linux-sg2042/drivers/net/vxge/vxge-config.c

5245 lines
136 KiB
C

/******************************************************************************
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
* Virtualized Server Adapter.
* Copyright(c) 2002-2010 Exar Corp.
******************************************************************************/
#include <linux/vmalloc.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#include <linux/slab.h>
#include "vxge-traffic.h"
#include "vxge-config.h"
static enum vxge_hw_status
__vxge_hw_fifo_create(
struct __vxge_hw_vpath_handle *vpath_handle,
struct vxge_hw_fifo_attr *attr);
static enum vxge_hw_status
__vxge_hw_fifo_abort(
struct __vxge_hw_fifo *fifoh);
static enum vxge_hw_status
__vxge_hw_fifo_reset(
struct __vxge_hw_fifo *ringh);
static enum vxge_hw_status
__vxge_hw_fifo_delete(
struct __vxge_hw_vpath_handle *vpath_handle);
static struct __vxge_hw_blockpool_entry *
__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *hldev,
u32 size);
static void
__vxge_hw_blockpool_block_free(struct __vxge_hw_device *hldev,
struct __vxge_hw_blockpool_entry *entry);
static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
void *block_addr,
u32 length,
struct pci_dev *dma_h,
struct pci_dev *acc_handle);
static enum vxge_hw_status
__vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
struct __vxge_hw_blockpool *blockpool,
u32 pool_size,
u32 pool_max);
static void
__vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool);
static void *
__vxge_hw_blockpool_malloc(struct __vxge_hw_device *hldev,
u32 size,
struct vxge_hw_mempool_dma *dma_object);
static void
__vxge_hw_blockpool_free(struct __vxge_hw_device *hldev,
void *memblock,
u32 size,
struct vxge_hw_mempool_dma *dma_object);
static struct __vxge_hw_channel*
__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
enum __vxge_hw_channel_type type, u32 length,
u32 per_dtr_space, void *userdata);
static void
__vxge_hw_channel_free(
struct __vxge_hw_channel *channel);
static enum vxge_hw_status
__vxge_hw_channel_initialize(
struct __vxge_hw_channel *channel);
static enum vxge_hw_status
__vxge_hw_channel_reset(
struct __vxge_hw_channel *channel);
static enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp);
static enum vxge_hw_status
__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config);
static enum vxge_hw_status
__vxge_hw_device_config_check(struct vxge_hw_device_config *new_config);
static void
__vxge_hw_device_id_get(struct __vxge_hw_device *hldev);
static void
__vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev);
static enum vxge_hw_status
__vxge_hw_vpath_card_info_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg,
struct vxge_hw_device_hw_info *hw_info);
static enum vxge_hw_status
__vxge_hw_device_initialize(struct __vxge_hw_device *hldev);
static void
__vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev);
static enum vxge_hw_status
__vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev);
static enum vxge_hw_status
__vxge_hw_device_register_poll(
void __iomem *reg,
u64 mask, u32 max_millis);
static inline enum vxge_hw_status
__vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
u64 mask, u32 max_millis)
{
__vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
wmb();
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
wmb();
return __vxge_hw_device_register_poll(addr, mask, max_millis);
}
static struct vxge_hw_mempool*
__vxge_hw_mempool_create(struct __vxge_hw_device *devh, u32 memblock_size,
u32 item_size, u32 private_size, u32 items_initial,
u32 items_max, struct vxge_hw_mempool_cbs *mp_callback,
void *userdata);
static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool);
static enum vxge_hw_status
__vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_vpath_stats_hw_info *hw_stats);
static enum vxge_hw_status
vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vpath_handle);
static enum vxge_hw_status
__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg);
static u64
__vxge_hw_vpath_pci_func_mode_get(u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg);
static u32
__vxge_hw_vpath_func_id_get(u32 vp_id, struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg);
static enum vxge_hw_status
__vxge_hw_vpath_addr_get(u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN]);
static enum vxge_hw_status
__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath);
static enum vxge_hw_status
__vxge_hw_vpath_sw_reset(struct __vxge_hw_device *devh, u32 vp_id);
static enum vxge_hw_status
__vxge_hw_vpath_fw_ver_get(u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
struct vxge_hw_device_hw_info *hw_info);
static enum vxge_hw_status
__vxge_hw_vpath_mac_configure(struct __vxge_hw_device *devh, u32 vp_id);
static void
__vxge_hw_vp_terminate(struct __vxge_hw_device *devh, u32 vp_id);
static enum vxge_hw_status
__vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
u32 operation, u32 offset, u64 *stat);
static enum vxge_hw_status
__vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats);
static enum vxge_hw_status
__vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats);
/*
* __vxge_hw_channel_allocate - Allocate memory for channel
* This function allocates required memory for the channel and various arrays
* in the channel
*/
struct __vxge_hw_channel*
__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
enum __vxge_hw_channel_type type,
u32 length, u32 per_dtr_space, void *userdata)
{
struct __vxge_hw_channel *channel;
struct __vxge_hw_device *hldev;
int size = 0;
u32 vp_id;
hldev = vph->vpath->hldev;
vp_id = vph->vpath->vp_id;
switch (type) {
case VXGE_HW_CHANNEL_TYPE_FIFO:
size = sizeof(struct __vxge_hw_fifo);
break;
case VXGE_HW_CHANNEL_TYPE_RING:
size = sizeof(struct __vxge_hw_ring);
break;
default:
break;
}
channel = kzalloc(size, GFP_KERNEL);
if (channel == NULL)
goto exit0;
INIT_LIST_HEAD(&channel->item);
channel->common_reg = hldev->common_reg;
channel->first_vp_id = hldev->first_vp_id;
channel->type = type;
channel->devh = hldev;
channel->vph = vph;
channel->userdata = userdata;
channel->per_dtr_space = per_dtr_space;
channel->length = length;
channel->vp_id = vp_id;
channel->work_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
if (channel->work_arr == NULL)
goto exit1;
channel->free_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
if (channel->free_arr == NULL)
goto exit1;
channel->free_ptr = length;
channel->reserve_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
if (channel->reserve_arr == NULL)
goto exit1;
channel->reserve_ptr = length;
channel->reserve_top = 0;
channel->orig_arr = kzalloc(sizeof(void *)*length, GFP_KERNEL);
if (channel->orig_arr == NULL)
goto exit1;
return channel;
exit1:
__vxge_hw_channel_free(channel);
exit0:
return NULL;
}
/*
* __vxge_hw_channel_free - Free memory allocated for channel
* This function deallocates memory from the channel and various arrays
* in the channel
*/
void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
{
kfree(channel->work_arr);
kfree(channel->free_arr);
kfree(channel->reserve_arr);
kfree(channel->orig_arr);
kfree(channel);
}
/*
* __vxge_hw_channel_initialize - Initialize a channel
* This function initializes a channel by properly setting the
* various references
*/
enum vxge_hw_status
__vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
{
u32 i;
struct __vxge_hw_virtualpath *vpath;
vpath = channel->vph->vpath;
if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
for (i = 0; i < channel->length; i++)
channel->orig_arr[i] = channel->reserve_arr[i];
}
switch (channel->type) {
case VXGE_HW_CHANNEL_TYPE_FIFO:
vpath->fifoh = (struct __vxge_hw_fifo *)channel;
channel->stats = &((struct __vxge_hw_fifo *)
channel)->stats->common_stats;
break;
case VXGE_HW_CHANNEL_TYPE_RING:
vpath->ringh = (struct __vxge_hw_ring *)channel;
channel->stats = &((struct __vxge_hw_ring *)
channel)->stats->common_stats;
break;
default:
break;
}
return VXGE_HW_OK;
}
/*
* __vxge_hw_channel_reset - Resets a channel
* This function resets a channel by properly setting the various references
*/
enum vxge_hw_status
__vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
{
u32 i;
for (i = 0; i < channel->length; i++) {
if (channel->reserve_arr != NULL)
channel->reserve_arr[i] = channel->orig_arr[i];
if (channel->free_arr != NULL)
channel->free_arr[i] = NULL;
if (channel->work_arr != NULL)
channel->work_arr[i] = NULL;
}
channel->free_ptr = channel->length;
channel->reserve_ptr = channel->length;
channel->reserve_top = 0;
channel->post_index = 0;
channel->compl_index = 0;
return VXGE_HW_OK;
}
/*
* __vxge_hw_device_pci_e_init
* Initialize certain PCI/PCI-X configuration registers
* with recommended values. Save config space for future hw resets.
*/
void
__vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
{
u16 cmd = 0;
/* Set the PErr Repconse bit and SERR in PCI command register. */
pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
cmd |= 0x140;
pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
pci_save_state(hldev->pdev);
}
/*
* __vxge_hw_device_register_poll
* Will poll certain register for specified amount of time.
* Will poll until masked bit is not cleared.
*/
static enum vxge_hw_status
__vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
{
u64 val64;
u32 i = 0;
enum vxge_hw_status ret = VXGE_HW_FAIL;
udelay(10);
do {
val64 = readq(reg);
if (!(val64 & mask))
return VXGE_HW_OK;
udelay(100);
} while (++i <= 9);
i = 0;
do {
val64 = readq(reg);
if (!(val64 & mask))
return VXGE_HW_OK;
mdelay(1);
} while (++i <= max_millis);
return ret;
}
/* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
* in progress
* This routine checks the vpath reset in progress register is turned zero
*/
static enum vxge_hw_status
__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
{
enum vxge_hw_status status;
status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
return status;
}
/*
* __vxge_hw_device_toc_get
* This routine sets the swapper and reads the toc pointer and returns the
* memory mapped address of the toc
*/
static struct vxge_hw_toc_reg __iomem *
__vxge_hw_device_toc_get(void __iomem *bar0)
{
u64 val64;
struct vxge_hw_toc_reg __iomem *toc = NULL;
enum vxge_hw_status status;
struct vxge_hw_legacy_reg __iomem *legacy_reg =
(struct vxge_hw_legacy_reg __iomem *)bar0;
status = __vxge_hw_legacy_swapper_set(legacy_reg);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&legacy_reg->toc_first_pointer);
toc = (struct vxge_hw_toc_reg __iomem *)(bar0+val64);
exit:
return toc;
}
/*
* __vxge_hw_device_reg_addr_get
* This routine sets the swapper and reads the toc pointer and initializes the
* register location pointers in the device object. It waits until the ric is
* completed initializing registers.
*/
enum vxge_hw_status
__vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
{
u64 val64;
u32 i;
enum vxge_hw_status status = VXGE_HW_OK;
hldev->legacy_reg = (struct vxge_hw_legacy_reg __iomem *)hldev->bar0;
hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
if (hldev->toc_reg == NULL) {
status = VXGE_HW_FAIL;
goto exit;
}
val64 = readq(&hldev->toc_reg->toc_common_pointer);
hldev->common_reg =
(struct vxge_hw_common_reg __iomem *)(hldev->bar0 + val64);
val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
hldev->mrpcim_reg =
(struct vxge_hw_mrpcim_reg __iomem *)(hldev->bar0 + val64);
for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
hldev->srpcim_reg[i] =
(struct vxge_hw_srpcim_reg __iomem *)
(hldev->bar0 + val64);
}
for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
hldev->vpmgmt_reg[i] =
(struct vxge_hw_vpmgmt_reg __iomem *)(hldev->bar0 + val64);
}
for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
hldev->vpath_reg[i] =
(struct vxge_hw_vpath_reg __iomem *)
(hldev->bar0 + val64);
}
val64 = readq(&hldev->toc_reg->toc_kdfc);
switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
case 0:
hldev->kdfc = (u8 __iomem *)(hldev->bar0 +
VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64));
break;
default:
break;
}
status = __vxge_hw_device_vpath_reset_in_prog_check(
(u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
exit:
return status;
}
/*
* __vxge_hw_device_id_get
* This routine returns sets the device id and revision numbers into the device
* structure
*/
void __vxge_hw_device_id_get(struct __vxge_hw_device *hldev)
{
u64 val64;
val64 = readq(&hldev->common_reg->titan_asic_id);
hldev->device_id =
(u16)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_DEVICE_ID(val64);
hldev->major_revision =
(u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MAJOR_REVISION(val64);
hldev->minor_revision =
(u8)VXGE_HW_TITAN_ASIC_ID_GET_INITIAL_MINOR_REVISION(val64);
}
/*
* __vxge_hw_device_access_rights_get: Get Access Rights of the driver
* This routine returns the Access Rights of the driver
*/
static u32
__vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
{
u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
switch (host_type) {
case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
if (func_id == 0) {
access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
}
break;
case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
break;
case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
break;
case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
break;
case VXGE_HW_SR_VH_FUNCTION0:
case VXGE_HW_VH_NORMAL_FUNCTION:
access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
break;
}
return access_rights;
}
/*
* __vxge_hw_device_is_privilaged
* This routine checks if the device function is privilaged or not
*/
enum vxge_hw_status
__vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
{
if (__vxge_hw_device_access_rights_get(host_type,
func_id) &
VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
return VXGE_HW_OK;
else
return VXGE_HW_ERR_PRIVILAGED_OPEARATION;
}
/*
* __vxge_hw_device_host_info_get
* This routine returns the host type assignments
*/
void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
{
u64 val64;
u32 i;
val64 = readq(&hldev->common_reg->host_type_assignments);
hldev->host_type =
(u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!(hldev->vpath_assignments & vxge_mBIT(i)))
continue;
hldev->func_id =
__vxge_hw_vpath_func_id_get(i, hldev->vpmgmt_reg[i]);
hldev->access_rights = __vxge_hw_device_access_rights_get(
hldev->host_type, hldev->func_id);
hldev->first_vp_id = i;
break;
}
}
/*
* __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
* link width and signalling rate.
