linux-sg2042/drivers/net/irda/vlsi_ir.h

759 lines
26 KiB
C

/*********************************************************************
*
* vlsi_ir.h: VLSI82C147 PCI IrDA controller driver for Linux
*
* Version: 0.5
*
* Copyright (c) 2001-2003 Martin Diehl
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
********************************************************************/
#ifndef IRDA_VLSI_FIR_H
#define IRDA_VLSI_FIR_H
/* ================================================================
* compatibility stuff
*/
/* definitions not present in pci_ids.h */
#ifndef PCI_CLASS_WIRELESS_IRDA
#define PCI_CLASS_WIRELESS_IRDA 0x0d00
#endif
#ifndef PCI_CLASS_SUBCLASS_MASK
#define PCI_CLASS_SUBCLASS_MASK 0xffff
#endif
/* ================================================================ */
/* non-standard PCI registers */
enum vlsi_pci_regs {
VLSI_PCI_CLKCTL = 0x40, /* chip clock input control */
VLSI_PCI_MSTRPAGE = 0x41, /* addr [31:24] for all busmaster cycles */
VLSI_PCI_IRMISC = 0x42 /* mainly legacy UART related */
};
/* ------------------------------------------ */
/* VLSI_PCI_CLKCTL: Clock Control Register (u8, rw) */
/* Three possible clock sources: either on-chip 48MHz PLL or
* external clock applied to EXTCLK pin. External clock may
* be either 48MHz or 40MHz, which is indicated by XCKSEL.
* CLKSTP controls whether the selected clock source gets
* connected to the IrDA block.
*
* On my HP OB-800 the BIOS sets external 40MHz clock as source
* when IrDA enabled and I've never detected any PLL lock success.
* Apparently the 14.3...MHz OSC input required for the PLL to work
* is not connected and the 40MHz EXTCLK is provided externally.
* At least this is what makes the driver working for me.
*/
enum vlsi_pci_clkctl {
/* PLL control */
CLKCTL_PD_INV = 0x04, /* PD#: inverted power down signal,
* i.e. PLL is powered, if PD_INV set */
CLKCTL_LOCK = 0x40, /* (ro) set, if PLL is locked */
/* clock source selection */
CLKCTL_EXTCLK = 0x20, /* set to select external clock input, not PLL */
CLKCTL_XCKSEL = 0x10, /* set to indicate EXTCLK is 40MHz, not 48MHz */
/* IrDA block control */
CLKCTL_CLKSTP = 0x80, /* set to disconnect from selected clock source */
CLKCTL_WAKE = 0x08 /* set to enable wakeup feature: whenever IR activity
* is detected, PD_INV gets set(?) and CLKSTP cleared */
};
/* ------------------------------------------ */
/* VLSI_PCI_MSTRPAGE: Master Page Register (u8, rw) and busmastering stuff */
#define DMA_MASK_USED_BY_HW 0xffffffff
#define DMA_MASK_MSTRPAGE 0x00ffffff
#define MSTRPAGE_VALUE (DMA_MASK_MSTRPAGE >> 24)
/* PCI busmastering is somewhat special for this guy - in short:
*
* We select to operate using fixed MSTRPAGE=0, use ISA DMA
* address restrictions to make the PCI BM api aware of this,
* but ensure the hardware is dealing with real 32bit access.
*
* In detail:
* The chip executes normal 32bit busmaster cycles, i.e.
* drives all 32 address lines. These addresses however are
* composed of [0:23] taken from various busaddr-pointers
* and [24:31] taken from the MSTRPAGE register in the VLSI82C147
* config space. Therefore _all_ busmastering must be
* targeted to/from one single 16MB (busaddr-) superpage!
* The point is to make sure all the allocations for memory
* locations with busmaster access (ring descriptors, buffers)
* are indeed bus-mappable to the same 16MB range (for x86 this
* means they must reside in the same 16MB physical memory address
* range). The only constraint we have which supports "several objects
* mappable to common 16MB range" paradigma, is the old ISA DMA
* restriction to the first 16MB of physical address range.
* Hence the approach here is to enable PCI busmaster support using
* the correct 32bit dma-mask used by the chip. Afterwards the device's
* dma-mask gets restricted to 24bit, which must be honoured somehow by
* all allocations for memory areas to be exposed to the chip ...
