637 lines
18 KiB
C
637 lines
18 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_governor.c
|
|
*
|
|
* CPUFREQ governors common code
|
|
*
|
|
* Copyright (C) 2001 Russell King
|
|
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
|
|
* (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
|
|
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
|
|
* (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/export.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "cpufreq_governor.h"
|
|
|
|
static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
|
|
|
|
static DEFINE_MUTEX(gov_dbs_data_mutex);
|
|
|
|
/* Common sysfs tunables */
|
|
/**
|
|
* store_sampling_rate - update sampling rate effective immediately if needed.
|
|
*
|
|
* If new rate is smaller than the old, simply updating
|
|
* dbs.sampling_rate might not be appropriate. For example, if the
|
|
* original sampling_rate was 1 second and the requested new sampling rate is 10
|
|
* ms because the user needs immediate reaction from ondemand governor, but not
|
|
* sure if higher frequency will be required or not, then, the governor may
|
|
* change the sampling rate too late; up to 1 second later. Thus, if we are
|
|
* reducing the sampling rate, we need to make the new value effective
|
|
* immediately.
|
|
*
|
|
* This must be called with dbs_data->mutex held, otherwise traversing
|
|
* policy_dbs_list isn't safe.
|
|
*/
|
|
ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
|
|
size_t count)
|
|
{
|
|
struct policy_dbs_info *policy_dbs;
|
|
unsigned int rate;
|
|
int ret;
|
|
ret = sscanf(buf, "%u", &rate);
|
|
if (ret != 1)
|
|
return -EINVAL;
|
|
|
|
dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
|
|
|
|
/*
|
|
* We are operating under dbs_data->mutex and so the list and its
|
|
* entries can't be freed concurrently.
|
|
*/
|
|
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
|
|
mutex_lock(&policy_dbs->timer_mutex);
|
|
/*
|
|
* On 32-bit architectures this may race with the
|
|
* sample_delay_ns read in dbs_update_util_handler(), but that
|
|
* really doesn't matter. If the read returns a value that's
|
|
* too big, the sample will be skipped, but the next invocation
|
|
* of dbs_update_util_handler() (when the update has been
|
|
* completed) will take a sample.
|
|
*
|
|
* If this runs in parallel with dbs_work_handler(), we may end
|
|
* up overwriting the sample_delay_ns value that it has just
|
|
* written, but it will be corrected next time a sample is
|
|
* taken, so it shouldn't be significant.
|
|
*/
|
|
gov_update_sample_delay(policy_dbs, 0);
|
|
mutex_unlock(&policy_dbs->timer_mutex);
|
|
}
|
|
|
|
return count;
|
|
}
|
|
EXPORT_SYMBOL_GPL(store_sampling_rate);
|
|
|
|
/**
|
|
* gov_update_cpu_data - Update CPU load data.
|
|
* @dbs_data: Top-level governor data pointer.
|
|
*
|
|
* Update CPU load data for all CPUs in the domain governed by @dbs_data
|
|
* (that may be a single policy or a bunch of them if governor tunables are
|
|
* system-wide).
|
|
*
|
|
* Call under the @dbs_data mutex.
|
|
*/
|
|
void gov_update_cpu_data(struct dbs_data *dbs_data)
|
|
{
|
|
struct policy_dbs_info *policy_dbs;
|
|
|
|
list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
|
|
unsigned int j;
|
|
|
|
for_each_cpu(j, policy_dbs->policy->cpus) {
|
|
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
|
|
|
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall,
|
|
dbs_data->io_is_busy);
|
|
if (dbs_data->ignore_nice_load)
|
|
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
|
}
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(gov_update_cpu_data);
|
|
|
|
static inline struct dbs_data *to_dbs_data(struct kobject *kobj)
|
|
{
|
|
return container_of(kobj, struct dbs_data, kobj);
|
|
}
|
|
|
|
static inline struct governor_attr *to_gov_attr(struct attribute *attr)
|
|
{
|
|
return container_of(attr, struct governor_attr, attr);
|
|
}
|
|
|
|
static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
|
|
char *buf)
|
|
{
|
|
struct dbs_data *dbs_data = to_dbs_data(kobj);
|
|
struct governor_attr *gattr = to_gov_attr(attr);
|
|
|
|
return gattr->show(dbs_data, buf);
|
|
}
|
|
|
|
static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct dbs_data *dbs_data = to_dbs_data(kobj);
|
|
struct governor_attr *gattr = to_gov_attr(attr);
|
|
int ret = -EBUSY;
|
|
|
|
mutex_lock(&dbs_data->mutex);
|
|
|
|
if (dbs_data->usage_count)
|
|
ret = gattr->store(dbs_data, buf, count);
|
|
|
|
mutex_unlock(&dbs_data->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Sysfs Ops for accessing governor attributes.