*/
static enum vxge_hw_status
__vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
{
int exp_cap;
u16 lnk;
/* Get the negotiated link width and speed from PCI config space */
exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
return VXGE_HW_ERR_INVALID_PCI_INFO;
switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
case PCIE_LNK_WIDTH_RESRV:
case PCIE_LNK_X1:
case PCIE_LNK_X2:
case PCIE_LNK_X4:
case PCIE_LNK_X8:
break;
default:
return VXGE_HW_ERR_INVALID_PCI_INFO;
}
return VXGE_HW_OK;
}
/*
* __vxge_hw_device_initialize
* Initialize Titan-V hardware.
*/
enum vxge_hw_status __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
{
enum vxge_hw_status status = VXGE_HW_OK;
if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
hldev->func_id)) {
/* Validate the pci-e link width and speed */
status = __vxge_hw_verify_pci_e_info(hldev);
if (status != VXGE_HW_OK)
goto exit;
}
exit:
return status;
}
/**
* vxge_hw_device_hw_info_get - Get the hw information
* Returns the vpath mask that has the bits set for each vpath allocated
* for the driver, FW version information and the first mac addresse for
* each vpath
*/
enum vxge_hw_status __devinit
vxge_hw_device_hw_info_get(void __iomem *bar0,
struct vxge_hw_device_hw_info *hw_info)
{
u32 i;
u64 val64;
struct vxge_hw_toc_reg __iomem *toc;
struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
struct vxge_hw_common_reg __iomem *common_reg;
struct vxge_hw_vpath_reg __iomem *vpath_reg;
struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
enum vxge_hw_status status;
memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
toc = __vxge_hw_device_toc_get(bar0);
if (toc == NULL) {
status = VXGE_HW_ERR_CRITICAL;
goto exit;
}
val64 = readq(&toc->toc_common_pointer);
common_reg = (struct vxge_hw_common_reg __iomem *)(bar0 + val64);
status = __vxge_hw_device_vpath_reset_in_prog_check(
(u64 __iomem *)&common_reg->vpath_rst_in_prog);
if (status != VXGE_HW_OK)
goto exit;
hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
val64 = readq(&common_reg->host_type_assignments);
hw_info->host_type =
(u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
continue;
val64 = readq(&toc->toc_vpmgmt_pointer[i]);
vpmgmt_reg = (struct vxge_hw_vpmgmt_reg __iomem *)
(bar0 + val64);
hw_info->func_id = __vxge_hw_vpath_func_id_get(i, vpmgmt_reg);
if (__vxge_hw_device_access_rights_get(hw_info->host_type,
hw_info->func_id) &
VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
val64 = readq(&toc->toc_mrpcim_pointer);
mrpcim_reg = (struct vxge_hw_mrpcim_reg __iomem *)
(bar0 + val64);
writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
wmb();
}
val64 = readq(&toc->toc_vpath_pointer[i]);
vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
hw_info->function_mode =
__vxge_hw_vpath_pci_func_mode_get(i, vpath_reg);
status = __vxge_hw_vpath_fw_ver_get(i, vpath_reg, hw_info);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_card_info_get(i, vpath_reg, hw_info);
if (status != VXGE_HW_OK)
goto exit;
break;
}
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
continue;
val64 = readq(&toc->toc_vpath_pointer[i]);
vpath_reg = (struct vxge_hw_vpath_reg __iomem *)(bar0 + val64);
status = __vxge_hw_vpath_addr_get(i, vpath_reg,
hw_info->mac_addrs[i],
hw_info->mac_addr_masks[i]);
if (status != VXGE_HW_OK)
goto exit;
}
exit:
return status;
}
/*
* vxge_hw_device_initialize - Initialize Titan device.
* Initialize Titan device. Note that all the arguments of this public API
* are 'IN', including @hldev. Driver cooperates with
* OS to find new Titan device, locate its PCI and memory spaces.
*
* When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
* to enable the latter to perform Titan hardware initialization.
*/
enum vxge_hw_status __devinit
vxge_hw_device_initialize(
struct __vxge_hw_device **devh,
struct vxge_hw_device_attr *attr,
struct vxge_hw_device_config *device_config)
{
u32 i;
u32 nblocks = 0;
struct __vxge_hw_device *hldev = NULL;
enum vxge_hw_status status = VXGE_HW_OK;
status = __vxge_hw_device_config_check(device_config);
if (status != VXGE_HW_OK)
goto exit;
hldev = (struct __vxge_hw_device *)
vmalloc(sizeof(struct __vxge_hw_device));
if (hldev == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
memset(hldev, 0, sizeof(struct __vxge_hw_device));
hldev->magic = VXGE_HW_DEVICE_MAGIC;
vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
/* apply config */
memcpy(&hldev->config, device_config,
sizeof(struct vxge_hw_device_config));
hldev->bar0 = attr->bar0;
hldev->pdev = attr->pdev;
hldev->uld_callbacks.link_up = attr->uld_callbacks.link_up;
hldev->uld_callbacks.link_down = attr->uld_callbacks.link_down;
hldev->uld_callbacks.crit_err = attr->uld_callbacks.crit_err;
__vxge_hw_device_pci_e_init(hldev);
status = __vxge_hw_device_reg_addr_get(hldev);
if (status != VXGE_HW_OK) {
vfree(hldev);
goto exit;
}
__vxge_hw_device_id_get(hldev);
__vxge_hw_device_host_info_get(hldev);
/* Incrementing for stats blocks */
nblocks++;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!(hldev->vpath_assignments & vxge_mBIT(i)))
continue;
if (device_config->vp_config[i].ring.enable ==
VXGE_HW_RING_ENABLE)
nblocks += device_config->vp_config[i].ring.ring_blocks;
if (device_config->vp_config[i].fifo.enable ==
VXGE_HW_FIFO_ENABLE)
nblocks += device_config->vp_config[i].fifo.fifo_blocks;
nblocks++;
}
if (__vxge_hw_blockpool_create(hldev,
&hldev->block_pool,
device_config->dma_blockpool_initial + nblocks,
device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
vxge_hw_device_terminate(hldev);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
status = __vxge_hw_device_initialize(hldev);
if (status != VXGE_HW_OK) {
vxge_hw_device_terminate(hldev);
goto exit;
}
*devh = hldev;
exit:
return status;
}
/*
* vxge_hw_device_terminate - Terminate Titan device.
* Terminate HW device.
*/
void
vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
{
vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
hldev->magic = VXGE_HW_DEVICE_DEAD;
__vxge_hw_blockpool_destroy(&hldev->block_pool);
vfree(hldev);
}
/*
* vxge_hw_device_stats_get - Get the device hw statistics.
* Returns the vpath h/w stats for the device.
*/
enum vxge_hw_status
vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
struct vxge_hw_device_stats_hw_info *hw_stats)
{
u32 i;
enum vxge_hw_status status = VXGE_HW_OK;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
(hldev->virtual_paths[i].vp_open ==
VXGE_HW_VP_NOT_OPEN))
continue;
memcpy(hldev->virtual_paths[i].hw_stats_sav,
hldev->virtual_paths[i].hw_stats,
sizeof(struct vxge_hw_vpath_stats_hw_info));
status = __vxge_hw_vpath_stats_get(
&hldev->virtual_paths[i],
hldev->virtual_paths[i].hw_stats);
}
memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
sizeof(struct vxge_hw_device_stats_hw_info));
return status;
}
/*
* vxge_hw_driver_stats_get - Get the device sw statistics.
* Returns the vpath s/w stats for the device.
*/
enum vxge_hw_status vxge_hw_driver_stats_get(
struct __vxge_hw_device *hldev,
struct vxge_hw_device_stats_sw_info *sw_stats)
{
enum vxge_hw_status status = VXGE_HW_OK;
memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
sizeof(struct vxge_hw_device_stats_sw_info));
return status;
}
/*
* vxge_hw_mrpcim_stats_access - Access the statistics from the given location
* and offset and perform an operation
* Get the statistics from the given location and offset.
*/
enum vxge_hw_status
vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
u32 operation, u32 location, u32 offset, u64 *stat)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
status = __vxge_hw_device_is_privilaged(hldev->host_type,
hldev->func_id);
if (status != VXGE_HW_OK)
goto exit;
val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
status = __vxge_hw_pio_mem_write64(val64,
&hldev->mrpcim_reg->xmac_stats_sys_cmd,
VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
hldev->config.device_poll_millis);
if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
*stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
else
*stat = 0;
exit:
return status;
}
/*
* vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
* Get the Statistics on aggregate port
*/
static enum vxge_hw_status
vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
struct vxge_hw_xmac_aggr_stats *aggr_stats)
{
u64 *val64;
int i;
u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
enum vxge_hw_status status = VXGE_HW_OK;
val64 = (u64 *)aggr_stats;
status = __vxge_hw_device_is_privilaged(hldev->host_type,
hldev->func_id);
if (status != VXGE_HW_OK)
goto exit;
for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
status = vxge_hw_mrpcim_stats_access(hldev,
VXGE_HW_STATS_OP_READ,
VXGE_HW_STATS_LOC_AGGR,
((offset + (104 * port)) >> 3), val64);
if (status != VXGE_HW_OK)
goto exit;
offset += 8;
val64++;
}
exit:
return status;
}
/*
* vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
* Get the Statistics on port
*/
static enum vxge_hw_status
vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
struct vxge_hw_xmac_port_stats *port_stats)
{
u64 *val64;
enum vxge_hw_status status = VXGE_HW_OK;
int i;
u32 offset = 0x0;
val64 = (u64 *) port_stats;
status = __vxge_hw_device_is_privilaged(hldev->host_type,
hldev->func_id);
if (status != VXGE_HW_OK)
goto exit;
for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
status = vxge_hw_mrpcim_stats_access(hldev,
VXGE_HW_STATS_OP_READ,
VXGE_HW_STATS_LOC_AGGR,
((offset + (608 * port)) >> 3), val64);
if (status != VXGE_HW_OK)
goto exit;
offset += 8;
val64++;
}
exit:
return status;
}
/*
* vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
* Get the XMAC Statistics
*/
enum vxge_hw_status
vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
struct vxge_hw_xmac_stats *xmac_stats)
{
enum vxge_hw_status status = VXGE_HW_OK;
u32 i;
status = vxge_hw_device_xmac_aggr_stats_get(hldev,
0, &xmac_stats->aggr_stats[0]);
if (status != VXGE_HW_OK)
goto exit;
status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1, &xmac_stats->aggr_stats[1]);
if (status != VXGE_HW_OK)
goto exit;
for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
status = vxge_hw_device_xmac_port_stats_get(hldev,
i, &xmac_stats->port_stats[i]);
if (status != VXGE_HW_OK)
goto exit;
}
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
continue;
status = __vxge_hw_vpath_xmac_tx_stats_get(
&hldev->virtual_paths[i],
&xmac_stats->vpath_tx_stats[i]);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_xmac_rx_stats_get(
&hldev->virtual_paths[i],
&xmac_stats->vpath_rx_stats[i]);
if (status != VXGE_HW_OK)
goto exit;
}
exit:
return status;
}
/*
* vxge_hw_device_debug_set - Set the debug module, level and timestamp
* This routine is used to dynamically change the debug output
*/
void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
enum vxge_debug_level level, u32 mask)
{
if (hldev == NULL)
return;
#if defined(VXGE_DEBUG_TRACE_MASK) || \
defined(VXGE_DEBUG_ERR_MASK)
hldev->debug_module_mask = mask;
hldev->debug_level = level;
#endif
#if defined(VXGE_DEBUG_ERR_MASK)
hldev->level_err = level & VXGE_ERR;
#endif
#if defined(VXGE_DEBUG_TRACE_MASK)
hldev->level_trace = level & VXGE_TRACE;
#endif
}
/*
* vxge_hw_device_error_level_get - Get the error level
* This routine returns the current error level set
*/
u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
{
#if defined(VXGE_DEBUG_ERR_MASK)
if (hldev == NULL)
return VXGE_ERR;
else
return hldev->level_err;
#else
return 0;
#endif
}
/*
* vxge_hw_device_trace_level_get - Get the trace level
* This routine returns the current trace level set
*/
u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
{
#if defined(VXGE_DEBUG_TRACE_MASK)
if (hldev == NULL)
return VXGE_TRACE;
else
return hldev->level_trace;
#else
return 0;
#endif
}
/*
* vxge_hw_getpause_data -Pause frame frame generation and reception.