*
* Note:
* Don't be surprised to get "Setting latency timer..." messages every
* time when PCI busmastering is enabled for the chip.
* The chip has its PCI latency timer RO fixed at 0 - which is not a
* problem here, because it is never requesting _burst_ transactions.
*/
/* ------------------------------------------ */
/* VLSI_PCIIRMISC: IR Miscellaneous Register (u8, rw) */
/* legacy UART emulation - not used by this driver - would require:
* (see below for some register-value definitions)
*
* - IRMISC_UARTEN must be set to enable UART address decoding
* - IRMISC_UARTSEL configured
* - IRCFG_MASTER must be cleared
* - IRCFG_SIR must be set
* - IRENABLE_PHYANDCLOCK must be asserted 0->1 (and hence IRENABLE_SIR_ON)
*/
enum vlsi_pci_irmisc {
/* IR transceiver control */
IRMISC_IRRAIL = 0x40, /* (ro?) IR rail power indication (and control?)
* 0=3.3V / 1=5V. Probably set during power-on?
* unclear - not touched by driver */
IRMISC_IRPD = 0x08, /* transceiver power down, if set */
/* legacy UART control */
IRMISC_UARTTST = 0x80, /* UART test mode - "always write 0" */
IRMISC_UARTEN = 0x04, /* enable UART address decoding */
/* bits [1:0] IRMISC_UARTSEL to select legacy UART address */
IRMISC_UARTSEL_3f8 = 0x00,
IRMISC_UARTSEL_2f8 = 0x01,
IRMISC_UARTSEL_3e8 = 0x02,
IRMISC_UARTSEL_2e8 = 0x03
};
/* ================================================================ */
/* registers mapped to 32 byte PCI IO space */
/* note: better access all registers at the indicated u8/u16 size
* although some of them contain only 1 byte of information.
* some of them (particaluarly PROMPT and IRCFG) ignore
* access when using the wrong addressing mode!
*/
enum vlsi_pio_regs {
VLSI_PIO_IRINTR = 0x00, /* interrupt enable/request (u8, rw) */
VLSI_PIO_RINGPTR = 0x02, /* rx/tx ring pointer (u16, ro) */
VLSI_PIO_RINGBASE = 0x04, /* [23:10] of ring address (u16, rw) */
VLSI_PIO_RINGSIZE = 0x06, /* rx/tx ring size (u16, rw) */
VLSI_PIO_PROMPT = 0x08, /* triggers ring processing (u16, wo) */
/* 0x0a-0x0f: reserved / duplicated UART regs */
VLSI_PIO_IRCFG = 0x10, /* configuration select (u16, rw) */
VLSI_PIO_SIRFLAG = 0x12, /* BOF/EOF for filtered SIR (u16, ro) */
VLSI_PIO_IRENABLE = 0x14, /* enable and status register (u16, rw/ro) */
VLSI_PIO_PHYCTL = 0x16, /* physical layer current status (u16, ro) */
VLSI_PIO_NPHYCTL = 0x18, /* next physical layer select (u16, rw) */
VLSI_PIO_MAXPKT = 0x1a, /* [11:0] max len for packet receive (u16, rw) */
VLSI_PIO_RCVBCNT = 0x1c /* current receive-FIFO byte count (u16, ro) */
/* 0x1e-0x1f: reserved / duplicated UART regs */
};
/* ------------------------------------------ */
/* VLSI_PIO_IRINTR: Interrupt Register (u8, rw) */
/* enable-bits:
* 1 = enable / 0 = disable
* interrupt condition bits:
* set according to corresponding interrupt source
* (regardless of the state of the enable bits)
* enable bit status indicates whether interrupt gets raised
* write-to-clear
* note: RPKTINT and TPKTINT behave different in legacy UART mode (which we don't use :-)
*/
enum vlsi_pio_irintr {
IRINTR_ACTEN = 0x80, /* activity interrupt enable */
IRINTR_ACTIVITY = 0x40, /* activity monitor (traffic detected) */
IRINTR_RPKTEN = 0x20, /* receive packet interrupt enable*/
IRINTR_RPKTINT = 0x10, /* rx-packet transferred from fifo to memory finished */
IRINTR_TPKTEN = 0x08, /* transmit packet interrupt enable */
IRINTR_TPKTINT = 0x04, /* last bit of tx-packet+crc shifted to ir-pulser */
IRINTR_OE_EN = 0x02, /* UART rx fifo overrun error interrupt enable */
IRINTR_OE_INT = 0x01 /* UART rx fifo overrun error (read LSR to clear) */
};
/* we use this mask to check whether the (shared PCI) interrupt is ours */
#define IRINTR_INT_MASK (IRINTR_ACTIVITY|IRINTR_RPKTINT|IRINTR_TPKTINT)
/* ------------------------------------------ */
/* VLSI_PIO_RINGPTR: Ring Pointer Read-Back Register (u16, ro) */
/* _both_ ring pointers are indices relative to the _entire_ rx,tx-ring!
