695 lines
19 KiB
C
695 lines
19 KiB
C
|
|
/*
|
|
* MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
|
|
*
|
|
* Author: Abraham vd Merwe <abraham@2d3d.co.za>
|
|
*
|
|
* Copyright (c) 2001, 2d3D, Inc.
|
|
*
|
|
* This code is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* References:
|
|
*
|
|
* [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
|
|
* - Order Number: 290644-005
|
|
* - January 2000
|
|
*
|
|
* [2] MTD internal API documentation
|
|
* - http://www.linux-mtd.infradead.org/
|
|
*
|
|
* Limitations:
|
|
*
|
|
* Even though this driver is written for 3 Volt Fast Boot
|
|
* Block Flash Memory, it is rather specific to LART. With
|
|
* Minor modifications, notably the without data/address line
|
|
* mangling and different bus settings, etc. it should be
|
|
* trivial to adapt to other platforms.
|
|
*
|
|
* If somebody would sponsor me a different board, I'll
|
|
* adapt the driver (:
|
|
*/
|
|
|
|
/* debugging */
|
|
//#define LART_DEBUG
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#ifndef CONFIG_SA1100_LART
|
|
#error This is for LART architecture only
|
|
#endif
|
|
|
|
static char module_name[] = "lart";
|
|
|
|
/*
|
|
* These values is specific to 28Fxxxx3 flash memory.
|
|
* See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
|
|
*/
|
|
#define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
|
|
#define FLASH_NUMBLOCKS_16m_PARAM 8
|
|
#define FLASH_NUMBLOCKS_8m_PARAM 8
|
|
|
|
/*
|
|
* These values is specific to 28Fxxxx3 flash memory.
|
|
* See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
|
|
*/
|
|
#define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
|
|
#define FLASH_NUMBLOCKS_16m_MAIN 31
|
|
#define FLASH_NUMBLOCKS_8m_MAIN 15
|
|
|
|
/*
|
|
* These values are specific to LART
|
|
*/
|
|
|
|
/* general */
|
|
#define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
|
|
#define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
|
|
|
|
/* blob */
|
|
#define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
|
|
#define BLOB_START 0x00000000
|
|
#define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
|
|
|
|
/* kernel */
|
|
#define NUM_KERNEL_BLOCKS 7
|
|
#define KERNEL_START (BLOB_START + BLOB_LEN)
|
|
#define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
|
|
|
|
/* initial ramdisk */
|
|
#define NUM_INITRD_BLOCKS 24
|
|
#define INITRD_START (KERNEL_START + KERNEL_LEN)
|
|
#define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
|
|
|
|
/*
|
|
* See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
|
|
*/
|
|
#define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
|
|
#define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
|
|
#define ERASE_SETUP 0x00200020 /* Block Erase */
|
|
#define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
|
|
#define PGM_SETUP 0x00400040 /* Program */
|
|
#define STATUS_READ 0x00700070 /* Read Status Register */
|
|
#define STATUS_CLEAR 0x00500050 /* Clear Status Register */
|
|
#define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
|
|
#define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