* Returns the Pause frame generation and reception capability of the NIC.
*/
enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
u32 port, u32 *tx, u32 *rx)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
status = VXGE_HW_ERR_INVALID_DEVICE;
goto exit;
}
if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
status = VXGE_HW_ERR_INVALID_PORT;
goto exit;
}
if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
goto exit;
}
val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
*tx = 1;
if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
*rx = 1;
exit:
return status;
}
/*
* vxge_hw_device_setpause_data - set/reset pause frame generation.
* It can be used to set or reset Pause frame generation or reception
* support of the NIC.
*/
enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
u32 port, u32 tx, u32 rx)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
status = VXGE_HW_ERR_INVALID_DEVICE;
goto exit;
}
if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
status = VXGE_HW_ERR_INVALID_PORT;
goto exit;
}
status = __vxge_hw_device_is_privilaged(hldev->host_type,
hldev->func_id);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
if (tx)
val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
else
val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
if (rx)
val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
else
val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
exit:
return status;
}
u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
{
int link_width, exp_cap;
u16 lnk;
exp_cap = pci_find_capability(hldev->pdev, PCI_CAP_ID_EXP);
pci_read_config_word(hldev->pdev, exp_cap + PCI_EXP_LNKSTA, &lnk);
link_width = (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
return link_width;
}
/*
* __vxge_hw_ring_block_memblock_idx - Return the memblock index
* This function returns the index of memory block
*/
static inline u32
__vxge_hw_ring_block_memblock_idx(u8 *block)
{
return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
}
/*
* __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
* This function sets index to a memory block
*/
static inline void
__vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
{
*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
}
/*
* __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
* in RxD block
* Sets the next block pointer in RxD block
*/
static inline void
__vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
{
*((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
}
/*
* __vxge_hw_ring_first_block_address_get - Returns the dma address of the
* first block
* Returns the dma address of the first RxD block
*/
static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
{
struct vxge_hw_mempool_dma *dma_object;
dma_object = ring->mempool->memblocks_dma_arr;
vxge_assert(dma_object != NULL);
return dma_object->addr;
}
/*
* __vxge_hw_ring_item_dma_addr - Return the dma address of an item
* This function returns the dma address of a given item
*/
static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
void *item)
{
u32 memblock_idx;
void *memblock;
struct vxge_hw_mempool_dma *memblock_dma_object;
ptrdiff_t dma_item_offset;
/* get owner memblock index */
memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
/* get owner memblock by memblock index */
memblock = mempoolh->memblocks_arr[memblock_idx];
/* get memblock DMA object by memblock index */
memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
/* calculate offset in the memblock of this item */
dma_item_offset = (u8 *)item - (u8 *)memblock;
return memblock_dma_object->addr + dma_item_offset;
}
/*
* __vxge_hw_ring_rxdblock_link - Link the RxD blocks
* This function returns the dma address of a given item
*/
static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
struct __vxge_hw_ring *ring, u32 from,
u32 to)
{
u8 *to_item , *from_item;
dma_addr_t to_dma;
/* get "from" RxD block */
from_item = mempoolh->items_arr[from];
vxge_assert(from_item);
/* get "to" RxD block */
to_item = mempoolh->items_arr[to];
vxge_assert(to_item);
/* return address of the beginning of previous RxD block */
to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
/* set next pointer for this RxD block to point on
* previous item's DMA start address */
__vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
}
/*
* __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
* block callback
* This function is callback passed to __vxge_hw_mempool_create to create memory
* pool for RxD block
*/
static void
__vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
u32 memblock_index,
struct vxge_hw_mempool_dma *dma_object,
u32 index, u32 is_last)
{
u32 i;
void *item = mempoolh->items_arr[index];
struct __vxge_hw_ring *ring =
(struct __vxge_hw_ring *)mempoolh->userdata;
/* format rxds array */
for (i = 0; i < ring->rxds_per_block; i++) {
void *rxdblock_priv;
void *uld_priv;
struct vxge_hw_ring_rxd_1 *rxdp;
u32 reserve_index = ring->channel.reserve_ptr -
(index * ring->rxds_per_block + i + 1);
u32 memblock_item_idx;
ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
i * ring->rxd_size;
/* Note: memblock_item_idx is index of the item within
* the memblock. For instance, in case of three RxD-blocks
* per memblock this value can be 0, 1 or 2. */
rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
memblock_index, item,
&memblock_item_idx);
rxdp = (struct vxge_hw_ring_rxd_1 *)
ring->channel.reserve_arr[reserve_index];
uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
/* pre-format Host_Control */
rxdp->host_control = (u64)(size_t)uld_priv;
}
__vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
if (is_last) {
/* link last one with first one */
__vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
}
if (index > 0) {
/* link this RxD block with previous one */
__vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
}
}
/*
* __vxge_hw_ring_replenish - Initial replenish of RxDs
* This function replenishes the RxDs from reserve array to work array
*/
enum vxge_hw_status
vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
{
void *rxd;
struct __vxge_hw_channel *channel;
enum vxge_hw_status status = VXGE_HW_OK;
channel = &ring->channel;
while (vxge_hw_channel_dtr_count(channel) > 0) {
status = vxge_hw_ring_rxd_reserve(ring, &rxd);
vxge_assert(status == VXGE_HW_OK);
if (ring->rxd_init) {
status = ring->rxd_init(rxd, channel->userdata);
if (status != VXGE_HW_OK) {
vxge_hw_ring_rxd_free(ring, rxd);
goto exit;
}
}
vxge_hw_ring_rxd_post(ring, rxd);
}
status = VXGE_HW_OK;
exit:
return status;
}
/*
* __vxge_hw_ring_create - Create a Ring
* This function creates Ring and initializes it.
*
*/
static enum vxge_hw_status
__vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
struct vxge_hw_ring_attr *attr)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_ring *ring;
u32 ring_length;
struct vxge_hw_ring_config *config;
struct __vxge_hw_device *hldev;
u32 vp_id;
struct vxge_hw_mempool_cbs ring_mp_callback;
if ((vp == NULL) || (attr == NULL)) {
status = VXGE_HW_FAIL;
goto exit;
}
hldev = vp->vpath->hldev;
vp_id = vp->vpath->vp_id;
config = &hldev->config.vp_config[vp_id].ring;
ring_length = config->ring_blocks *
vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
VXGE_HW_CHANNEL_TYPE_RING,
ring_length,
attr->per_rxd_space,
attr->userdata);
if (ring == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
vp->vpath->ringh = ring;
ring->vp_id = vp_id;
ring->vp_reg = vp->vpath->vp_reg;
ring->common_reg = hldev->common_reg;
ring->stats = &vp->vpath->sw_stats->ring_stats;
ring->config = config;
ring->callback = attr->callback;
ring->rxd_init = attr->rxd_init;
ring->rxd_term = attr->rxd_term;
ring->buffer_mode = config->buffer_mode;
ring->rxds_limit = config->rxds_limit;
ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
ring->rxd_priv_size =
sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
ring->per_rxd_space = attr->per_rxd_space;
ring->rxd_priv_size =
((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
/* how many RxDs can fit into one block. Depends on configured
* buffer_mode. */
ring->rxds_per_block =
vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
/* calculate actual RxD block private size */
ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
ring_mp_callback.item_func_alloc = __vxge_hw_ring_mempool_item_alloc;
ring->mempool = __vxge_hw_mempool_create(hldev,
VXGE_HW_BLOCK_SIZE,
VXGE_HW_BLOCK_SIZE,
ring->rxdblock_priv_size,
ring->config->ring_blocks,
ring->config->ring_blocks,
&ring_mp_callback,
ring);
if (ring->mempool == NULL) {
__vxge_hw_ring_delete(vp);
return VXGE_HW_ERR_OUT_OF_MEMORY;
}
status = __vxge_hw_channel_initialize(&ring->channel);
if (status != VXGE_HW_OK) {
__vxge_hw_ring_delete(vp);
goto exit;
}
/* Note:
* Specifying rxd_init callback means two things:
* 1) rxds need to be initialized by driver at channel-open time;
* 2) rxds need to be posted at channel-open time
* (that's what the initial_replenish() below does)
* Currently we don't have a case when the 1) is done without the 2).
*/
if (ring->rxd_init) {
status = vxge_hw_ring_replenish(ring);
if (status != VXGE_HW_OK) {
__vxge_hw_ring_delete(vp);
goto exit;
}
}
/* initial replenish will increment the counter in its post() routine,
* we have to reset it */
ring->stats->common_stats.usage_cnt = 0;
exit:
return status;
}
/*
* __vxge_hw_ring_abort - Returns the RxD
* This function terminates the RxDs of ring
*/
static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
{
void *rxdh;
struct __vxge_hw_channel *channel;
channel = &ring->channel;
for (;;) {
vxge_hw_channel_dtr_try_complete(channel, &rxdh);
if (rxdh == NULL)
break;
vxge_hw_channel_dtr_complete(channel);
if (ring->rxd_term)
ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
channel->userdata);
vxge_hw_channel_dtr_free(channel, rxdh);
}
return VXGE_HW_OK;
}
/*
* __vxge_hw_ring_reset - Resets the ring
* This function resets the ring during vpath reset operation
*/
static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_channel *channel;
channel = &ring->channel;
__vxge_hw_ring_abort(ring);
status = __vxge_hw_channel_reset(channel);
if (status != VXGE_HW_OK)
goto exit;
if (ring->rxd_init) {
status = vxge_hw_ring_replenish(ring);
if (status != VXGE_HW_OK)
goto exit;
}
exit:
return status;
}
/*
* __vxge_hw_ring_delete - Removes the ring
* This function freeup the memory pool and removes the ring
*/
static enum vxge_hw_status __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
{
struct __vxge_hw_ring *ring = vp->vpath->ringh;
__vxge_hw_ring_abort(ring);
if (ring->mempool)
__vxge_hw_mempool_destroy(ring->mempool);
vp->vpath->ringh = NULL;
__vxge_hw_channel_free(&ring->channel);
return VXGE_HW_OK;
}
/*
* __vxge_hw_mempool_grow
* Will resize mempool up to %num_allocate value.