* i.e. the referenced descriptor is located
* at RINGBASE + PTR * sizeof(descr) for rx and tx
* therefore, the tx-pointer has offset MAX_RING_DESCR
*/
#define MAX_RING_DESCR 64 /* tx, rx rings may contain up to 64 descr each */
#define RINGPTR_RX_MASK (MAX_RING_DESCR-1)
#define RINGPTR_TX_MASK ((MAX_RING_DESCR-1)<<8)
#define RINGPTR_GET_RX(p) ((p)&RINGPTR_RX_MASK)
#define RINGPTR_GET_TX(p) (((p)&RINGPTR_TX_MASK)>>8)
/* ------------------------------------------ */
/* VLSI_PIO_RINGBASE: Ring Pointer Base Address Register (u16, ro) */
/* Contains [23:10] part of the ring base (bus-) address
* which must be 1k-alinged. [31:24] is taken from
* VLSI_PCI_MSTRPAGE above.
* The controller initiates non-burst PCI BM cycles to
* fetch and update the descriptors in the ring.
* Once fetched, the descriptor remains cached onchip
* until it gets closed and updated due to the ring
* processing state machine.
* The entire ring area is split in rx and tx areas with each
* area consisting of 64 descriptors of 8 bytes each.
* The rx(tx) ring is located at ringbase+0 (ringbase+64*8).
*/
#define BUS_TO_RINGBASE(p) (((p)>>10)&0x3fff)
/* ------------------------------------------ */
/* VLSI_PIO_RINGSIZE: Ring Size Register (u16, rw) */
/* bit mask to indicate the ring size to be used for rx and tx.
* possible values encoded bits
* 4 0000
* 8 0001
* 16 0011
* 32 0111
* 64 1111
* located at [15:12] for tx and [11:8] for rx ([7:0] unused)
*
* note: probably a good idea to have IRCFG_MSTR cleared when writing
* this so the state machines are stopped and the RINGPTR is reset!
*/
#define SIZE_TO_BITS(num) ((((num)-1)>>2)&0x0f)
#define TX_RX_TO_RINGSIZE(tx,rx) ((SIZE_TO_BITS(tx)<<12)|(SIZE_TO_BITS(rx)<<8))
#define RINGSIZE_TO_RXSIZE(rs) ((((rs)&0x0f00)>>6)+4)
#define RINGSIZE_TO_TXSIZE(rs) ((((rs)&0xf000)>>10)+4)
/* ------------------------------------------ */
/* VLSI_PIO_PROMPT: Ring Prompting Register (u16, write-to-start) */
/* writing any value kicks the ring processing state machines
* for both tx, rx rings as follows:
* - active rings (currently owning an active descriptor)
* ignore the prompt and continue
* - idle rings fetch the next descr from the ring and start
* their processing
*/
/* ------------------------------------------ */
/* VLSI_PIO_IRCFG: IR Config Register (u16, rw) */
/* notes:
* - not more than one SIR/MIR/FIR bit must be set at any time
* - SIR, MIR, FIR and CRC16 select the configuration which will
* be applied on next 0->1 transition of IRENABLE_PHYANDCLOCK (see below).
* - besides allowing the PCI interface to execute busmaster cycles
* and therefore the ring SM to operate, the MSTR bit has side-effects:
* when MSTR is cleared, the RINGPTR's get reset and the legacy UART mode
* (in contrast to busmaster access mode) gets enabled.
* - clearing ENRX or setting ENTX while data is received may stall the
* receive fifo until ENRX reenabled _and_ another packet arrives
* - SIRFILT means the chip performs the required unwrapping of hardware
* headers (XBOF's, BOF/EOF) and un-escaping in the _receive_ direction.