|
|
#define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
|
|
|
|
/*
|
|
* See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
|
|
*/
|
|
#define FLASH_MANUFACTURER 0x00890089
|
|
#define FLASH_DEVICE_8mbit_TOP 0x88f188f1
|
|
#define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
|
|
#define FLASH_DEVICE_16mbit_TOP 0x88f388f3
|
|
#define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
|
|
|
|
/***************************************************************************************************/
|
|
|
|
/*
|
|
* The data line mapping on LART is as follows:
|
|
*
|
|
* U2 CPU | U3 CPU
|
|
* -------------------
|
|
* 0 20 | 0 12
|
|
* 1 22 | 1 14
|
|
* 2 19 | 2 11
|
|
* 3 17 | 3 9
|
|
* 4 24 | 4 0
|
|
* 5 26 | 5 2
|
|
* 6 31 | 6 7
|
|
* 7 29 | 7 5
|
|
* 8 21 | 8 13
|
|
* 9 23 | 9 15
|
|
* 10 18 | 10 10
|
|
* 11 16 | 11 8
|
|
* 12 25 | 12 1
|
|
* 13 27 | 13 3
|
|
* 14 30 | 14 6
|
|
* 15 28 | 15 4
|
|
*/
|
|
|
|
/* Mangle data (x) */
|
|
#define DATA_TO_FLASH(x) \
|
|
( \
|
|
(((x) & 0x08009000) >> 11) + \
|
|
(((x) & 0x00002000) >> 10) + \
|
|
(((x) & 0x04004000) >> 8) + \
|
|
(((x) & 0x00000010) >> 4) + \
|
|
(((x) & 0x91000820) >> 3) + \
|
|
(((x) & 0x22080080) >> 2) + \
|
|
((x) & 0x40000400) + \
|
|
(((x) & 0x00040040) << 1) + \
|
|
(((x) & 0x00110000) << 4) + \
|
|
(((x) & 0x00220100) << 5) + \
|
|
(((x) & 0x00800208) << 6) + \
|
|
(((x) & 0x00400004) << 9) + \
|
|
(((x) & 0x00000001) << 12) + \
|
|
(((x) & 0x00000002) << 13) \
|
|
)
|
|
|
|
/* Unmangle data (x) */
|
|
#define FLASH_TO_DATA(x) \
|
|
( \
|
|
(((x) & 0x00010012) << 11) + \
|
|
(((x) & 0x00000008) << 10) + \
|
|
(((x) & 0x00040040) << 8) + \
|
|
(((x) & 0x00000001) << 4) + \
|
|
(((x) & 0x12200104) << 3) + \
|
|
(((x) & 0x08820020) << 2) + \
|
|
((x) & 0x40000400) + \
|
|
(((x) & 0x00080080) >> 1) + \
|
|
(((x) & 0x01100000) >> 4) + \
|
|
(((x) & 0x04402000) >> 5) + \
|
|
(((x) & 0x20008200) >> 6) + \
|
|
(((x) & 0x80000800) >> 9) + \
|
|
(((x) & 0x00001000) >> 12) + \
|
|
(((x) & 0x00004000) >> 13) \
|
|
)
|
|
|
|
/*
|
|
* The address line mapping on LART is as follows:
|
|
*
|
|
* U3 CPU | U2 CPU
|
|
* -------------------
|
|
* 0 2 | 0 2
|
|
* 1 3 | 1 3
|
|
* 2 9 | 2 9
|
|
* 3 13 | 3 8
|
|
* 4 8 | 4 7
|
|
* 5 12 | 5 6
|
|
* 6 11 | 6 5
|
|
* 7 10 | 7 4
|
|
* 8 4 | 8 10
|
|
* 9 5 | 9 11
|
|
* 10 6 | 10 12
|
|
* 11 7 | 11 13
|
|
*
|
|
* BOOT BLOCK BOUNDARY
|
|
*
|
|
* 12 15 | 12 15
|
|
* 13 14 | 13 14
|
|
* 14 16 | 14 16
|
|
*
|
|
* MAIN BLOCK BOUNDARY
|
|
*
|
|
* 15 17 | 15 18
|
|
* 16 18 | 16 17
|
|
* 17 20 | 17 20
|
|
* 18 19 | 18 19
|
|
* 19 21 | 19 21
|
|
*
|
|
* As we can see from above, the addresses aren't mangled across
|
|
* block boundaries, so we don't need to worry about address
|
|
* translations except for sending/reading commands during
|
|
* initialization
|
|
*/
|
|
|
|
/* Mangle address (x) on chip U2 */
|
|
#define ADDR_TO_FLASH_U2(x) \
|
|
( \
|
|
(((x) & 0x00000f00) >> 4) + \
|
|
(((x) & 0x00042000) << 1) + \
|
|
(((x) & 0x0009c003) << 2) + \
|
|
(((x) & 0x00021080) << 3) + \
|
|