*/
static enum vxge_hw_status
__vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
u32 *num_allocated)
{
u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
u32 n_items = mempool->items_per_memblock;
u32 start_block_idx = mempool->memblocks_allocated;
u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
enum vxge_hw_status status = VXGE_HW_OK;
*num_allocated = 0;
if (end_block_idx > mempool->memblocks_max) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
for (i = start_block_idx; i < end_block_idx; i++) {
u32 j;
u32 is_last = ((end_block_idx - 1) == i);
struct vxge_hw_mempool_dma *dma_object =
mempool->memblocks_dma_arr + i;
void *the_memblock;
/* allocate memblock's private part. Each DMA memblock
* has a space allocated for item's private usage upon
* mempool's user request. Each time mempool grows, it will
* allocate new memblock and its private part at once.
* This helps to minimize memory usage a lot. */
mempool->memblocks_priv_arr[i] =
vmalloc(mempool->items_priv_size * n_items);
if (mempool->memblocks_priv_arr[i] == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
memset(mempool->memblocks_priv_arr[i], 0,
mempool->items_priv_size * n_items);
/* allocate DMA-capable memblock */
mempool->memblocks_arr[i] =
__vxge_hw_blockpool_malloc(mempool->devh,
mempool->memblock_size, dma_object);
if (mempool->memblocks_arr[i] == NULL) {
vfree(mempool->memblocks_priv_arr[i]);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
(*num_allocated)++;
mempool->memblocks_allocated++;
memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
the_memblock = mempool->memblocks_arr[i];
/* fill the items hash array */
for (j = 0; j < n_items; j++) {
u32 index = i * n_items + j;
if (first_time && index >= mempool->items_initial)
break;
mempool->items_arr[index] =
((char *)the_memblock + j*mempool->item_size);
/* let caller to do more job on each item */
if (mempool->item_func_alloc != NULL)
mempool->item_func_alloc(mempool, i,
dma_object, index, is_last);
mempool->items_current = index + 1;
}
if (first_time && mempool->items_current ==
mempool->items_initial)
break;
}
exit:
return status;
}
/*
* vxge_hw_mempool_create
* This function will create memory pool object. Pool may grow but will
* never shrink. Pool consists of number of dynamically allocated blocks
* with size enough to hold %items_initial number of items. Memory is
* DMA-able but client must map/unmap before interoperating with the device.
*/
static struct vxge_hw_mempool*
__vxge_hw_mempool_create(
struct __vxge_hw_device *devh,
u32 memblock_size,
u32 item_size,
u32 items_priv_size,
u32 items_initial,
u32 items_max,
struct vxge_hw_mempool_cbs *mp_callback,
void *userdata)
{
enum vxge_hw_status status = VXGE_HW_OK;
u32 memblocks_to_allocate;
struct vxge_hw_mempool *mempool = NULL;
u32 allocated;
if (memblock_size < item_size) {
status = VXGE_HW_FAIL;
goto exit;
}
mempool = (struct vxge_hw_mempool *)
vmalloc(sizeof(struct vxge_hw_mempool));
if (mempool == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
memset(mempool, 0, sizeof(struct vxge_hw_mempool));
mempool->devh = devh;
mempool->memblock_size = memblock_size;
mempool->items_max = items_max;
mempool->items_initial = items_initial;
mempool->item_size = item_size;
mempool->items_priv_size = items_priv_size;
mempool->item_func_alloc = mp_callback->item_func_alloc;
mempool->userdata = userdata;
mempool->memblocks_allocated = 0;
mempool->items_per_memblock = memblock_size / item_size;
mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
mempool->items_per_memblock;
/* allocate array of memblocks */
mempool->memblocks_arr =
(void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
if (mempool->memblocks_arr == NULL) {
__vxge_hw_mempool_destroy(mempool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
mempool = NULL;
goto exit;
}
memset(mempool->memblocks_arr, 0,
sizeof(void *) * mempool->memblocks_max);
/* allocate array of private parts of items per memblocks */
mempool->memblocks_priv_arr =
(void **) vmalloc(sizeof(void *) * mempool->memblocks_max);
if (mempool->memblocks_priv_arr == NULL) {
__vxge_hw_mempool_destroy(mempool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
mempool = NULL;
goto exit;
}
memset(mempool->memblocks_priv_arr, 0,
sizeof(void *) * mempool->memblocks_max);
/* allocate array of memblocks DMA objects */
mempool->memblocks_dma_arr = (struct vxge_hw_mempool_dma *)
vmalloc(sizeof(struct vxge_hw_mempool_dma) *
mempool->memblocks_max);
if (mempool->memblocks_dma_arr == NULL) {
__vxge_hw_mempool_destroy(mempool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
mempool = NULL;
goto exit;
}
memset(mempool->memblocks_dma_arr, 0,
sizeof(struct vxge_hw_mempool_dma) *
mempool->memblocks_max);
/* allocate hash array of items */
mempool->items_arr =
(void **) vmalloc(sizeof(void *) * mempool->items_max);
if (mempool->items_arr == NULL) {
__vxge_hw_mempool_destroy(mempool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
mempool = NULL;
goto exit;
}
memset(mempool->items_arr, 0, sizeof(void *) * mempool->items_max);
/* calculate initial number of memblocks */
memblocks_to_allocate = (mempool->items_initial +
mempool->items_per_memblock - 1) /
mempool->items_per_memblock;
/* pre-allocate the mempool */
status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
&allocated);
if (status != VXGE_HW_OK) {
__vxge_hw_mempool_destroy(mempool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
mempool = NULL;
goto exit;
}
exit:
return mempool;
}
/*
* vxge_hw_mempool_destroy
*/
static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
{
u32 i, j;
struct __vxge_hw_device *devh = mempool->devh;
for (i = 0; i < mempool->memblocks_allocated; i++) {
struct vxge_hw_mempool_dma *dma_object;
vxge_assert(mempool->memblocks_arr[i]);
vxge_assert(mempool->memblocks_dma_arr + i);
dma_object = mempool->memblocks_dma_arr + i;
for (j = 0; j < mempool->items_per_memblock; j++) {
u32 index = i * mempool->items_per_memblock + j;
/* to skip last partially filled(if any) memblock */
if (index >= mempool->items_current)
break;
}
vfree(mempool->memblocks_priv_arr[i]);
__vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
mempool->memblock_size, dma_object);
}
vfree(mempool->items_arr);
vfree(mempool->memblocks_dma_arr);
vfree(mempool->memblocks_priv_arr);
vfree(mempool->memblocks_arr);
vfree(mempool);
}
/*
* __vxge_hw_device_fifo_config_check - Check fifo configuration.
* Check the fifo configuration
*/
enum vxge_hw_status
__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
{
if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
(fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
return VXGE_HW_BADCFG_FIFO_BLOCKS;
return VXGE_HW_OK;
}
/*
* __vxge_hw_device_vpath_config_check - Check vpath configuration.
* Check the vpath configuration
*/
static enum vxge_hw_status
__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
{
enum vxge_hw_status status;
if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
(vp_config->min_bandwidth >
VXGE_HW_VPATH_BANDWIDTH_MAX))
return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
if (status != VXGE_HW_OK)
return status;
if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
(vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
return VXGE_HW_BADCFG_VPATH_MTU;
if ((vp_config->rpa_strip_vlan_tag !=
VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
(vp_config->rpa_strip_vlan_tag !=
VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
(vp_config->rpa_strip_vlan_tag !=
VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
return VXGE_HW_OK;
}
/*
* __vxge_hw_device_config_check - Check device configuration.
* Check the device configuration
*/
enum vxge_hw_status
__vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
{
u32 i;
enum vxge_hw_status status;
if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
(new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
(new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
(new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
return VXGE_HW_BADCFG_INTR_MODE;
if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
(new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
return VXGE_HW_BADCFG_RTS_MAC_EN;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
status = __vxge_hw_device_vpath_config_check(
&new_config->vp_config[i]);
if (status != VXGE_HW_OK)
return status;
}
return VXGE_HW_OK;
}
/*
* vxge_hw_device_config_default_get - Initialize device config with defaults.
* Initialize Titan device config with default values.
*/
enum vxge_hw_status __devinit
vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
{
u32 i;
device_config->dma_blockpool_initial =
VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
device_config->rth_en = VXGE_HW_RTH_DEFAULT;
device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
device_config->vp_config[i].vp_id = i;
device_config->vp_config[i].min_bandwidth =
VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
device_config->vp_config[i].ring.ring_blocks =
VXGE_HW_DEF_RING_BLOCKS;
device_config->vp_config[i].ring.buffer_mode =
VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
device_config->vp_config[i].ring.scatter_mode =
VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
device_config->vp_config[i].ring.rxds_limit =
VXGE_HW_DEF_RING_RXDS_LIMIT;
device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
device_config->vp_config[i].fifo.fifo_blocks =
VXGE_HW_MIN_FIFO_BLOCKS;
device_config->vp_config[i].fifo.max_frags =
VXGE_HW_MAX_FIFO_FRAGS;
device_config->vp_config[i].fifo.memblock_size =
VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
device_config->vp_config[i].fifo.alignment_size =
VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
device_config->vp_config[i].fifo.intr =
VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
device_config->vp_config[i].fifo.no_snoop_bits =
VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
device_config->vp_config[i].tti.intr_enable =
VXGE_HW_TIM_INTR_DEFAULT;
device_config->vp_config[i].tti.btimer_val =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.timer_ac_en =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.timer_ci_en =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.timer_ri_en =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.rtimer_val =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.util_sel =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.ltimer_val =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.urange_a =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.uec_a =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.urange_b =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.uec_b =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.urange_c =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.uec_c =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].tti.uec_d =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.intr_enable =
VXGE_HW_TIM_INTR_DEFAULT;
device_config->vp_config[i].rti.btimer_val =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.timer_ac_en =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.timer_ci_en =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.timer_ri_en =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.rtimer_val =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.util_sel =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.ltimer_val =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.urange_a =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.uec_a =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.urange_b =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.uec_b =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.urange_c =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.uec_c =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].rti.uec_d =
VXGE_HW_USE_FLASH_DEFAULT;
device_config->vp_config[i].mtu =
VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
device_config->vp_config[i].rpa_strip_vlan_tag =
VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
}
return VXGE_HW_OK;
}
/*
* _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
* Set the swapper bits appropriately for the lagacy section.
*/
static enum vxge_hw_status
__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
val64 = readq(&legacy_reg->toc_swapper_fb);
wmb();
switch (val64) {
case VXGE_HW_SWAPPER_INITIAL_VALUE:
return status;
case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
&legacy_reg->pifm_rd_swap_en);
writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
&legacy_reg->pifm_rd_flip_en);
writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
&legacy_reg->pifm_wr_swap_en);
writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
&legacy_reg->pifm_wr_flip_en);
break;
case VXGE_HW_SWAPPER_BYTE_SWAPPED:
writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
&legacy_reg->pifm_rd_swap_en);
writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
&legacy_reg->pifm_wr_swap_en);
break;
case VXGE_HW_SWAPPER_BIT_FLIPPED:
writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
&legacy_reg->pifm_rd_flip_en);
writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
&legacy_reg->pifm_wr_flip_en);
break;
}
wmb();
val64 = readq(&legacy_reg->toc_swapper_fb);
if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
status = VXGE_HW_ERR_SWAPPER_CTRL;
return status;
}
/*
* __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
* Set the swapper bits appropriately for the vpath.
*/
static enum vxge_hw_status
__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
{
#ifndef __BIG_ENDIAN
u64 val64;
val64 = readq(&vpath_reg->vpath_general_cfg1);
wmb();
val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
writeq(val64, &vpath_reg->vpath_general_cfg1);
wmb();
#endif
return VXGE_HW_OK;
}
/*
* __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
* Set the swapper bits appropriately for the vpath.
*/
static enum vxge_hw_status
__vxge_hw_kdfc_swapper_set(
struct vxge_hw_legacy_reg __iomem *legacy_reg,
struct vxge_hw_vpath_reg __iomem *vpath_reg)
{
u64 val64;
val64 = readq(&legacy_reg->pifm_wr_swap_en);
if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
val64 = readq(&vpath_reg->kdfcctl_cfg0);
wmb();
val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
writeq(val64, &vpath_reg->kdfcctl_cfg0);
wmb();
}
return VXGE_HW_OK;
}
/*
* vxge_hw_mgmt_reg_read - Read Titan register.