* Only the resulting IrLAP payload is copied to the receive buffers -
* but with the 16bit FCS still encluded. Question remains, whether it
* was already checked or we should do it before passing the packet to IrLAP?
*/
enum vlsi_pio_ircfg {
IRCFG_LOOP = 0x4000, /* enable loopback test mode */
IRCFG_ENTX = 0x1000, /* transmit enable */
IRCFG_ENRX = 0x0800, /* receive enable */
IRCFG_MSTR = 0x0400, /* master enable */
IRCFG_RXANY = 0x0200, /* receive any packet */
IRCFG_CRC16 = 0x0080, /* 16bit (not 32bit) CRC select for MIR/FIR */
IRCFG_FIR = 0x0040, /* FIR 4PPM encoding mode enable */
IRCFG_MIR = 0x0020, /* MIR HDLC encoding mode enable */
IRCFG_SIR = 0x0010, /* SIR encoding mode enable */
IRCFG_SIRFILT = 0x0008, /* enable SIR decode filter (receiver unwrapping) */
IRCFG_SIRTEST = 0x0004, /* allow SIR decode filter when not in SIR mode */
IRCFG_TXPOL = 0x0002, /* invert tx polarity when set */
IRCFG_RXPOL = 0x0001 /* invert rx polarity when set */
};
/* ------------------------------------------ */
/* VLSI_PIO_SIRFLAG: SIR Flag Register (u16, ro) */
/* register contains hardcoded BOF=0xc0 at [7:0] and EOF=0xc1 at [15:8]
* which is used for unwrapping received frames in SIR decode-filter mode
*/
/* ------------------------------------------ */
/* VLSI_PIO_IRENABLE: IR Enable Register (u16, rw/ro) */
/* notes:
* - IREN acts as gate for latching the configured IR mode information
* from IRCFG and IRPHYCTL when IREN=reset and applying them when
* IREN gets set afterwards.
* - ENTXST reflects IRCFG_ENTX
* - ENRXST = IRCFG_ENRX && (!IRCFG_ENTX || IRCFG_LOOP)
*/
enum vlsi_pio_irenable {
IRENABLE_PHYANDCLOCK = 0x8000, /* enable IR phy and gate the mode config (rw) */
IRENABLE_CFGER = 0x4000, /* mode configuration error (ro) */
IRENABLE_FIR_ON = 0x2000, /* FIR on status (ro) */
IRENABLE_MIR_ON = 0x1000, /* MIR on status (ro) */
IRENABLE_SIR_ON = 0x0800, /* SIR on status (ro) */
IRENABLE_ENTXST = 0x0400, /* transmit enable status (ro) */
IRENABLE_ENRXST = 0x0200, /* Receive enable status (ro) */
IRENABLE_CRC16_ON = 0x0100 /* 16bit (not 32bit) CRC enabled status (ro) */
};
#define IRENABLE_MASK 0xff00 /* Read mask */
/* ------------------------------------------ */
/* VLSI_PIO_PHYCTL: IR Physical Layer Current Control Register (u16, ro) */
/* read-back of the currently applied physical layer status.
* applied from VLSI_PIO_NPHYCTL at rising edge of IRENABLE_PHYANDCLOCK
* contents identical to VLSI_PIO_NPHYCTL (see below)
*/
/* ------------------------------------------ */
/* VLSI_PIO_NPHYCTL: IR Physical Layer Next Control Register (u16, rw) */
/* latched during IRENABLE_PHYANDCLOCK=0 and applied at 0-1 transition
*
* consists of BAUD[15:10], PLSWID[9:5] and PREAMB[4:0] bits defined as follows:
*
* SIR-mode: BAUD = (115.2kHz / baudrate) - 1
* PLSWID = (pulsetime * freq / (BAUD+1)) - 1
* where pulsetime is the requested IrPHY pulse width
* and freq is 8(16)MHz for 40(48)MHz primary input clock
* PREAMB: don't care for SIR
*
* The nominal SIR pulse width is 3/16 bit time so we have PLSWID=12
* fixed for all SIR speeds at 40MHz input clock (PLSWID=24 at 48MHz).
* IrPHY also allows shorter pulses down to the nominal pulse duration
* at 115.2kbaud (minus some tolerance) which is 1.41 usec.
