linux-sg2042/arch/arm/common/uengine.c

511 lines
12 KiB
C

/*
* Generic library functions for the microengines found on the Intel
* IXP2000 series of network processors.
*
* Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
* Dedicated to Marija Kulikova.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of the
* License, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/string.h>
#include <asm/hardware.h>
#include <asm/arch/hardware.h>
#include <asm/hardware/uengine.h>
#include <asm/io.h>
#if defined(CONFIG_ARCH_IXP2000)
#define IXP_UENGINE_CSR_VIRT_BASE IXP2000_UENGINE_CSR_VIRT_BASE
#define IXP_PRODUCT_ID IXP2000_PRODUCT_ID
#define IXP_MISC_CONTROL IXP2000_MISC_CONTROL
#define IXP_RESET1 IXP2000_RESET1
#else
#if defined(CONFIG_ARCH_IXP23XX)
#define IXP_UENGINE_CSR_VIRT_BASE IXP23XX_UENGINE_CSR_VIRT_BASE
#define IXP_PRODUCT_ID IXP23XX_PRODUCT_ID
#define IXP_MISC_CONTROL IXP23XX_MISC_CONTROL
#define IXP_RESET1 IXP23XX_RESET1
#else
#error unknown platform
#endif
#endif
#define USTORE_ADDRESS 0x000
#define USTORE_DATA_LOWER 0x004
#define USTORE_DATA_UPPER 0x008
#define CTX_ENABLES 0x018
#define CC_ENABLE 0x01c
#define CSR_CTX_POINTER 0x020
#define INDIRECT_CTX_STS 0x040
#define ACTIVE_CTX_STS 0x044
#define INDIRECT_CTX_SIG_EVENTS 0x048
#define INDIRECT_CTX_WAKEUP_EVENTS 0x050
#define NN_PUT 0x080
#define NN_GET 0x084
#define TIMESTAMP_LOW 0x0c0
#define TIMESTAMP_HIGH 0x0c4
#define T_INDEX_BYTE_INDEX 0x0f4
#define LOCAL_CSR_STATUS 0x180
u32 ixp2000_uengine_mask;
static void *ixp2000_uengine_csr_area(int uengine)
{
return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
}
/*
* LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
* space means that the microengine we tried to access was also trying
* to access its own CSR space on the same clock cycle as we did. When
* this happens, we lose the arbitration process by default, and the
* read or write we tried to do was not actually performed, so we try
* again until it succeeds.
*/
u32 ixp2000_uengine_csr_read(int uengine, int offset)
{
void *uebase;
u32 *local_csr_status;
u32 *reg;
u32 value;
uebase = ixp2000_uengine_csr_area(uengine);
local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
reg = (u32 *)(uebase + offset);
do {
value = ixp2000_reg_read(reg);
} while (ixp2000_reg_read(local_csr_status) & 1);
return value;
}
EXPORT_SYMBOL(ixp2000_uengine_csr_read);
void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
{
void *uebase;
u32 *local_csr_status;
u32 *reg;
uebase = ixp2000_uengine_csr_area(uengine);
local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
reg = (u32 *)(uebase + offset);
do {
ixp2000_reg_write(reg, value);
} while (ixp2000_reg_read(local_csr_status) & 1);
}
EXPORT_SYMBOL(ixp2000_uengine_csr_write);
void ixp2000_uengine_reset(u32 uengine_mask)
{
u32 value;
value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
uengine_mask &= ixp2000_uengine_mask;
ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
ixp2000_reg_wrb(IXP_RESET1, value);
}
EXPORT_SYMBOL(ixp2000_uengine_reset);
void ixp2000_uengine_set_mode(int uengine, u32 mode)
{
/*
* CTL_STR_PAR_EN: unconditionally enable parity checking on
* control store.
*/
mode |= 0x10000000;
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
/*
* Enable updating of condition codes.
*/
ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
/*
* Initialise other per-microengine registers.