*/
enum vxge_hw_status
vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
enum vxge_hw_mgmt_reg_type type,
u32 index, u32 offset, u64 *value)
{
enum vxge_hw_status status = VXGE_HW_OK;
if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
status = VXGE_HW_ERR_INVALID_DEVICE;
goto exit;
}
switch (type) {
case vxge_hw_mgmt_reg_type_legacy:
if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
*value = readq((void __iomem *)hldev->legacy_reg + offset);
break;
case vxge_hw_mgmt_reg_type_toc:
if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
*value = readq((void __iomem *)hldev->toc_reg + offset);
break;
case vxge_hw_mgmt_reg_type_common:
if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
*value = readq((void __iomem *)hldev->common_reg + offset);
break;
case vxge_hw_mgmt_reg_type_mrpcim:
if (!(hldev->access_rights &
VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
break;
}
if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
*value = readq((void __iomem *)hldev->mrpcim_reg + offset);
break;
case vxge_hw_mgmt_reg_type_srpcim:
if (!(hldev->access_rights &
VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
break;
}
if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
status = VXGE_HW_ERR_INVALID_INDEX;
break;
}
if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
*value = readq((void __iomem *)hldev->srpcim_reg[index] +
offset);
break;
case vxge_hw_mgmt_reg_type_vpmgmt:
if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
status = VXGE_HW_ERR_INVALID_INDEX;
break;
}
if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
*value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
offset);
break;
case vxge_hw_mgmt_reg_type_vpath:
if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
status = VXGE_HW_ERR_INVALID_INDEX;
break;
}
if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
status = VXGE_HW_ERR_INVALID_INDEX;
break;
}
if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
*value = readq((void __iomem *)hldev->vpath_reg[index] +
offset);
break;
default:
status = VXGE_HW_ERR_INVALID_TYPE;
break;
}
exit:
return status;
}
/*
* vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
*/
enum vxge_hw_status
vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
{
struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
enum vxge_hw_status status = VXGE_HW_OK;
int i = 0, j = 0;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!((vpath_mask) & vxge_mBIT(i)))
continue;
vpmgmt_reg = hldev->vpmgmt_reg[i];
for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
& VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
return VXGE_HW_FAIL;
}
}
return status;
}
/*
* vxge_hw_mgmt_reg_Write - Write Titan register.
*/
enum vxge_hw_status
vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
enum vxge_hw_mgmt_reg_type type,
u32 index, u32 offset, u64 value)
{
enum vxge_hw_status status = VXGE_HW_OK;
if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
status = VXGE_HW_ERR_INVALID_DEVICE;
goto exit;
}
switch (type) {
case vxge_hw_mgmt_reg_type_legacy:
if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
writeq(value, (void __iomem *)hldev->legacy_reg + offset);
break;
case vxge_hw_mgmt_reg_type_toc:
if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
writeq(value, (void __iomem *)hldev->toc_reg + offset);
break;
case vxge_hw_mgmt_reg_type_common:
if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
writeq(value, (void __iomem *)hldev->common_reg + offset);
break;
case vxge_hw_mgmt_reg_type_mrpcim:
if (!(hldev->access_rights &
VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
break;
}
if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
break;
case vxge_hw_mgmt_reg_type_srpcim:
if (!(hldev->access_rights &
VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
status = VXGE_HW_ERR_PRIVILAGED_OPEARATION;
break;
}
if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
status = VXGE_HW_ERR_INVALID_INDEX;
break;
}
if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
offset);
break;
case vxge_hw_mgmt_reg_type_vpmgmt:
if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
status = VXGE_HW_ERR_INVALID_INDEX;
break;
}
if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
offset);
break;
case vxge_hw_mgmt_reg_type_vpath:
if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
status = VXGE_HW_ERR_INVALID_INDEX;
break;
}
if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
status = VXGE_HW_ERR_INVALID_OFFSET;
break;
}
writeq(value, (void __iomem *)hldev->vpath_reg[index] +
offset);
break;
default:
status = VXGE_HW_ERR_INVALID_TYPE;
break;
}
exit:
return status;
}
/*
* __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
* list callback
* This function is callback passed to __vxge_hw_mempool_create to create memory
* pool for TxD list
*/
static void
__vxge_hw_fifo_mempool_item_alloc(
struct vxge_hw_mempool *mempoolh,
u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
u32 index, u32 is_last)
{
u32 memblock_item_idx;
struct __vxge_hw_fifo_txdl_priv *txdl_priv;
struct vxge_hw_fifo_txd *txdp =
(struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
struct __vxge_hw_fifo *fifo =
(struct __vxge_hw_fifo *)mempoolh->userdata;
void *memblock = mempoolh->memblocks_arr[memblock_index];
vxge_assert(txdp);
txdp->host_control = (u64) (size_t)
__vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
&memblock_item_idx);
txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
vxge_assert(txdl_priv);
fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
/* pre-format HW's TxDL's private */
txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
txdl_priv->dma_handle = dma_object->handle;
txdl_priv->memblock = memblock;
txdl_priv->first_txdp = txdp;
txdl_priv->next_txdl_priv = NULL;
txdl_priv->alloc_frags = 0;
}
/*
* __vxge_hw_fifo_create - Create a FIFO
* This function creates FIFO and initializes it.
*/
enum vxge_hw_status
__vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
struct vxge_hw_fifo_attr *attr)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_fifo *fifo;
struct vxge_hw_fifo_config *config;
u32 txdl_size, txdl_per_memblock;
struct vxge_hw_mempool_cbs fifo_mp_callback;
struct __vxge_hw_virtualpath *vpath;
if ((vp == NULL) || (attr == NULL)) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
txdl_per_memblock = config->memblock_size / txdl_size;
fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
VXGE_HW_CHANNEL_TYPE_FIFO,
config->fifo_blocks * txdl_per_memblock,
attr->per_txdl_space, attr->userdata);
if (fifo == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
vpath->fifoh = fifo;
fifo->nofl_db = vpath->nofl_db;
fifo->vp_id = vpath->vp_id;
fifo->vp_reg = vpath->vp_reg;
fifo->stats = &vpath->sw_stats->fifo_stats;
fifo->config = config;
/* apply "interrupts per txdl" attribute */
fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
if (fifo->config->intr)
fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
fifo->no_snoop_bits = config->no_snoop_bits;
/*
* FIFO memory management strategy:
*
* TxDL split into three independent parts:
* - set of TxD's
* - TxD HW private part
* - driver private part
*
* Adaptative memory allocation used. i.e. Memory allocated on
* demand with the size which will fit into one memory block.
* One memory block may contain more than one TxDL.
*
* During "reserve" operations more memory can be allocated on demand
* for example due to FIFO full condition.
*
* Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
* routine which will essentially stop the channel and free resources.
*/
/* TxDL common private size == TxDL private + driver private */
fifo->priv_size =
sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
fifo->per_txdl_space = attr->per_txdl_space;
/* recompute txdl size to be cacheline aligned */
fifo->txdl_size = txdl_size;
fifo->txdl_per_memblock = txdl_per_memblock;
fifo->txdl_term = attr->txdl_term;
fifo->callback = attr->callback;
if (fifo->txdl_per_memblock == 0) {
__vxge_hw_fifo_delete(vp);
status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
goto exit;
}
fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
fifo->mempool =
__vxge_hw_mempool_create(vpath->hldev,
fifo->config->memblock_size,
fifo->txdl_size,
fifo->priv_size,
(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
&fifo_mp_callback,
fifo);
if (fifo->mempool == NULL) {
__vxge_hw_fifo_delete(vp);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
status = __vxge_hw_channel_initialize(&fifo->channel);
if (status != VXGE_HW_OK) {
__vxge_hw_fifo_delete(vp);
goto exit;
}
vxge_assert(fifo->channel.reserve_ptr);
exit:
return status;
}
/*
* __vxge_hw_fifo_abort - Returns the TxD
* This function terminates the TxDs of fifo
*/
static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
{
void *txdlh;
for (;;) {
vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
if (txdlh == NULL)
break;
vxge_hw_channel_dtr_complete(&fifo->channel);
if (fifo->txdl_term) {
fifo->txdl_term(txdlh,
VXGE_HW_TXDL_STATE_POSTED,
fifo->channel.userdata);
}
vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
}
return VXGE_HW_OK;
}
/*
* __vxge_hw_fifo_reset - Resets the fifo
* This function resets the fifo during vpath reset operation
*/
static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
{
enum vxge_hw_status status = VXGE_HW_OK;
__vxge_hw_fifo_abort(fifo);
status = __vxge_hw_channel_reset(&fifo->channel);
return status;
}
/*
* __vxge_hw_fifo_delete - Removes the FIFO
* This function freeup the memory pool and removes the FIFO
*/
enum vxge_hw_status __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
{
struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
__vxge_hw_fifo_abort(fifo);
if (fifo->mempool)
__vxge_hw_mempool_destroy(fifo->mempool);
vp->vpath->fifoh = NULL;
__vxge_hw_channel_free(&fifo->channel);
return VXGE_HW_OK;
}
/*
* __vxge_hw_vpath_pci_read - Read the content of given address
* in pci config space.
* Read from the vpath pci config space.
*/
static enum vxge_hw_status
__vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
u32 phy_func_0, u32 offset, u32 *val)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
if (phy_func_0)
val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
writeq(val64, &vp_reg->pci_config_access_cfg1);
wmb();
writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
&vp_reg->pci_config_access_cfg2);
wmb();
status = __vxge_hw_device_register_poll(
&vp_reg->pci_config_access_cfg2,
VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vp_reg->pci_config_access_status);
if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
status = VXGE_HW_FAIL;
*val = 0;
} else
*val = (u32)vxge_bVALn(val64, 32, 32);
exit:
return status;
}
/*
* __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
* Returns the function number of the vpath.
*/
static u32
__vxge_hw_vpath_func_id_get(u32 vp_id,
struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
{
u64 val64;
val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
return
(u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
}
/*
* __vxge_hw_read_rts_ds - Program RTS steering critieria
*/
static inline void
__vxge_hw_read_rts_ds(struct vxge_hw_vpath_reg __iomem *vpath_reg,
u64 dta_struct_sel)
{
writeq(0, &vpath_reg->rts_access_steer_ctrl);
wmb();
writeq(dta_struct_sel, &vpath_reg->rts_access_steer_data0);
writeq(0, &vpath_reg->rts_access_steer_data1);
wmb();
}
/*
* __vxge_hw_vpath_card_info_get - Get the serial numbers,
* part number and product description.