|
|
*
|
|
* All show/store invocations for governor specific sysfs attributes, will first
|
|
* call the below show/store callbacks and the attribute specific callback will
|
|
* be called from within it.
|
|
*/
|
|
static const struct sysfs_ops governor_sysfs_ops = {
|
|
.show = governor_show,
|
|
.store = governor_store,
|
|
};
|
|
|
|
unsigned int dbs_update(struct cpufreq_policy *policy)
|
|
{
|
|
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
|
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
|
unsigned int ignore_nice = dbs_data->ignore_nice_load;
|
|
unsigned int max_load = 0;
|
|
unsigned int sampling_rate, io_busy, j;
|
|
|
|
/*
|
|
* Sometimes governors may use an additional multiplier to increase
|
|
* sample delays temporarily. Apply that multiplier to sampling_rate
|
|
* so as to keep the wake-up-from-idle detection logic a bit
|
|
* conservative.
|
|
*/
|
|
sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
|
|
/*
|
|
* For the purpose of ondemand, waiting for disk IO is an indication
|
|
* that you're performance critical, and not that the system is actually
|
|
* idle, so do not add the iowait time to the CPU idle time then.
|
|
*/
|
|
io_busy = dbs_data->io_is_busy;
|
|
|
|
/* Get Absolute Load */
|
|
for_each_cpu(j, policy->cpus) {
|
|
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
|
u64 cur_wall_time, cur_idle_time;
|
|
unsigned int idle_time, wall_time;
|
|
unsigned int load;
|
|
|
|
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
|
|
|
|
wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
|
|
j_cdbs->prev_cpu_wall = cur_wall_time;
|
|
|
|
if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
|
|
idle_time = 0;
|
|
} else {
|
|
idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
|
|
j_cdbs->prev_cpu_idle = cur_idle_time;
|
|
}
|
|
|
|
if (ignore_nice) {
|
|
u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
|
|
|
idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
|
|
j_cdbs->prev_cpu_nice = cur_nice;
|
|
}
|
|
|
|
if (unlikely(!wall_time || wall_time < idle_time))
|
|
continue;
|
|
|
|
/*
|
|
* If the CPU had gone completely idle, and a task just woke up
|
|
* on this CPU now, it would be unfair to calculate 'load' the
|
|
* usual way for this elapsed time-window, because it will show
|
|
* near-zero load, irrespective of how CPU intensive that task
|
|
* actually is. This is undesirable for latency-sensitive bursty
|
|
* workloads.
|
|
*
|
|
* To avoid this, we reuse the 'load' from the previous
|
|
* time-window and give this task a chance to start with a
|
|
* reasonably high CPU frequency. (However, we shouldn't over-do
|
|
* this copy, lest we get stuck at a high load (high frequency)
|
|
* for too long, even when the current system load has actually
|
|
* dropped down. So we perform the copy only once, upon the
|
|
* first wake-up from idle.)
|
|
*
|
|
* Detecting this situation is easy: the governor's utilization
|
|
* update handler would not have run during CPU-idle periods.
|
|
* Hence, an unusually large 'wall_time' (as compared to the
|
|
* sampling rate) indicates this scenario.
|
|
*
|
|
* prev_load can be zero in two cases and we must recalculate it
|
|
* for both cases:
|
|
* - during long idle intervals
|
|
* - explicitly set to zero
|
|
*/
|
|
if (unlikely(wall_time > (2 * sampling_rate) &&
|
|
j_cdbs->prev_load)) {
|
|
load = j_cdbs->prev_load;
|
|
|
|
/*
|
|
* Perform a destructive copy, to ensure that we copy
|
|
* the previous load only once, upon the first wake-up
|
|
* from idle.