(((x) & 0x00000010) << 4) + \
|
|
(((x) & 0x00000040) << 5) + \
|
|
(((x) & 0x00000024) << 7) + \
|
|
(((x) & 0x00000008) << 10) \
|
|
)
|
|
|
|
/* Unmangle address (x) on chip U2 */
|
|
#define FLASH_U2_TO_ADDR(x) \
|
|
( \
|
|
(((x) << 4) & 0x00000f00) + \
|
|
(((x) >> 1) & 0x00042000) + \
|
|
(((x) >> 2) & 0x0009c003) + \
|
|
(((x) >> 3) & 0x00021080) + \
|
|
(((x) >> 4) & 0x00000010) + \
|
|
(((x) >> 5) & 0x00000040) + \
|
|
(((x) >> 7) & 0x00000024) + \
|
|
(((x) >> 10) & 0x00000008) \
|
|
)
|
|
|
|
/* Mangle address (x) on chip U3 */
|
|
#define ADDR_TO_FLASH_U3(x) \
|
|
( \
|
|
(((x) & 0x00000080) >> 3) + \
|
|
(((x) & 0x00000040) >> 1) + \
|
|
(((x) & 0x00052020) << 1) + \
|
|
(((x) & 0x00084f03) << 2) + \
|
|
(((x) & 0x00029010) << 3) + \
|
|
(((x) & 0x00000008) << 5) + \
|
|
(((x) & 0x00000004) << 7) \
|
|
)
|
|
|
|
/* Unmangle address (x) on chip U3 */
|
|
#define FLASH_U3_TO_ADDR(x) \
|
|
( \
|
|
(((x) << 3) & 0x00000080) + \
|
|
(((x) << 1) & 0x00000040) + \
|
|
(((x) >> 1) & 0x00052020) + \
|
|
(((x) >> 2) & 0x00084f03) + \
|
|
(((x) >> 3) & 0x00029010) + \
|
|
(((x) >> 5) & 0x00000008) + \
|
|
(((x) >> 7) & 0x00000004) \
|
|
)
|
|
|
|
/***************************************************************************************************/
|
|
|
|
static __u8 read8 (__u32 offset)
|
|
{
|
|
volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n", __func__, offset, *data);
|
|
#endif
|
|
return (*data);
|
|
}
|
|
|
|
static __u32 read32 (__u32 offset)
|
|
{
|
|
volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n", __func__, offset, *data);
|
|
#endif
|
|
return (*data);
|
|
}
|
|
|
|
static void write32 (__u32 x,__u32 offset)
|
|
{
|
|
volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
|
|
*data = x;
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, *data);
|
|
#endif
|
|
}
|
|
|
|
/***************************************************************************************************/
|
|
|
|
/*
|
|
* Probe for 16mbit flash memory on a LART board without doing
|
|
* too much damage. Since we need to write 1 dword to memory,
|
|
* we're f**cked if this happens to be DRAM since we can't
|
|
* restore the memory (otherwise we might exit Read Array mode).
|
|
*
|
|
* Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
|
|
*/
|
|
static int flash_probe (void)
|
|
{
|
|
__u32 manufacturer,devtype;
|
|
|
|
/* setup "Read Identifier Codes" mode */
|
|
write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
|
|
|
|
/* probe U2. U2/U3 returns the same data since the first 3
|
|
* address lines is mangled in the same way */
|
|
manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
|
|
devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
|
|
|
|
/* put the flash back into command mode */
|
|
write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
|
|
|
|
return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || devtype == FLASH_DEVICE_16mbit_BOTTOM));
|
|
}
|
|
|
|
/*
|
|
* Erase one block of flash memory at offset ``offset'' which is any
|
|
* address within the block which should be erased.