*/
static enum vxge_hw_status
__vxge_hw_vpath_card_info_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg,
struct vxge_hw_device_hw_info *hw_info)
{
u32 i, j;
u64 val64;
u64 data1 = 0ULL;
u64 data2 = 0ULL;
enum vxge_hw_status status = VXGE_HW_OK;
u8 *serial_number = hw_info->serial_number;
u8 *part_number = hw_info->part_number;
u8 *product_desc = hw_info->product_desc;
__vxge_hw_read_rts_ds(vpath_reg,
VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER);
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
status = __vxge_hw_pio_mem_write64(val64,
&vpath_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
if (status != VXGE_HW_OK)
return status;
val64 = readq(&vpath_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
data1 = readq(&vpath_reg->rts_access_steer_data0);
((u64 *)serial_number)[0] = be64_to_cpu(data1);
data2 = readq(&vpath_reg->rts_access_steer_data1);
((u64 *)serial_number)[1] = be64_to_cpu(data2);
status = VXGE_HW_OK;
} else
*serial_number = 0;
__vxge_hw_read_rts_ds(vpath_reg,
VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER);
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
status = __vxge_hw_pio_mem_write64(val64,
&vpath_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
if (status != VXGE_HW_OK)
return status;
val64 = readq(&vpath_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
data1 = readq(&vpath_reg->rts_access_steer_data0);
((u64 *)part_number)[0] = be64_to_cpu(data1);
data2 = readq(&vpath_reg->rts_access_steer_data1);
((u64 *)part_number)[1] = be64_to_cpu(data2);
status = VXGE_HW_OK;
} else
*part_number = 0;
j = 0;
for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
__vxge_hw_read_rts_ds(vpath_reg, i);
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
status = __vxge_hw_pio_mem_write64(val64,
&vpath_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
if (status != VXGE_HW_OK)
return status;
val64 = readq(&vpath_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
data1 = readq(&vpath_reg->rts_access_steer_data0);
((u64 *)product_desc)[j++] = be64_to_cpu(data1);
data2 = readq(&vpath_reg->rts_access_steer_data1);
((u64 *)product_desc)[j++] = be64_to_cpu(data2);
status = VXGE_HW_OK;
} else
*product_desc = 0;
}
return status;
}
/*
* __vxge_hw_vpath_fw_ver_get - Get the fw version
* Returns FW Version
*/
static enum vxge_hw_status
__vxge_hw_vpath_fw_ver_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg,
struct vxge_hw_device_hw_info *hw_info)
{
u64 val64;
u64 data1 = 0ULL;
u64 data2 = 0ULL;
struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
enum vxge_hw_status status = VXGE_HW_OK;
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
status = __vxge_hw_pio_mem_write64(val64,
&vpath_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vpath_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
data1 = readq(&vpath_reg->rts_access_steer_data0);
data2 = readq(&vpath_reg->rts_access_steer_data1);
fw_date->day =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(
data1);
fw_date->month =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(
data1);
fw_date->year =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(
data1);
snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
fw_date->month, fw_date->day, fw_date->year);
fw_version->major =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data1);
fw_version->minor =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data1);
fw_version->build =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data1);
snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
fw_version->major, fw_version->minor, fw_version->build);
flash_date->day =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data2);
flash_date->month =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data2);
flash_date->year =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data2);
snprintf(flash_date->date, VXGE_HW_FW_STRLEN,
"%2.2d/%2.2d/%4.4d",
flash_date->month, flash_date->day, flash_date->year);
flash_version->major =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data2);
flash_version->minor =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data2);
flash_version->build =
(u32)VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data2);
snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
flash_version->major, flash_version->minor,
flash_version->build);
status = VXGE_HW_OK;
} else
status = VXGE_HW_FAIL;
exit:
return status;
}
/*
* __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
* Returns pci function mode
*/
static u64
__vxge_hw_vpath_pci_func_mode_get(
u32 vp_id,
struct vxge_hw_vpath_reg __iomem *vpath_reg)
{
u64 val64;
u64 data1 = 0ULL;
enum vxge_hw_status status = VXGE_HW_OK;
__vxge_hw_read_rts_ds(vpath_reg,
VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PCI_MODE);
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
status = __vxge_hw_pio_mem_write64(val64,
&vpath_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vpath_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
data1 = readq(&vpath_reg->rts_access_steer_data0);
status = VXGE_HW_OK;
} else {
data1 = 0;
status = VXGE_HW_FAIL;
}
exit:
return data1;
}
/**
* vxge_hw_device_flick_link_led - Flick (blink) link LED.
* @hldev: HW device.
* @on_off: TRUE if flickering to be on, FALSE to be off
*
* Flicker the link LED.
*/
enum vxge_hw_status
vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev,
u64 on_off)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_vpath_reg __iomem *vp_reg;
if (hldev == NULL) {
status = VXGE_HW_ERR_INVALID_DEVICE;
goto exit;
}
vp_reg = hldev->vpath_reg[hldev->first_vp_id];
writeq(0, &vp_reg->rts_access_steer_ctrl);
wmb();
writeq(on_off, &vp_reg->rts_access_steer_data0);
writeq(0, &vp_reg->rts_access_steer_data1);
wmb();
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
status = __vxge_hw_pio_mem_write64(val64,
&vp_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
exit:
return status;
}
/*
* __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
*/
enum vxge_hw_status
__vxge_hw_vpath_rts_table_get(
struct __vxge_hw_vpath_handle *vp,
u32 action, u32 rts_table, u32 offset, u64 *data1, u64 *data2)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vpath_reg __iomem *vp_reg;
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
vp_reg = vpath->vp_reg;
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
if ((rts_table ==
VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
(rts_table ==
VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
(rts_table ==
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
(rts_table ==
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
val64 = val64 | VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
}
status = __vxge_hw_pio_mem_write64(val64,
&vp_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
vpath->hldev->config.device_poll_millis);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vp_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
*data1 = readq(&vp_reg->rts_access_steer_data0);
if ((rts_table ==
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
(rts_table ==
VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
*data2 = readq(&vp_reg->rts_access_steer_data1);
}
status = VXGE_HW_OK;
} else
status = VXGE_HW_FAIL;
exit:
return status;
}
/*
* __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
*/
enum vxge_hw_status
__vxge_hw_vpath_rts_table_set(
struct __vxge_hw_vpath_handle *vp, u32 action, u32 rts_table,
u32 offset, u64 data1, u64 data2)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_vpath_reg __iomem *vp_reg;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
vp_reg = vpath->vp_reg;
writeq(data1, &vp_reg->rts_access_steer_data0);
wmb();
if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
(rts_table ==
VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT)) {
writeq(data2, &vp_reg->rts_access_steer_data1);
wmb();
}
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(rts_table) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset);
status = __vxge_hw_pio_mem_write64(val64,
&vp_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
vpath->hldev->config.device_poll_millis);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vp_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS)
status = VXGE_HW_OK;
else
status = VXGE_HW_FAIL;
exit:
return status;
}
/*
* __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
* from MAC address table.
*/
static enum vxge_hw_status
__vxge_hw_vpath_addr_get(
u32 vp_id, struct vxge_hw_vpath_reg __iomem *vpath_reg,
u8 (macaddr)[ETH_ALEN], u8 (macaddr_mask)[ETH_ALEN])
{
u32 i;
u64 val64;
u64 data1 = 0ULL;
u64 data2 = 0ULL;
enum vxge_hw_status status = VXGE_HW_OK;
val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) |
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(0);
status = __vxge_hw_pio_mem_write64(val64,
&vpath_reg->rts_access_steer_ctrl,
VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
VXGE_HW_DEF_DEVICE_POLL_MILLIS);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vpath_reg->rts_access_steer_ctrl);
if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
data1 = readq(&vpath_reg->rts_access_steer_data0);
data2 = readq(&vpath_reg->rts_access_steer_data1);
data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
data2);
for (i = ETH_ALEN; i > 0; i--) {
macaddr[i-1] = (u8)(data1 & 0xFF);
data1 >>= 8;
macaddr_mask[i-1] = (u8)(data2 & 0xFF);
data2 >>= 8;
}
status = VXGE_HW_OK;
} else
status = VXGE_HW_FAIL;
exit:
return status;
}
/*
* vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
*/
enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
struct __vxge_hw_vpath_handle *vp,
enum vxge_hw_rth_algoritms algorithm,
struct vxge_hw_rth_hash_types *hash_type,
u16 bucket_size)
{
u64 data0, data1;
enum vxge_hw_status status = VXGE_HW_OK;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
status = __vxge_hw_vpath_rts_table_get(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
0, &data0, &data1);
data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
if (hash_type->hash_type_tcpipv4_en)
data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
if (hash_type->hash_type_ipv4_en)
data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
if (hash_type->hash_type_tcpipv6_en)
data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
if (hash_type->hash_type_ipv6_en)
data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
if (hash_type->hash_type_tcpipv6ex_en)
data0 |=
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
if (hash_type->hash_type_ipv6ex_en)
data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
else
data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
status = __vxge_hw_vpath_rts_table_set(vp,
VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
0, data0, 0);
exit:
return status;
}
static void
vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
u16 flag, u8 *itable)
{
switch (flag) {
case 1:
*data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
itable[j]);
case 2:
*data0 |=
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
itable[j]);
case 3:
*data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
itable[j]);
case 4:
*data1 |=
VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
itable[j]);
default:
return;
}
}
/*
* vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
*/
enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
struct __vxge_hw_vpath_handle **vpath_handles,
u32 vpath_count,
u8 *mtable,
u8 *itable,
u32 itable_size)
{
u32 i, j, action, rts_table;
u64 data0;
u64 data1;
u32 max_entries;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
max_entries = (((u32)1) << itable_size);
if (vp->vpath->hldev->config.rth_it_type
== VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
rts_table =
VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
for (j = 0; j < max_entries; j++) {
data1 = 0;
data0 =
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
itable[j]);
status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
action, rts_table, j, data0, data1);
if (status != VXGE_HW_OK)
goto exit;
}
for (j = 0; j < max_entries; j++) {
data1 = 0;
data0 =
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
itable[j]);
status = __vxge_hw_vpath_rts_table_set(
vpath_handles[mtable[itable[j]]], action,
rts_table, j, data0, data1);
if (status != VXGE_HW_OK)
goto exit;
}
} else {
action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
rts_table =
VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
for (i = 0; i < vpath_count; i++) {
for (j = 0; j < max_entries;) {
data0 = 0;
data1 = 0;
while (j < max_entries) {
if (mtable[itable[j]] != i) {
j++;
continue;
}
vxge_hw_rts_rth_data0_data1_get(j,
&data0, &data1, 1, itable);
j++;
break;
}
while (j < max_entries) {
if (mtable[itable[j]] != i) {
j++;
continue;
}
vxge_hw_rts_rth_data0_data1_get(j,
&data0, &data1, 2, itable);
j++;
break;
}
while (j < max_entries) {
if (mtable[itable[j]] != i) {
j++;
continue;
}
vxge_hw_rts_rth_data0_data1_get(j,
&data0, &data1, 3, itable);
j++;
break;
}
while (j < max_entries) {
if (mtable[itable[j]] != i) {
j++;
continue;
}
vxge_hw_rts_rth_data0_data1_get(j,
&data0, &data1, 4, itable);
j++;
break;
}
if (data0 != 0) {
status = __vxge_hw_vpath_rts_table_set(
vpath_handles[i],
action, rts_table,
0, data0, data1);
if (status != VXGE_HW_OK)
goto exit;
}
}
}
}
exit:
return status;
}
/**
* vxge_hw_vpath_check_leak - Check for memory leak
* @ringh: Handle to the ring object used for receive
*
* If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
* PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
* Returns: VXGE_HW_FAIL, if leak has occurred.