|
|
*/
|
|
j_cdbs->prev_load = 0;
|
|
} else {
|
|
load = 100 * (wall_time - idle_time) / wall_time;
|
|
j_cdbs->prev_load = load;
|
|
}
|
|
|
|
if (load > max_load)
|
|
max_load = load;
|
|
}
|
|
return max_load;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dbs_update);
|
|
|
|
static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
|
|
unsigned int delay_us)
|
|
{
|
|
struct cpufreq_policy *policy = policy_dbs->policy;
|
|
int cpu;
|
|
|
|
gov_update_sample_delay(policy_dbs, delay_us);
|
|
policy_dbs->last_sample_time = 0;
|
|
|
|
for_each_cpu(cpu, policy->cpus) {
|
|
struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
|
|
|
|
cpufreq_set_update_util_data(cpu, &cdbs->update_util);
|
|
}
|
|
}
|
|
|
|
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
|
|
{
|
|
int i;
|
|
|
|
for_each_cpu(i, policy->cpus)
|
|
cpufreq_set_update_util_data(i, NULL);
|
|
|
|
synchronize_sched();
|
|
}
|
|
|
|
static void gov_cancel_work(struct cpufreq_policy *policy)
|
|
{
|
|
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
|
|
|
gov_clear_update_util(policy_dbs->policy);
|
|
irq_work_sync(&policy_dbs->irq_work);
|
|
cancel_work_sync(&policy_dbs->work);
|
|
atomic_set(&policy_dbs->work_count, 0);
|
|
policy_dbs->work_in_progress = false;
|
|
}
|
|
|
|
static void dbs_work_handler(struct work_struct *work)
|
|
{
|
|
struct policy_dbs_info *policy_dbs;
|
|
struct cpufreq_policy *policy;
|
|
struct dbs_governor *gov;
|
|
|
|
policy_dbs = container_of(work, struct policy_dbs_info, work);
|
|
policy = policy_dbs->policy;
|
|
gov = dbs_governor_of(policy);
|
|
|
|
/*
|
|
* Make sure cpufreq_governor_limits() isn't evaluating load or the
|
|
* ondemand governor isn't updating the sampling rate in parallel.
|
|
*/
|
|
mutex_lock(&policy_dbs->timer_mutex);
|
|
gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
|
|
mutex_unlock(&policy_dbs->timer_mutex);
|
|
|
|
/* Allow the utilization update handler to queue up more work. */
|
|
atomic_set(&policy_dbs->work_count, 0);
|
|
/*
|
|
* If the update below is reordered with respect to the sample delay
|
|
* modification, the utilization update handler may end up using a stale
|
|
* sample delay value.
|
|
*/
|
|
smp_wmb();
|
|
policy_dbs->work_in_progress = false;
|
|
}
|
|
|
|
static void dbs_irq_work(struct irq_work *irq_work)
|
|
{
|
|
struct policy_dbs_info *policy_dbs;
|
|
|
|
policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
|
|
schedule_work_on(smp_processor_id(), &policy_dbs->work);
|
|
}
|
|
|
|
static void dbs_update_util_handler(struct update_util_data *data, u64 time,
|
|
unsigned long util, unsigned long max)
|
|
{
|
|
struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
|
|
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
|
|
u64 delta_ns, lst;
|
|
|
|
/*
|
|
* The work may not be allowed to be queued up right now.
|
|
* Possible reasons:
|
|
* - Work has already been queued up or is in progress.
|
|
* - It is too early (too little time from the previous sample).
|
|
*/
|
|
if (policy_dbs->work_in_progress)
|
|
return;
|
|
|
|
/*
|
|
* If the reads below are reordered before the check above, the value
|
|
* of sample_delay_ns used in the computation may be stale.
|
|
*/
|
|
smp_rmb();
|
|
lst = READ_ONCE(policy_dbs->last_sample_time);
|
|
delta_ns = time - lst;
|
|
if ((s64)delta_ns < policy_dbs->sample_delay_ns)
|
|
return;
|
|
|
|
/*
|
|
* If the policy is not shared, the irq_work may be queued up right away
|
|
* at this point. Otherwise, we need to ensure that only one of the
|
|
* CPUs sharing the policy will do that.
|
|
*/
|
|
if (policy_dbs->is_shared) {
|
|
if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
|
|
return;
|
|
|
|
/*
|
|
* If another CPU updated last_sample_time in the meantime, we
|
|
* shouldn't be here, so clear the work counter and bail out.