|
|
*
|
|
* Returns 1 if successful, 0 otherwise.
|
|
*/
|
|
static inline int erase_block (__u32 offset)
|
|
{
|
|
__u32 status;
|
|
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(): 0x%.8x\n", __func__, offset);
|
|
#endif
|
|
|
|
/* erase and confirm */
|
|
write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
|
|
write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
|
|
|
|
/* wait for block erase to finish */
|
|
do
|
|
{
|
|
write32 (DATA_TO_FLASH (STATUS_READ),offset);
|
|
status = FLASH_TO_DATA (read32 (offset));
|
|
}
|
|
while ((~status & STATUS_BUSY) != 0);
|
|
|
|
/* put the flash back into command mode */
|
|
write32 (DATA_TO_FLASH (READ_ARRAY),offset);
|
|
|
|
/* was the erase successful? */
|
|
if ((status & STATUS_ERASE_ERR))
|
|
{
|
|
printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
|
|
{
|
|
__u32 addr,len;
|
|
int i,first;
|
|
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n", __func__, instr->addr, instr->len);
|
|
#endif
|
|
|
|
/* sanity checks */
|
|
if (instr->addr + instr->len > mtd->size) return (-EINVAL);
|
|
|
|
/*
|
|
* check that both start and end of the requested erase are
|
|
* aligned with the erasesize at the appropriate addresses.
|
|
*
|
|
* skip all erase regions which are ended before the start of
|
|
* the requested erase. Actually, to save on the calculations,
|
|
* we skip to the first erase region which starts after the
|
|
* start of the requested erase, and then go back one.
|
|
*/
|
|
for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
|
|
i--;
|
|
|
|
/*
|
|
* ok, now i is pointing at the erase region in which this
|
|
* erase request starts. Check the start of the requested
|
|
* erase range is aligned with the erase size which is in
|
|
* effect here.
|
|
*/
|
|
if (i < 0 || (instr->addr & (mtd->eraseregions[i].erasesize - 1)))
|
|
return -EINVAL;
|
|
|
|
/* Remember the erase region we start on */
|
|
first = i;
|
|
|
|
/*
|
|
* next, check that the end of the requested erase is aligned
|
|
* with the erase region at that address.
|
|
*
|
|
* as before, drop back one to point at the region in which
|
|
* the address actually falls
|
|
*/
|
|
for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
|
|
i--;
|
|
|
|
/* is the end aligned on a block boundary? */
|
|
if (i < 0 || ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)))
|
|
return -EINVAL;
|
|
|
|
addr = instr->addr;
|
|
len = instr->len;
|
|
|
|
i = first;
|
|
|
|
/* now erase those blocks */
|
|
while (len)
|
|
{
|
|
if (!erase_block (addr))
|
|
{
|
|
instr->state = MTD_ERASE_FAILED;
|
|
return (-EIO);
|
|
}
|
|
|
|
addr += mtd->eraseregions[i].erasesize;
|
|
len -= mtd->eraseregions[i].erasesize;
|
|
|
|
if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
|
|
}
|
|
|
|
instr->state = MTD_ERASE_DONE;
|
|
mtd_erase_callback(instr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
|
|
{
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n", __func__, (__u32)from, len);
|
|
#endif
|
|
|
|
/* sanity checks */
|
|
if (!len) return (0);
|
|
if (from + len > mtd->size) return (-EINVAL);
|
|
|
|
/* we always read len bytes */
|
|
*retlen = len;
|
|
|
|
/* first, we read bytes until we reach a dword boundary */
|
|
if (from & (BUSWIDTH - 1))
|
|
{
|
|
int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
|
|
|
|
while (len && gap--) *buf++ = read8 (from++), len--;
|
|
}
|
|
|
|
/* now we read dwords until we reach a non-dword boundary */
|
|
while (len >= BUSWIDTH)
|
|
{
|
|
*((__u32 *) buf) = read32 (from);
|
|
|
|
buf += BUSWIDTH;
|
|
from += BUSWIDTH;
|
|
len -= BUSWIDTH;
|
|
}
|
|
|
|
/* top up the last unaligned bytes */
|
|
if (len & (BUSWIDTH - 1))
|
|
while (len--) *buf++ = read8 (from++);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
|
|
* must be 32 bits, i.e. it must be on a dword boundary.