*
*/
enum vxge_hw_status
vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
{
enum vxge_hw_status status = VXGE_HW_OK;
u64 rxd_new_count, rxd_spat;
if (ring == NULL)
return status;
rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
rxd_spat = readq(&ring->vp_reg->prc_cfg6);
rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
if (rxd_new_count >= rxd_spat)
status = VXGE_HW_FAIL;
return status;
}
/*
* __vxge_hw_vpath_mgmt_read
* This routine reads the vpath_mgmt registers
*/
static enum vxge_hw_status
__vxge_hw_vpath_mgmt_read(
struct __vxge_hw_device *hldev,
struct __vxge_hw_virtualpath *vpath)
{
u32 i, mtu = 0, max_pyld = 0;
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
val64 = readq(&vpath->vpmgmt_reg->
rxmac_cfg0_port_vpmgmt_clone[i]);
max_pyld =
(u32)
VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
(val64);
if (mtu < max_pyld)
mtu = max_pyld;
}
vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (val64 & vxge_mBIT(i))
vpath->vsport_number = i;
}
val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
else
VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
return status;
}
/*
* __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
* This routine checks the vpath_rst_in_prog register to see if
* adapter completed the reset process for the vpath
*/
static enum vxge_hw_status
__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
{
enum vxge_hw_status status;
status = __vxge_hw_device_register_poll(
&vpath->hldev->common_reg->vpath_rst_in_prog,
VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
1 << (16 - vpath->vp_id)),
vpath->hldev->config.device_poll_millis);
return status;
}
/*
* __vxge_hw_vpath_reset
* This routine resets the vpath on the device
*/
static enum vxge_hw_status
__vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
&hldev->common_reg->cmn_rsthdlr_cfg0);
return status;
}
/*
* __vxge_hw_vpath_sw_reset
* This routine resets the vpath structures
*/
static enum vxge_hw_status
__vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_virtualpath *vpath;
vpath = (struct __vxge_hw_virtualpath *)&hldev->virtual_paths[vp_id];
if (vpath->ringh) {
status = __vxge_hw_ring_reset(vpath->ringh);
if (status != VXGE_HW_OK)
goto exit;
}
if (vpath->fifoh)
status = __vxge_hw_fifo_reset(vpath->fifoh);
exit:
return status;
}
/*
* __vxge_hw_vpath_prc_configure
* This routine configures the prc registers of virtual path using the config
* passed
*/
static void
__vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
{
u64 val64;
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vp_config *vp_config;
struct vxge_hw_vpath_reg __iomem *vp_reg;
vpath = &hldev->virtual_paths[vp_id];
vp_reg = vpath->vp_reg;
vp_config = vpath->vp_config;
if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
return;
val64 = readq(&vp_reg->prc_cfg1);
val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
writeq(val64, &vp_reg->prc_cfg1);
val64 = readq(&vpath->vp_reg->prc_cfg6);
val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
writeq(val64, &vpath->vp_reg->prc_cfg6);
val64 = readq(&vp_reg->prc_cfg7);
if (vpath->vp_config->ring.scatter_mode !=
VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
switch (vpath->vp_config->ring.scatter_mode) {
case VXGE_HW_RING_SCATTER_MODE_A:
val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
break;
case VXGE_HW_RING_SCATTER_MODE_B:
val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
break;
case VXGE_HW_RING_SCATTER_MODE_C:
val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
break;
}
}
writeq(val64, &vp_reg->prc_cfg7);
writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
__vxge_hw_ring_first_block_address_get(
vpath->ringh) >> 3), &vp_reg->prc_cfg5);
val64 = readq(&vp_reg->prc_cfg4);
val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
else
val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
writeq(val64, &vp_reg->prc_cfg4);
}
/*
* __vxge_hw_vpath_kdfc_configure
* This routine configures the kdfc registers of virtual path using the
* config passed
*/
static enum vxge_hw_status
__vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
{
u64 val64;
u64 vpath_stride;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vpath_reg __iomem *vp_reg;
vpath = &hldev->virtual_paths[vp_id];
vp_reg = vpath->vp_reg;
status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
vpath->max_kdfc_db =
(u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
val64+1)/2;
if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
vpath->max_nofl_db = vpath->max_kdfc_db;
if (vpath->max_nofl_db <
((vpath->vp_config->fifo.memblock_size /
(vpath->vp_config->fifo.max_frags *
sizeof(struct vxge_hw_fifo_txd))) *
vpath->vp_config->fifo.fifo_blocks)) {
return VXGE_HW_BADCFG_FIFO_BLOCKS;
}
val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
(vpath->max_nofl_db*2)-1);
}
writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
&vp_reg->kdfc_fifo_trpl_ctrl);
val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
#ifndef __BIG_ENDIAN
VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
#endif
VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
wmb();
vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
vpath->nofl_db =
(struct __vxge_hw_non_offload_db_wrapper __iomem *)
(hldev->kdfc + (vp_id *
VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
vpath_stride)));
exit:
return status;
}
/*
* __vxge_hw_vpath_mac_configure
* This routine configures the mac of virtual path using the config passed
*/
static enum vxge_hw_status
__vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vp_config *vp_config;
struct vxge_hw_vpath_reg __iomem *vp_reg;
vpath = &hldev->virtual_paths[vp_id];
vp_reg = vpath->vp_reg;
vp_config = vpath->vp_config;
writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
vpath->vsport_number), &vp_reg->xmac_vsport_choice);
if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
val64 = readq(&vp_reg->xmac_rpa_vcfg);
if (vp_config->rpa_strip_vlan_tag !=
VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
if (vp_config->rpa_strip_vlan_tag)
val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
else
val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
}
writeq(val64, &vp_reg->xmac_rpa_vcfg);
val64 = readq(&vp_reg->rxmac_vcfg0);
if (vp_config->mtu !=
VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
if ((vp_config->mtu +
VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
vp_config->mtu +
VXGE_HW_MAC_HEADER_MAX_SIZE);
else
val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
vpath->max_mtu);
}
writeq(val64, &vp_reg->rxmac_vcfg0);
val64 = readq(&vp_reg->rxmac_vcfg1);
val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
if (hldev->config.rth_it_type ==
VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
0x2) |
VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
}
writeq(val64, &vp_reg->rxmac_vcfg1);
}
return status;
}
/*
* __vxge_hw_vpath_tim_configure
* This routine configures the tim registers of virtual path using the config
* passed
*/
static enum vxge_hw_status
__vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vpath_reg __iomem *vp_reg;
struct vxge_hw_vp_config *config;
vpath = &hldev->virtual_paths[vp_id];
vp_reg = vpath->vp_reg;
config = vpath->vp_config;
writeq((u64)0, &vp_reg->tim_dest_addr);
writeq((u64)0, &vp_reg->tim_vpath_map);
writeq((u64)0, &vp_reg->tim_bitmap);
writeq((u64)0, &vp_reg->tim_remap);
if (config->ring.enable == VXGE_HW_RING_ENABLE)
writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
(vp_id * VXGE_HW_MAX_INTR_PER_VP) +
VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
val64 = readq(&vp_reg->tim_pci_cfg);
val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
writeq(val64, &vp_reg->tim_pci_cfg);
if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
0x3ffffff);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
config->tti.btimer_val);
}
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
if (config->tti.timer_ac_en)
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
else
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
}
if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
if (config->tti.timer_ci_en)
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
else
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
}
if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
config->tti.urange_a);
}
if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
config->tti.urange_b);
}
if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
config->tti.urange_c);
}
writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
config->tti.uec_a);
}
if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
config->tti.uec_b);
}
if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
config->tti.uec_c);
}
if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
config->tti.uec_d);
}
writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
if (config->tti.timer_ri_en)
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
else
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
}
if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
0x3ffffff);
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
config->tti.rtimer_val);
}
if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
config->tti.util_sel);
}
if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
0x3ffffff);
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
config->tti.ltimer_val);
}
writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
}
if (config->ring.enable == VXGE_HW_RING_ENABLE) {
val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
0x3ffffff);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
config->rti.btimer_val);
}
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
if (config->rti.timer_ac_en)
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
else
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
}
if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
if (config->rti.timer_ci_en)
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
else
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
}
if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
config->rti.urange_a);
}
if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
config->rti.urange_b);
}
if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
config->rti.urange_c);
}
writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
config->rti.uec_a);
}
if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
config->rti.uec_b);
}
if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
config->rti.uec_c);
}
if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
config->rti.uec_d);
}
writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
if (config->rti.timer_ri_en)
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
else
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
}
if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
0x3ffffff);
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
config->rti.rtimer_val);
}
if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(
config->rti.util_sel);
}
if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
0x3ffffff);
val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
config->rti.ltimer_val);
}
writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
}
val64 = 0;
writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
return status;
}
void
vxge_hw_vpath_tti_ci_set(struct __vxge_hw_device *hldev, u32 vp_id)
{
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vpath_reg __iomem *vp_reg;
struct vxge_hw_vp_config *config;
u64 val64;
vpath = &hldev->virtual_paths[vp_id];
vp_reg = vpath->vp_reg;
config = vpath->vp_config;
if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
writeq(val64,
&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
}
}
}
/*
* __vxge_hw_vpath_initialize
* This routine is the final phase of init which initializes the
* registers of the vpath using the configuration passed.
*/
static enum vxge_hw_status
__vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
{
u64 val64;
u32 val32;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_virtualpath *vpath;
struct vxge_hw_vpath_reg __iomem *vp_reg;
vpath = &hldev->virtual_paths[vp_id];
if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
goto exit;
}
vp_reg = vpath->vp_reg;
status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
if (status != VXGE_HW_OK)
goto exit;
val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
/* Get MRRS value from device control */
status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
if (status == VXGE_HW_OK) {
val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
val64 &=
~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
val64 |=
VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
}
val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
val64 |=
VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
VXGE_HW_MAX_PAYLOAD_SIZE_512);
val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
exit:
return status;
}
/*
* __vxge_hw_vp_initialize - Initialize Virtual Path structure
* This routine is the initial phase of init which resets the vpath and
* initializes the software support structures.
*/
static enum vxge_hw_status
__vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
struct vxge_hw_vp_config *config)
{
struct __vxge_hw_virtualpath *vpath;
enum vxge_hw_status status = VXGE_HW_OK;
if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
goto exit;
}
vpath = &hldev->virtual_paths[vp_id];
vpath->vp_id = vp_id;
vpath->vp_open = VXGE_HW_VP_OPEN;
vpath->hldev = hldev;
vpath->vp_config = config;
vpath->vp_reg = hldev->vpath_reg[vp_id];
vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
__vxge_hw_vpath_reset(hldev, vp_id);
status = __vxge_hw_vpath_reset_check(vpath);
if (status != VXGE_HW_OK) {
memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
goto exit;
}
status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
if (status != VXGE_HW_OK) {
memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
goto exit;
}
INIT_LIST_HEAD(&vpath->vpath_handles);
vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
hldev->tim_int_mask1, vp_id);
status = __vxge_hw_vpath_initialize(hldev, vp_id);
if (status != VXGE_HW_OK)
__vxge_hw_vp_terminate(hldev, vp_id);
exit:
return status;
}
/*
* __vxge_hw_vp_terminate - Terminate Virtual Path structure
* This routine closes all channels it opened and freeup memory
*/
static void
__vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
{
struct __vxge_hw_virtualpath *vpath;
vpath = &hldev->virtual_paths[vp_id];
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
goto exit;
VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
vpath->hldev->tim_int_mask1, vpath->vp_id);
hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
exit:
return;
}
/*
* vxge_hw_vpath_mtu_set - Set MTU.
* Set new MTU value. Example, to use jumbo frames:
* vxge_hw_vpath_mtu_set(my_device, 9600);
*/
enum vxge_hw_status
vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_virtualpath *vpath;
if (vp == NULL) {
status = VXGE_HW_ERR_INVALID_HANDLE;
goto exit;
}
vpath = vp->vpath;
new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
status = VXGE_HW_ERR_INVALID_MTU_SIZE;
val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
exit:
return status;
}
/*
* vxge_hw_vpath_open - Open a virtual path on a given adapter
* This function is used to open access to virtual path of an
* adapter for offload, GRO operations. This function returns
* synchronously.
*/
enum vxge_hw_status
vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
struct vxge_hw_vpath_attr *attr,
struct __vxge_hw_vpath_handle **vpath_handle)
{
struct __vxge_hw_virtualpath *vpath;
struct __vxge_hw_vpath_handle *vp;
enum vxge_hw_status status;
vpath = &hldev->virtual_paths[attr->vp_id];
if (vpath->vp_open == VXGE_HW_VP_OPEN) {
status = VXGE_HW_ERR_INVALID_STATE;
goto vpath_open_exit1;
}
status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
&hldev->config.vp_config[attr->vp_id]);
if (status != VXGE_HW_OK)
goto vpath_open_exit1;
vp = (struct __vxge_hw_vpath_handle *)
vmalloc(sizeof(struct __vxge_hw_vpath_handle));
if (vp == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto vpath_open_exit2;
}
memset(vp, 0, sizeof(struct __vxge_hw_vpath_handle));
vp->vpath = vpath;
if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
if (status != VXGE_HW_OK)
goto vpath_open_exit6;
}
if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
status = __vxge_hw_ring_create(vp, &attr->ring_attr);
if (status != VXGE_HW_OK)
goto vpath_open_exit7;
__vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
}
vpath->fifoh->tx_intr_num =
(attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
VXGE_HW_VPATH_INTR_TX;
vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
VXGE_HW_BLOCK_SIZE);
if (vpath->stats_block == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto vpath_open_exit8;
}
vpath->hw_stats = (struct vxge_hw_vpath_stats_hw_info *)vpath->
stats_block->memblock;
memset(vpath->hw_stats, 0,
sizeof(struct vxge_hw_vpath_stats_hw_info));
hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
vpath->hw_stats;
vpath->hw_stats_sav =
&hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
memset(vpath->hw_stats_sav, 0,
sizeof(struct vxge_hw_vpath_stats_hw_info));
writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
status = vxge_hw_vpath_stats_enable(vp);
if (status != VXGE_HW_OK)
goto vpath_open_exit8;
list_add(&vp->item, &vpath->vpath_handles);
hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
*vpath_handle = vp;
attr->fifo_attr.userdata = vpath->fifoh;
attr->ring_attr.userdata = vpath->ringh;
return VXGE_HW_OK;
vpath_open_exit8:
if (vpath->ringh != NULL)
__vxge_hw_ring_delete(vp);
vpath_open_exit7:
if (vpath->fifoh != NULL)
__vxge_hw_fifo_delete(vp);
vpath_open_exit6:
vfree(vp);
vpath_open_exit2:
__vxge_hw_vp_terminate(hldev, attr->vp_id);
vpath_open_exit1:
return status;
}
/**
* vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
* (vpath) open
* @vp: Handle got from previous vpath open
*
* This function is used to close access to virtual path opened
* earlier.