* Using the expression PLSWID = 12/(BAUD+1)-1 (multiplied by two for 48MHz)
* we get the minimum acceptable PLSWID values according to the VLSI
* specification, which provides 1.5 usec pulse width for all speeds (except
* for 2.4kbaud getting 6usec). This is fine with IrPHY v1.3 specs and
* reduces the transceiver power which drains the battery. At 9.6kbaud for
* example this amounts to more than 90% battery power saving!
*
* MIR-mode: BAUD = 0
* PLSWID = 9(10) for 40(48) MHz input clock
* to get nominal MIR pulse width
* PREAMB = 1
*
* FIR-mode: BAUD = 0
* PLSWID: don't care
* PREAMB = 15
*/
#define PHYCTL_BAUD_SHIFT 10
#define PHYCTL_BAUD_MASK 0xfc00
#define PHYCTL_PLSWID_SHIFT 5
#define PHYCTL_PLSWID_MASK 0x03e0
#define PHYCTL_PREAMB_SHIFT 0
#define PHYCTL_PREAMB_MASK 0x001f
#define PHYCTL_TO_BAUD(bwp) (((bwp)&PHYCTL_BAUD_MASK)>>PHYCTL_BAUD_SHIFT)
#define PHYCTL_TO_PLSWID(bwp) (((bwp)&PHYCTL_PLSWID_MASK)>>PHYCTL_PLSWID_SHIFT)
#define PHYCTL_TO_PREAMB(bwp) (((bwp)&PHYCTL_PREAMB_MASK)>>PHYCTL_PREAMB_SHIFT)
#define BWP_TO_PHYCTL(b,w,p) ((((b)<<PHYCTL_BAUD_SHIFT)&PHYCTL_BAUD_MASK) \
| (((w)<<PHYCTL_PLSWID_SHIFT)&PHYCTL_PLSWID_MASK) \
| (((p)<<PHYCTL_PREAMB_SHIFT)&PHYCTL_PREAMB_MASK))
#define BAUD_BITS(br) ((115200/(br))-1)
static inline unsigned
calc_width_bits(unsigned baudrate, unsigned widthselect, unsigned clockselect)
{
unsigned tmp;
if (widthselect) /* nominal 3/16 puls width */
return (clockselect) ? 12 : 24;
tmp = ((clockselect) ? 12 : 24) / (BAUD_BITS(baudrate)+1);
/* intermediate result of integer division needed here */
return (tmp>0) ? (tmp-1) : 0;
}
#define PHYCTL_SIR(br,ws,cs) BWP_TO_PHYCTL(BAUD_BITS(br),calc_width_bits((br),(ws),(cs)),0)
#define PHYCTL_MIR(cs) BWP_TO_PHYCTL(0,((cs)?9:10),1)
#define PHYCTL_FIR BWP_TO_PHYCTL(0,0,15)
/* quite ugly, I know. But implementing these calculations here avoids
* having magic numbers in the code and allows some playing with pulsewidths
* without risk to violate the standards.
* FWIW, here is the table for reference:
*
* baudrate BAUD min-PLSWID nom-PLSWID PREAMB
* 2400 47 0(0) 12(24) 0
* 9600 11 0(0) 12(24) 0
* 19200 5 1(2) 12(24) 0
* 38400 2 3(6) 12(24) 0
* 57600 1 5(10) 12(24) 0
* 115200 0 11(22) 12(24) 0
* MIR 0 - 9(10) 1
* FIR 0 - 0 15
*
* note: x(y) means x-value for 40MHz / y-value for 48MHz primary input clock
*/
/* ------------------------------------------ */
/* VLSI_PIO_MAXPKT: Maximum Packet Length register (u16, rw) */
/* maximum acceptable length for received packets */
/* hw imposed limitation - register uses only [11:0] */
#define MAX_PACKET_LENGTH 0x0fff
/* IrLAP I-field (apparently not defined elsewhere) */
#define IRDA_MTU 2048
/* complete packet consists of A(1)+C(1)+I(<=IRDA_MTU) */
#define IRLAP_SKB_ALLOCSIZE (1+1+IRDA_MTU)
/* the buffers we use to exchange frames with the hardware need to be
* larger than IRLAP_SKB_ALLOCSIZE because we may have up to 4 bytes FCS
* appended and, in SIR mode, a lot of frame wrapping bytes. The worst
* case appears to be a SIR packet with I-size==IRDA_MTU and all bytes
* requiring to be escaped to provide transparency. Furthermore, the peer
* might ask for quite a number of additional XBOFs:
* up to 115+48 XBOFS 163
* regular BOF 1
* A-field 1
* C-field 1
* I-field, IRDA_MTU, all escaped 4096
* FCS (16 bit at SIR, escaped) 4
* EOF 1
* AFAICS nothing in IrLAP guarantees A/C field not to need escaping
* (f.e. 0xc0/0xc1 - i.e. BOF/EOF - are legal values there) so in the
* worst case we have 4269 bytes total frame size.