|
|
*
|
|
* Returns 1 if successful, 0 otherwise.
|
|
*/
|
|
static inline int write_dword (__u32 offset,__u32 x)
|
|
{
|
|
__u32 status;
|
|
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n", __func__, offset, x);
|
|
#endif
|
|
|
|
/* setup writing */
|
|
write32 (DATA_TO_FLASH (PGM_SETUP),offset);
|
|
|
|
/* write the data */
|
|
write32 (x,offset);
|
|
|
|
/* wait for the write to finish */
|
|
do
|
|
{
|
|
write32 (DATA_TO_FLASH (STATUS_READ),offset);
|
|
status = FLASH_TO_DATA (read32 (offset));
|
|
}
|
|
while ((~status & STATUS_BUSY) != 0);
|
|
|
|
/* put the flash back into command mode */
|
|
write32 (DATA_TO_FLASH (READ_ARRAY),offset);
|
|
|
|
/* was the write successful? */
|
|
if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
|
|
{
|
|
printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
|
|
{
|
|
__u8 tmp[4];
|
|
int i,n;
|
|
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n", __func__, (__u32)to, len);
|
|
#endif
|
|
|
|
*retlen = 0;
|
|
|
|
/* sanity checks */
|
|
if (!len) return (0);
|
|
if (to + len > mtd->size) return (-EINVAL);
|
|
|
|
/* first, we write a 0xFF.... padded byte until we reach a dword boundary */
|
|
if (to & (BUSWIDTH - 1))
|
|
{
|
|
__u32 aligned = to & ~(BUSWIDTH - 1);
|
|
int gap = to - aligned;
|
|
|
|
i = n = 0;
|
|
|
|
while (gap--) tmp[i++] = 0xFF;
|
|
while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
|
|
while (i < BUSWIDTH) tmp[i++] = 0xFF;
|
|
|
|
if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
|
|
|
|
to += n;
|
|
buf += n;
|
|
*retlen += n;
|
|
}
|
|
|
|
/* now we write dwords until we reach a non-dword boundary */
|
|
while (len >= BUSWIDTH)
|
|
{
|
|
if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
|
|
|
|
to += BUSWIDTH;
|
|
buf += BUSWIDTH;
|
|
*retlen += BUSWIDTH;
|
|
len -= BUSWIDTH;
|
|
}
|
|
|
|
/* top up the last unaligned bytes, padded with 0xFF.... */
|
|
if (len & (BUSWIDTH - 1))
|
|
{
|
|
i = n = 0;
|
|
|
|
while (len--) tmp[i++] = buf[n++];
|
|
while (i < BUSWIDTH) tmp[i++] = 0xFF;
|
|
|
|
if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
|
|
|
|
*retlen += n;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/***************************************************************************************************/
|
|
|
|
static struct mtd_info mtd;
|
|
|
|
static struct mtd_erase_region_info erase_regions[] = {
|
|
/* parameter blocks */
|
|
{
|
|
.offset = 0x00000000,
|
|
.erasesize = FLASH_BLOCKSIZE_PARAM,
|
|
.numblocks = FLASH_NUMBLOCKS_16m_PARAM,
|
|
},
|
|
/* main blocks */
|
|
{
|
|
.offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
|
|
.erasesize = FLASH_BLOCKSIZE_MAIN,
|
|
.numblocks = FLASH_NUMBLOCKS_16m_MAIN,
|
|
}
|
|
};
|
|
|
|
static struct mtd_partition lart_partitions[] = {
|
|
/* blob */
|
|
{
|
|
.name = "blob",
|
|
.offset = BLOB_START,
|
|
.size = BLOB_LEN,