|
|
*/
|
|
if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
|
|
atomic_set(&policy_dbs->work_count, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
policy_dbs->last_sample_time = time;
|
|
policy_dbs->work_in_progress = true;
|
|
irq_work_queue(&policy_dbs->irq_work);
|
|
}
|
|
|
|
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
|
|
struct dbs_governor *gov)
|
|
{
|
|
struct policy_dbs_info *policy_dbs;
|
|
int j;
|
|
|
|
/* Allocate memory for per-policy governor data. */
|
|
policy_dbs = gov->alloc();
|
|
if (!policy_dbs)
|
|
return NULL;
|
|
|
|
policy_dbs->policy = policy;
|
|
mutex_init(&policy_dbs->timer_mutex);
|
|
atomic_set(&policy_dbs->work_count, 0);
|
|
init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
|
|
INIT_WORK(&policy_dbs->work, dbs_work_handler);
|
|
|
|
/* Set policy_dbs for all CPUs, online+offline */
|
|
for_each_cpu(j, policy->related_cpus) {
|
|
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
|
|
|
j_cdbs->policy_dbs = policy_dbs;
|
|
j_cdbs->update_util.func = dbs_update_util_handler;
|
|
}
|
|
return policy_dbs;
|
|
}
|
|
|
|
static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
|
|
struct dbs_governor *gov)
|
|
{
|
|
int j;
|
|
|
|
mutex_destroy(&policy_dbs->timer_mutex);
|
|
|
|
for_each_cpu(j, policy_dbs->policy->related_cpus) {
|
|
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
|
|
|
j_cdbs->policy_dbs = NULL;
|
|
j_cdbs->update_util.func = NULL;
|
|
}
|
|
gov->free(policy_dbs);
|
|
}
|
|
|
|
static int cpufreq_governor_init(struct cpufreq_policy *policy)
|
|
{
|
|
struct dbs_governor *gov = dbs_governor_of(policy);
|
|
struct dbs_data *dbs_data;
|
|
struct policy_dbs_info *policy_dbs;
|
|
unsigned int latency;
|
|
int ret = 0;
|
|
|
|
/* State should be equivalent to EXIT */
|
|
if (policy->governor_data)
|
|
return -EBUSY;
|
|
|
|
policy_dbs = alloc_policy_dbs_info(policy, gov);
|
|
if (!policy_dbs)
|
|
return -ENOMEM;
|
|
|
|
/* Protect gov->gdbs_data against concurrent updates. */
|
|
mutex_lock(&gov_dbs_data_mutex);
|
|
|
|
dbs_data = gov->gdbs_data;
|
|
if (dbs_data) {
|
|
if (WARN_ON(have_governor_per_policy())) {
|
|
ret = -EINVAL;
|
|
goto free_policy_dbs_info;
|
|
}
|
|
policy_dbs->dbs_data = dbs_data;
|
|
policy->governor_data = policy_dbs;
|
|
|
|
mutex_lock(&dbs_data->mutex);
|
|
dbs_data->usage_count++;
|
|
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
|
|
mutex_unlock(&dbs_data->mutex);
|
|
goto out;
|
|
}
|
|
|
|
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
|
|
if (!dbs_data) {
|
|
ret = -ENOMEM;
|
|
goto free_policy_dbs_info;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&dbs_data->policy_dbs_list);
|
|
mutex_init(&dbs_data->mutex);
|
|
|
|
ret = gov->init(dbs_data, !policy->governor->initialized);
|
|
if (ret)
|
|
goto free_policy_dbs_info;
|
|
|
|
/* policy latency is in ns. Convert it to us first */
|
|
latency = policy->cpuinfo.transition_latency / 1000;
|
|
if (latency == 0)
|
|
latency = 1;
|
|
|
|
/* Bring kernel and HW constraints together */
|
|
dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
|
|
MIN_LATENCY_MULTIPLIER * latency);
|
|
dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
|
|
LATENCY_MULTIPLIER * latency);
|
|
|
|
if (!have_governor_per_policy())
|
|
gov->gdbs_data = dbs_data;
|
|
|
|
policy->governor_data = policy_dbs;
|
|
|
|
policy_dbs->dbs_data = dbs_data;
|
|
dbs_data->usage_count = 1;
|
|
list_add(&policy_dbs->list, &dbs_data->policy_dbs_list);
|
|
|
|
gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
|
|
ret = kobject_init_and_add(&dbs_data->kobj, &gov->kobj_type,
|
|
get_governor_parent_kobj(policy),
|
|
"%s", gov->gov.name);
|
|