*/
ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
}
EXPORT_SYMBOL(ixp2000_uengine_set_mode);
static int make_even_parity(u32 x)
{
return hweight32(x) & 1;
}
static void ustore_write(int uengine, u64 insn)
{
/*
* Generate even parity for top and bottom 20 bits.
*/
insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
/*
* Write to microstore. The second write auto-increments
* the USTORE_ADDRESS index register.
*/
ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
}
void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
{
int i;
/*
* Start writing to microstore at address 0.
*/
ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
for (i = 0; i < insns; i++) {
u64 insn;
insn = (((u64)ucode[0]) << 32) |
(((u64)ucode[1]) << 24) |
(((u64)ucode[2]) << 16) |
(((u64)ucode[3]) << 8) |
((u64)ucode[4]);
ucode += 5;
ustore_write(uengine, insn);
}
/*
* Pad with a few NOPs at the end (to avoid the microengine
* aborting as it prefetches beyond the last instruction), unless
* we run off the end of the instruction store first, at which
* point the address register will wrap back to zero.
*/
for (i = 0; i < 4; i++) {
u32 addr;
addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
if (addr == 0x80000000)
break;
ustore_write(uengine, 0xf0000c0300ULL);
}
/*
* End programming.
*/
ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
}
EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
void ixp2000_uengine_init_context(int uengine, int context, int pc)
{
/*
* Select the right context for indirect access.
*/
ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
/*
* Initialise signal masks to immediately go to Ready state.
*/
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
/*
* Set program counter.
*/
ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
}
EXPORT_SYMBOL(ixp2000_uengine_init_context);
void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
{
u32 mask;
/*
* Enable the specified context to go to Executing state.
*/
mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
mask |= ctx_mask << 8;
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
}
EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
{
u32 mask;
/*
* Disable the Ready->Executing transition. Note that this
* does not stop the context until it voluntarily yields.
*/
mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
mask &= ~(ctx_mask << 8);
ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
}
EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
static int check_ixp_type(struct ixp2000_uengine_code *c)
{
u32 product_id;
u32 rev;
product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
if (((product_id >> 16) & 0x1f) != 0)
return 0;
switch ((product_id >> 8) & 0xff) {
#ifdef CONFIG_ARCH_IXP2000
case 0: /* IXP2800 */
if (!(c->cpu_model_bitmask & 4))
return 0;
break;
case 1: /* IXP2850 */
if (!(c->cpu_model_bitmask & 8))
return 0;
break;
case 2: /* IXP2400 */
if (!(c->cpu_model_bitmask & 2))
return 0;
break;
#endif
#ifdef CONFIG_ARCH_IXP23XX
case 4: /* IXP23xx */
if (!(c->cpu_model_bitmask & 0x3f0))
return 0;
break;
#endif
default:
return 0;
}
rev = product_id & 0xff;
if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
return 0;
return 1;
}
static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
{
int offset;
int i;
offset = 0;
for (i = 0; i < 128; i++) {
u8 b3;
u8 b2;
u8 b1;
u8 b0;
b3 = (gpr_a[i] >> 24) & 0xff;
b2 = (gpr_a[i] >> 16) & 0xff;
b1 = (gpr_a[i] >> 8) & 0xff;
b0 = gpr_a[i] & 0xff;
// immed[@ai, (b1 << 8) | b0]
// 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII
ucode[offset++] = 0xf0;
ucode[offset++] = (b1 >> 4);
ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
ucode[offset++] = (b0 << 2);
ucode[offset++] = 0x80 | i;
// immed_w1[@ai, (b3 << 8) | b2]
// 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII
ucode[offset++] = 0xf4;