|
|
},
|
|
/* kernel */
|
|
{
|
|
.name = "kernel",
|
|
.offset = KERNEL_START, /* MTDPART_OFS_APPEND */
|
|
.size = KERNEL_LEN,
|
|
},
|
|
/* initial ramdisk / file system */
|
|
{
|
|
.name = "file system",
|
|
.offset = INITRD_START, /* MTDPART_OFS_APPEND */
|
|
.size = INITRD_LEN, /* MTDPART_SIZ_FULL */
|
|
}
|
|
};
|
|
#define NUM_PARTITIONS ARRAY_SIZE(lart_partitions)
|
|
|
|
static int __init lart_flash_init (void)
|
|
{
|
|
int result;
|
|
memset (&mtd,0,sizeof (mtd));
|
|
printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
|
|
printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
|
|
if (!flash_probe ())
|
|
{
|
|
printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
|
|
return (-ENXIO);
|
|
}
|
|
printk ("%s: This looks like a LART board to me.\n",module_name);
|
|
mtd.name = module_name;
|
|
mtd.type = MTD_NORFLASH;
|
|
mtd.writesize = 1;
|
|
mtd.flags = MTD_CAP_NORFLASH;
|
|
mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
|
|
mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
|
|
mtd.numeraseregions = ARRAY_SIZE(erase_regions);
|
|
mtd.eraseregions = erase_regions;
|
|
mtd._erase = flash_erase;
|
|
mtd._read = flash_read;
|
|
mtd._write = flash_write;
|
|
mtd.owner = THIS_MODULE;
|
|
|
|
#ifdef LART_DEBUG
|
|
printk (KERN_DEBUG
|
|
"mtd.name = %s\n"
|
|
"mtd.size = 0x%.8x (%uM)\n"
|
|
"mtd.erasesize = 0x%.8x (%uK)\n"
|
|
"mtd.numeraseregions = %d\n",
|
|
mtd.name,
|
|
mtd.size,mtd.size / (1024*1024),
|
|
mtd.erasesize,mtd.erasesize / 1024,
|
|
mtd.numeraseregions);
|
|
|
|
if (mtd.numeraseregions)
|
|
for (result = 0; result < mtd.numeraseregions; result++)
|
|
printk (KERN_DEBUG
|
|
"\n\n"
|
|
"mtd.eraseregions[%d].offset = 0x%.8x\n"
|
|
"mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
|
|
"mtd.eraseregions[%d].numblocks = %d\n",
|
|
result,mtd.eraseregions[result].offset,
|
|
result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
|
|
result,mtd.eraseregions[result].numblocks);
|
|
|
|
printk ("\npartitions = %d\n", ARRAY_SIZE(lart_partitions));
|
|
|
|
for (result = 0; result < ARRAY_SIZE(lart_partitions); result++)
|
|
printk (KERN_DEBUG
|
|
"\n\n"
|
|
"lart_partitions[%d].name = %s\n"
|
|
"lart_partitions[%d].offset = 0x%.8x\n"
|
|
"lart_partitions[%d].size = 0x%.8x (%uK)\n",
|
|
result,lart_partitions[result].name,
|
|
result,lart_partitions[result].offset,
|
|
result,lart_partitions[result].size,lart_partitions[result].size / 1024);
|
|
#endif
|
|
|
|
result = mtd_device_register(&mtd, lart_partitions,
|
|
ARRAY_SIZE(lart_partitions));
|
|
|
|
return (result);
|
|
}
|
|
|
|
static void __exit lart_flash_exit (void)
|
|
{
|
|
mtd_device_unregister(&mtd);
|
|
}
|
|
|
|
module_init (lart_flash_init);
|
|
module_exit (lart_flash_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
|
|
MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
|