* However, the VLSI uses 12 bits only for all buffer length values,
* which limits the maximum useable buffer size <= 4095.
* Note this is not a limitation in the receive case because we use
* the SIR filtering mode where the hw unwraps the frame and only the
* bare packet+fcs is stored into the buffer - in contrast to the SIR
* tx case where we have to pass frame-wrapped packets to the hw.
* If this would ever become an issue in real life, the only workaround
* I see would be using the legacy UART emulation in SIR mode.
*/
#define XFER_BUF_SIZE MAX_PACKET_LENGTH
/* ------------------------------------------ */
/* VLSI_PIO_RCVBCNT: Receive Byte Count Register (u16, ro) */
/* receive packet counter gets incremented on every non-filtered
* byte which was put in the receive fifo and reset for each
* new packet. Used to decide whether we are just in the middle
* of receiving
*/
/* better apply the [11:0] mask when reading, as some docs say the
* reserved [15:12] would return 1 when reading - which is wrong AFAICS
*/
#define RCVBCNT_MASK 0x0fff
/******************************************************************/
/* descriptors for rx/tx ring
*
* accessed by hardware - don't change!
*
* the descriptor is owned by hardware, when the ACTIVE status bit
* is set and nothing (besides reading status to test the bit)
* shall be done. The bit gets cleared by hw, when the descriptor
* gets closed. Premature reaping of descriptors owned be the chip
* can be achieved by disabling IRCFG_MSTR
*
* Attention: Writing addr overwrites status!
*
* ### FIXME: depends on endianess (but there ain't no non-i586 ob800 ;-)
*/
struct ring_descr_hw {
volatile __le16 rd_count; /* tx/rx count [11:0] */
__le16 reserved;
union {
__le32 addr; /* [23:0] of the buffer's busaddress */
struct {
u8 addr_res[3];
volatile u8 status; /* descriptor status */
} __packed rd_s;
} __packed rd_u;
} __packed;
#define rd_addr rd_u.addr
#define rd_status rd_u.rd_s.status
/* ring descriptor status bits */
#define RD_ACTIVE 0x80 /* descriptor owned by hw (both TX,RX) */
/* TX ring descriptor status */
#define RD_TX_DISCRC 0x40 /* do not send CRC (for SIR) */
#define RD_TX_BADCRC 0x20 /* force a bad CRC */
#define RD_TX_PULSE 0x10 /* send indication pulse after this frame (MIR/FIR) */
#define RD_TX_FRCEUND 0x08 /* force underrun */
#define RD_TX_CLRENTX 0x04 /* clear ENTX after this frame */
#define RD_TX_UNDRN 0x01 /* TX fifo underrun (probably PCI problem) */
/* RX ring descriptor status */
#define RD_RX_PHYERR 0x40 /* physical encoding error */
#define RD_RX_CRCERR 0x20 /* CRC error (MIR/FIR) */
#define RD_RX_LENGTH 0x10 /* frame exceeds buffer length */
#define RD_RX_OVER 0x08 /* RX fifo overrun (probably PCI problem) */
#define RD_RX_SIRBAD 0x04 /* EOF missing: BOF follows BOF (SIR, filtered) */
#define RD_RX_ERROR 0x7c /* any error in received frame */
/* the memory required to hold the 2 descriptor rings */
#define HW_RING_AREA_SIZE (2 * MAX_RING_DESCR * sizeof(struct ring_descr_hw))
/******************************************************************/
/* sw-ring descriptors consists of a bus-mapped transfer buffer with
* associated skb and a pointer to the hw entry descriptor
*/
struct ring_descr {
struct ring_descr_hw *hw;
struct sk_buff *skb;
void *buf;
};
/* wrappers for operations on hw-exposed ring descriptors
* access to the hw-part of the descriptors must use these.