if (!ret)
|
|
goto out;
|
|
|
|
/* Failure, so roll back. */
|
|
pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
|
|
|
|
policy->governor_data = NULL;
|
|
|
|
if (!have_governor_per_policy())
|
|
gov->gdbs_data = NULL;
|
|
gov->exit(dbs_data, !policy->governor->initialized);
|
|
kfree(dbs_data);
|
|
|
|
free_policy_dbs_info:
|
|
free_policy_dbs_info(policy_dbs, gov);
|
|
|
|
out:
|
|
mutex_unlock(&gov_dbs_data_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int cpufreq_governor_exit(struct cpufreq_policy *policy)
|
|
{
|
|
struct dbs_governor *gov = dbs_governor_of(policy);
|
|
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
|
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
|
int count;
|
|
|
|
/* Protect gov->gdbs_data against concurrent updates. */
|
|
mutex_lock(&gov_dbs_data_mutex);
|
|
|
|
mutex_lock(&dbs_data->mutex);
|
|
list_del(&policy_dbs->list);
|
|
count = --dbs_data->usage_count;
|
|
mutex_unlock(&dbs_data->mutex);
|
|
|
|
if (!count) {
|
|
kobject_put(&dbs_data->kobj);
|
|
|
|
policy->governor_data = NULL;
|
|
|
|
if (!have_governor_per_policy())
|
|
gov->gdbs_data = NULL;
|
|
|
|
gov->exit(dbs_data, policy->governor->initialized == 1);
|
|
mutex_destroy(&dbs_data->mutex);
|
|
kfree(dbs_data);
|
|
} else {
|
|
policy->governor_data = NULL;
|
|
}
|
|
|
|
free_policy_dbs_info(policy_dbs, gov);
|
|
|
|
mutex_unlock(&gov_dbs_data_mutex);
|
|
return 0;
|
|
}
|
|
|
|
static int cpufreq_governor_start(struct cpufreq_policy *policy)
|
|
{
|
|
struct dbs_governor *gov = dbs_governor_of(policy);
|
|
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
|
struct dbs_data *dbs_data = policy_dbs->dbs_data;
|
|
unsigned int sampling_rate, ignore_nice, j;
|
|
unsigned int io_busy;
|
|
|
|
if (!policy->cur)
|
|
return -EINVAL;
|
|
|
|
policy_dbs->is_shared = policy_is_shared(policy);
|
|
policy_dbs->rate_mult = 1;
|
|
|
|
sampling_rate = dbs_data->sampling_rate;
|
|
ignore_nice = dbs_data->ignore_nice_load;
|
|
io_busy = dbs_data->io_is_busy;
|
|
|
|
for_each_cpu(j, policy->cpus) {
|
|
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
|
|
unsigned int prev_load;
|
|
|
|
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
|
|
|
|
prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
|
|
j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
|
|
|
|
if (ignore_nice)
|
|
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
|
|
}
|
|
|
|
gov->start(policy);
|
|
|
|
gov_set_update_util(policy_dbs, sampling_rate);
|
|
return 0;
|
|
}
|
|
|
|
static int cpufreq_governor_stop(struct cpufreq_policy *policy)
|
|
{
|
|
gov_cancel_work(policy);
|
|
return 0;
|
|
}
|
|
|
|
static int cpufreq_governor_limits(struct cpufreq_policy *policy)
|
|
{
|
|
struct policy_dbs_info *policy_dbs = policy->governor_data;
|
|
|
|
mutex_lock(&policy_dbs->timer_mutex);
|
|
|
|
if (policy->max < policy->cur)
|
|
__cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
|
|
else if (policy->min > policy->cur)
|
|
__cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
|
|
|
|
gov_update_sample_delay(policy_dbs, 0);
|
|
|
|
mutex_unlock(&policy_dbs->timer_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
|
|
{
|
|
if (event == CPUFREQ_GOV_POLICY_INIT) {
|
|
return cpufreq_governor_init(policy);
|
|
} else if (policy->governor_data) {
|
|
switch (event) {
|
|
case CPUFREQ_GOV_POLICY_EXIT:
|
|
return cpufreq_governor_exit(policy);
|
|
case CPUFREQ_GOV_START:
|
|
return cpufreq_governor_start(policy);
|
|
case CPUFREQ_GOV_STOP:
|
|
return cpufreq_governor_stop(policy);
|
|
case CPUFREQ_GOV_LIMITS:
|
|
return cpufreq_governor_limits(policy);
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
|