ucode[offset++] = 0x40 | (b3 >> 4);
ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
ucode[offset++] = (b2 << 2);
ucode[offset++] = 0x80 | i;
}
for (i = 0; i < 128; i++) {
u8 b3;
u8 b2;
u8 b1;
u8 b0;
b3 = (gpr_b[i] >> 24) & 0xff;
b2 = (gpr_b[i] >> 16) & 0xff;
b1 = (gpr_b[i] >> 8) & 0xff;
b0 = gpr_b[i] & 0xff;
// immed[@bi, (b1 << 8) | b0]
// 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV
ucode[offset++] = 0xf0;
ucode[offset++] = (b1 >> 4);
ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
ucode[offset++] = (i << 2) | 0x03;
ucode[offset++] = b0;
// immed_w1[@bi, (b3 << 8) | b2]
// 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV
ucode[offset++] = 0xf4;
ucode[offset++] = 0x40 | (b3 >> 4);
ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
ucode[offset++] = (i << 2) | 0x03;
ucode[offset++] = b2;
}
// ctx_arb[kill]
ucode[offset++] = 0xe0;
ucode[offset++] = 0x00;
ucode[offset++] = 0x01;
ucode[offset++] = 0x00;
ucode[offset++] = 0x00;
}
static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
{
int per_ctx_regs;
u32 *gpr_a;
u32 *gpr_b;
u8 *ucode;
int i;
gpr_a = kmalloc(128 * sizeof(u32), GFP_KERNEL);
gpr_b = kmalloc(128 * sizeof(u32), GFP_KERNEL);
ucode = kmalloc(513 * 5, GFP_KERNEL);
if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
kfree(ucode);
kfree(gpr_b);
kfree(gpr_a);
return 1;
}
per_ctx_regs = 16;
if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
per_ctx_regs = 32;
memset(gpr_a, 0, sizeof(gpr_a));
memset(gpr_b, 0, sizeof(gpr_b));
for (i = 0; i < 256; i++) {
struct ixp2000_reg_value *r = c->initial_reg_values + i;
u32 *bank;
int inc;
int j;
if (r->reg == -1)
break;
bank = (r->reg & 0x400) ? gpr_b : gpr_a;
inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
j = r->reg & 0x7f;
while (j < 128) {
bank[j] = r->value;
j += inc;
}
}
generate_ucode(ucode, gpr_a, gpr_b);
ixp2000_uengine_load_microcode(uengine, ucode, 513);
ixp2000_uengine_init_context(uengine, 0, 0);
ixp2000_uengine_start_contexts(uengine, 0x01);
for (i = 0; i < 100; i++) {
u32 status;
status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
if (!(status & 0x80000000))
break;
}
ixp2000_uengine_stop_contexts(uengine, 0x01);
kfree(ucode);
kfree(gpr_b);
kfree(gpr_a);
return !!(i == 100);
}
int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
{
int ctx;
if (!check_ixp_type(c))
return 1;
if (!(ixp2000_uengine_mask & (1 << uengine)))
return 1;
ixp2000_uengine_reset(1 << uengine);
ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
if (set_initial_registers(uengine, c))
return 1;
ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
for (ctx = 0; ctx < 8; ctx++)
ixp2000_uengine_init_context(uengine, ctx, 0);
return 0;
}
EXPORT_SYMBOL(ixp2000_uengine_load);
static int __init ixp2000_uengine_init(void)
{
int uengine;
u32 value;
/*
* Determine number of microengines present.
*/
switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
#ifdef CONFIG_ARCH_IXP2000
case 0: /* IXP2800 */
case 1: /* IXP2850 */
ixp2000_uengine_mask = 0x00ff00ff;
break;
case 2: /* IXP2400 */
ixp2000_uengine_mask = 0x000f000f;
break;
#endif
#ifdef CONFIG_ARCH_IXP23XX
case 4: /* IXP23xx */
ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
break;
#endif
default:
printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
(unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
ixp2000_uengine_mask = 0x00000000;
break;
}
/*
* Reset microengines.
*/
ixp2000_uengine_reset(ixp2000_uengine_mask);
/*
* Synchronise timestamp counters across all microengines.
*/
value = ixp2000_reg_read(IXP_MISC_CONTROL);
ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
for (uengine = 0; uengine < 32; uengine++) {
if (ixp2000_uengine_mask & (1 << uengine)) {
ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
}
}
ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
return 0;
}
subsys_initcall(ixp2000_uengine_init);