*/
static inline int rd_is_active(struct ring_descr *rd)
{
return (rd->hw->rd_status & RD_ACTIVE) != 0;
}
static inline void rd_activate(struct ring_descr *rd)
{
rd->hw->rd_status |= RD_ACTIVE;
}
static inline void rd_set_status(struct ring_descr *rd, u8 s)
{
rd->hw->rd_status = s; /* may pass ownership to the hardware */
}
static inline void rd_set_addr_status(struct ring_descr *rd, dma_addr_t a, u8 s)
{
/* order is important for two reasons:
* - overlayed: writing addr overwrites status
* - we want to write status last so we have valid address in
* case status has RD_ACTIVE set
*/
if ((a & ~DMA_MASK_MSTRPAGE)>>24 != MSTRPAGE_VALUE) {
IRDA_ERROR("%s: pci busaddr inconsistency!\n", __func__);
dump_stack();
return;
}
a &= DMA_MASK_MSTRPAGE; /* clear highbyte to make sure we won't write
* to status - just in case MSTRPAGE_VALUE!=0
*/
rd->hw->rd_addr = cpu_to_le32(a);
wmb();
rd_set_status(rd, s); /* may pass ownership to the hardware */
}
static inline void rd_set_count(struct ring_descr *rd, u16 c)
{
rd->hw->rd_count = cpu_to_le16(c);
}
static inline u8 rd_get_status(struct ring_descr *rd)
{
return rd->hw->rd_status;
}
static inline dma_addr_t rd_get_addr(struct ring_descr *rd)
{
dma_addr_t a;
a = le32_to_cpu(rd->hw->rd_addr);
return (a & DMA_MASK_MSTRPAGE) | (MSTRPAGE_VALUE << 24);
}
static inline u16 rd_get_count(struct ring_descr *rd)
{
return le16_to_cpu(rd->hw->rd_count);
}
/******************************************************************/
/* sw descriptor rings for rx, tx:
*
* operations follow producer-consumer paradigm, with the hw
* in the middle doing the processing.
* ring size must be power of two.
*
* producer advances r->tail after inserting for processing
* consumer advances r->head after removing processed rd
* ring is empty if head==tail / full if (tail+1)==head
*/
struct vlsi_ring {
struct pci_dev *pdev;
int dir;
unsigned len;
unsigned size;
unsigned mask;
atomic_t head, tail;
struct ring_descr *rd;
};
/* ring processing helpers */
static inline struct ring_descr *ring_last(struct vlsi_ring *r)
{
int t;
t = atomic_read(&r->tail) & r->mask;
return (((t+1) & r->mask) == (atomic_read(&r->head) & r->mask)) ? NULL : &r->rd[t];
}
static inline struct ring_descr *ring_put(struct vlsi_ring *r)
{
atomic_inc(&r->tail);
return ring_last(r);
}
static inline struct ring_descr *ring_first(struct vlsi_ring *r)
{
int h;
h = atomic_read(&r->head) & r->mask;
return (h == (atomic_read(&r->tail) & r->mask)) ? NULL : &r->rd[h];
}
static inline struct ring_descr *ring_get(struct vlsi_ring *r)
{
atomic_inc(&r->head);
return ring_first(r);
}
/******************************************************************/
/* our private compound VLSI-PCI-IRDA device information */
typedef struct vlsi_irda_dev {
struct pci_dev *pdev;
struct irlap_cb *irlap;
struct qos_info qos;
unsigned mode;
int baud, new_baud;
dma_addr_t busaddr;
void *virtaddr;
struct vlsi_ring *tx_ring, *rx_ring;
struct timeval last_rx;
spinlock_t lock;
struct mutex mtx;
u8 resume_ok;
struct proc_dir_entry *proc_entry;
} vlsi_irda_dev_t;
/********************************************************/
/* the remapped error flags we use for returning from frame
* post-processing in vlsi_process_tx/rx() after it was completed
* by the hardware. These functions either return the >=0 number
* of transferred bytes in case of success or the negative (-)
* of the or'ed error flags.
*/
#define VLSI_TX_DROP 0x0001
#define VLSI_TX_FIFO 0x0002
#define VLSI_RX_DROP 0x0100
#define VLSI_RX_OVER 0x0200
#define VLSI_RX_LENGTH 0x0400
#define VLSI_RX_FRAME 0x0800
#define VLSI_RX_CRC 0x1000
/********************************************************/
#endif /* IRDA_VLSI_FIR_H */