_inode(inode);
mutex_lock(&ui->ui_mutex);
inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
release = ui->dirty;
mark_inode_dirty_sync(inode);
mutex_unlock(&ui->ui_mutex);
if (release)
ubifs_release_dirty_inode_budget(c, ui);
}
wait_for_stable_page(page);
return VM_FAULT_LOCKED;
out_unlock:
unlock_page(page);
ubifs_release_budget(c, &req);
if (err)
err = VM_FAULT_SIGBUS;
return err;
}
static const struct vm_operations_struct ubifs_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = ubifs_vm_page_mkwrite,
};
static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
int err;
err = generic_file_mmap(file, vma);
if (err)
return err;
vma->vm_ops = &ubifs_file_vm_ops;
#ifdef CONFIG_UBIFS_ATIME_SUPPORT
file_accessed(file);
#endif
return 0;
}
const struct address_space_operations ubifs_file_address_operations = {
.readpage = ubifs_readpage,
.writepage = ubifs_writepage,
.write_begin = ubifs_write_begin,
.write_end = ubifs_write_end,
.invalidatepage = ubifs_invalidatepage,
.set_page_dirty = ubifs_set_page_dirty,
.releasepage = ubifs_releasepage,
};
const struct inode_operations ubifs_file_inode_operations = {
.setattr = ubifs_setattr,
.getattr = ubifs_getattr,
.setxattr = ubifs_setxattr,
.getxattr = ubifs_getxattr,
.listxattr = ubifs_listxattr,
.removexattr = ubifs_removexattr,
#ifdef CONFIG_UBIFS_ATIME_SUPPORT
.update_time = ubifs_update_time,
#endif
};
const struct inode_operations ubifs_symlink_inode_operations = {
.readlink = generic_readlink,
.follow_link = simple_follow_link,
.setattr = ubifs_setattr,
.getattr = ubifs_getattr,
.setxattr = ubifs_setxattr,
.getxattr = ubifs_getxattr,
.listxattr = ubifs_listxattr,
.removexattr = ubifs_removexattr,
#ifdef CONFIG_UBIFS_ATIME_SUPPORT
.update_time = ubifs_update_time,
#endif
};
const struct file_operations ubifs_file_operations = {
.llseek = generic_file_llseek,
.read_iter = generic_file_read_iter,
.write_iter = ubifs_write_iter,
.mmap = ubifs_file_mmap,
.fsync = ubifs_fsync,
.unlocked_ioctl = ubifs_ioctl,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
#ifdef CONFIG_COMPAT
.compat_ioctl = ubifs_compat_ioctl,
#endif
};