*/
void
vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
{
struct __vxge_hw_virtualpath *vpath = NULL;
u64 new_count, val64, val164;
struct __vxge_hw_ring *ring;
vpath = vp->vpath;
ring = vpath->ringh;
new_count = readq(&vpath->vp_reg->rxdmem_size);
new_count &= 0x1fff;
val164 = (VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count));
writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
&vpath->vp_reg->prc_rxd_doorbell);
readl(&vpath->vp_reg->prc_rxd_doorbell);
val164 /= 2;
val64 = readq(&vpath->vp_reg->prc_cfg6);
val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
val64 &= 0x1ff;
/*
* Each RxD is of 4 qwords
*/
new_count -= (val64 + 1);
val64 = min(val164, new_count) / 4;
ring->rxds_limit = min(ring->rxds_limit, val64);
if (ring->rxds_limit < 4)
ring->rxds_limit = 4;
}
/*
* vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
* This function is used to close access to virtual path opened
* earlier.
*/
enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
{
struct __vxge_hw_virtualpath *vpath = NULL;
struct __vxge_hw_device *devh = NULL;
u32 vp_id = vp->vpath->vp_id;
u32 is_empty = TRUE;
enum vxge_hw_status status = VXGE_HW_OK;
vpath = vp->vpath;
devh = vpath->hldev;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto vpath_close_exit;
}
list_del(&vp->item);
if (!list_empty(&vpath->vpath_handles)) {
list_add(&vp->item, &vpath->vpath_handles);
is_empty = FALSE;
}
if (!is_empty) {
status = VXGE_HW_FAIL;
goto vpath_close_exit;
}
devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
if (vpath->ringh != NULL)
__vxge_hw_ring_delete(vp);
if (vpath->fifoh != NULL)
__vxge_hw_fifo_delete(vp);
if (vpath->stats_block != NULL)
__vxge_hw_blockpool_block_free(devh, vpath->stats_block);
vfree(vp);
__vxge_hw_vp_terminate(devh, vp_id);
vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
vpath_close_exit:
return status;
}
/*
* vxge_hw_vpath_reset - Resets vpath
* This function is used to request a reset of vpath
*/
enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
{
enum vxge_hw_status status;
u32 vp_id;
struct __vxge_hw_virtualpath *vpath = vp->vpath;
vp_id = vpath->vp_id;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
if (status == VXGE_HW_OK)
vpath->sw_stats->soft_reset_cnt++;
exit:
return status;
}
/*
* vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
* This function poll's for the vpath reset completion and re initializes
* the vpath.
*/
enum vxge_hw_status
vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
{
struct __vxge_hw_virtualpath *vpath = NULL;
enum vxge_hw_status status;
struct __vxge_hw_device *hldev;
u32 vp_id;
vp_id = vp->vpath->vp_id;
vpath = vp->vpath;
hldev = vpath->hldev;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
status = __vxge_hw_vpath_reset_check(vpath);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_initialize(hldev, vp_id);
if (status != VXGE_HW_OK)
goto exit;
if (vpath->ringh != NULL)
__vxge_hw_vpath_prc_configure(hldev, vp_id);
memset(vpath->hw_stats, 0,
sizeof(struct vxge_hw_vpath_stats_hw_info));
memset(vpath->hw_stats_sav, 0,
sizeof(struct vxge_hw_vpath_stats_hw_info));
writeq(vpath->stats_block->dma_addr,
&vpath->vp_reg->stats_cfg);
status = vxge_hw_vpath_stats_enable(vp);
exit:
return status;
}
/*
* vxge_hw_vpath_enable - Enable vpath.
* This routine clears the vpath reset thereby enabling a vpath
* to start forwarding frames and generating interrupts.
*/
void
vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
{
struct __vxge_hw_device *hldev;
u64 val64;
hldev = vp->vpath->hldev;
val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
1 << (16 - vp->vpath->vp_id));
__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
&hldev->common_reg->cmn_rsthdlr_cfg1);
}
/*
* vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
* Enable the DMA vpath statistics. The function is to be called to re-enable
* the adapter to update stats into the host memory
*/
static enum vxge_hw_status
vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct __vxge_hw_virtualpath *vpath;
vpath = vp->vpath;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
memcpy(vpath->hw_stats_sav, vpath->hw_stats,
sizeof(struct vxge_hw_vpath_stats_hw_info));
status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
exit:
return status;
}
/*
* __vxge_hw_vpath_stats_access - Get the statistics from the given location
* and offset and perform an operation
*/
static enum vxge_hw_status
__vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
u32 operation, u32 offset, u64 *stat)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_vpath_reg __iomem *vp_reg;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto vpath_stats_access_exit;
}
vp_reg = vpath->vp_reg;
val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
status = __vxge_hw_pio_mem_write64(val64,
&vp_reg->xmac_stats_access_cmd,
VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
vpath->hldev->config.device_poll_millis);
if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
*stat = readq(&vp_reg->xmac_stats_access_data);
else
*stat = 0;
vpath_stats_access_exit:
return status;
}
/*
* __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
*/
static enum vxge_hw_status
__vxge_hw_vpath_xmac_tx_stats_get(
struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
{
u64 *val64;
int i;
u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
enum vxge_hw_status status = VXGE_HW_OK;
val64 = (u64 *) vpath_tx_stats;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
status = __vxge_hw_vpath_stats_access(vpath,
VXGE_HW_STATS_OP_READ,
offset, val64);
if (status != VXGE_HW_OK)
goto exit;
offset++;
val64++;
}
exit:
return status;
}
/*
* __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
*/
static enum vxge_hw_status
__vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
{
u64 *val64;
enum vxge_hw_status status = VXGE_HW_OK;
int i;
u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
val64 = (u64 *) vpath_rx_stats;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
status = __vxge_hw_vpath_stats_access(vpath,
VXGE_HW_STATS_OP_READ,
offset >> 3, val64);
if (status != VXGE_HW_OK)
goto exit;
offset += 8;
val64++;
}
exit:
return status;
}
/*
* __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
*/
static enum vxge_hw_status
__vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
struct vxge_hw_vpath_stats_hw_info *hw_stats)
{
u64 val64;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_vpath_reg __iomem *vp_reg;
if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
status = VXGE_HW_ERR_VPATH_NOT_OPEN;
goto exit;
}
vp_reg = vpath->vp_reg;
val64 = readq(&vp_reg->vpath_debug_stats0);
hw_stats->ini_num_mwr_sent =
(u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
val64 = readq(&vp_reg->vpath_debug_stats1);
hw_stats->ini_num_mrd_sent =
(u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
val64 = readq(&vp_reg->vpath_debug_stats2);
hw_stats->ini_num_cpl_rcvd =
(u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
val64 = readq(&vp_reg->vpath_debug_stats3);
hw_stats->ini_num_mwr_byte_sent =
VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
val64 = readq(&vp_reg->vpath_debug_stats4);
hw_stats->ini_num_cpl_byte_rcvd =
VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
val64 = readq(&vp_reg->vpath_debug_stats5);
hw_stats->wrcrdtarb_xoff =
(u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
val64 = readq(&vp_reg->vpath_debug_stats6);
hw_stats->rdcrdtarb_xoff =
(u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
val64 = readq(&vp_reg->vpath_genstats_count01);
hw_stats->vpath_genstats_count0 =
(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
val64);
val64 = readq(&vp_reg->vpath_genstats_count01);
hw_stats->vpath_genstats_count1 =
(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
val64);
val64 = readq(&vp_reg->vpath_genstats_count23);
hw_stats->vpath_genstats_count2 =
(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
val64);
val64 = readq(&vp_reg->vpath_genstats_count01);
hw_stats->vpath_genstats_count3 =
(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
val64);
val64 = readq(&vp_reg->vpath_genstats_count4);
hw_stats->vpath_genstats_count4 =
(u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
val64);
val64 = readq(&vp_reg->vpath_genstats_count5);
hw_stats->vpath_genstats_count5 =
(u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
val64);
status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
if (status != VXGE_HW_OK)
goto exit;
status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
if (status != VXGE_HW_OK)
goto exit;
VXGE_HW_VPATH_STATS_PIO_READ(
VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
hw_stats->prog_event_vnum0 =
(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
hw_stats->prog_event_vnum1 =
(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
VXGE_HW_VPATH_STATS_PIO_READ(
VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
hw_stats->prog_event_vnum2 =
(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
hw_stats->prog_event_vnum3 =
(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
val64 = readq(&vp_reg->rx_multi_cast_stats);
hw_stats->rx_multi_cast_frame_discard =
(u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
val64 = readq(&vp_reg->rx_frm_transferred);
hw_stats->rx_frm_transferred =
(u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
val64 = readq(&vp_reg->rxd_returned);
hw_stats->rxd_returned =
(u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
val64 = readq(&vp_reg->dbg_stats_rx_mpa);
hw_stats->rx_mpa_len_fail_frms =
(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
hw_stats->rx_mpa_mrk_fail_frms =
(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
hw_stats->rx_mpa_crc_fail_frms =
(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
val64 = readq(&vp_reg->dbg_stats_rx_fau);
hw_stats->rx_permitted_frms =
(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
hw_stats->rx_vp_reset_discarded_frms =
(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
hw_stats->rx_wol_frms =
(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
hw_stats->tx_vp_reset_discarded_frms =
(u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
val64);
exit:
return status;
}
static void vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh,
unsigned long size)
{
gfp_t flags;
void *vaddr;
if (in_interrupt())
flags = GFP_ATOMIC | GFP_DMA;
else
flags = GFP_KERNEL | GFP_DMA;
vaddr = kmalloc((size), flags);
vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
}
static void vxge_os_dma_free(struct pci_dev *pdev, const void *vaddr,
struct pci_dev **p_dma_acch)
{
unsigned long misaligned = *(unsigned long *)p_dma_acch;
u8 *tmp = (u8 *)vaddr;
tmp -= misaligned;
kfree((void *)tmp);
}
/*
* __vxge_hw_blockpool_create - Create block pool
*/
enum vxge_hw_status
__vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
struct __vxge_hw_blockpool *blockpool,
u32 pool_size,
u32 pool_max)
{
u32 i;
struct __vxge_hw_blockpool_entry *entry = NULL;
void *memblock;
dma_addr_t dma_addr;
struct pci_dev *dma_handle;
struct pci_dev *acc_handle;
enum vxge_hw_status status = VXGE_HW_OK;
if (blockpool == NULL) {
status = VXGE_HW_FAIL;
goto blockpool_create_exit;
}
blockpool->hldev = hldev;
blockpool->block_size = VXGE_HW_BLOCK_SIZE;
blockpool->pool_size = 0;
blockpool->pool_max = pool_max;
blockpool->req_out = 0;
INIT_LIST_HEAD(&blockpool->free_block_list);
INIT_LIST_HEAD(&blockpool->free_entry_list);
for (i = 0; i < pool_size + pool_max; i++) {
entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
GFP_KERNEL);
if (entry == NULL) {
__vxge_hw_blockpool_destroy(blockpool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto blockpool_create_exit;
}
list_add(&entry->item, &blockpool->free_entry_list);
}
for (i = 0; i < pool_size; i++) {
memblock = vxge_os_dma_malloc(
hldev->pdev,
VXGE_HW_BLOCK_SIZE,
&dma_handle,
&acc_handle);
if (memblock == NULL) {
__vxge_hw_blockpool_destroy(blockpool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto blockpool_create_exit;
}
dma_addr = pci_map_single(hldev->pdev, memblock,
VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
if (unlikely(pci_dma_mapping_error(hldev->pdev,
dma_addr))) {
vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
__vxge_hw_blockpool_destroy(blockpool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto blockpool_create_exit;
}
if (!list_empty(&blockpool->free_entry_list))
entry = (struct __vxge_hw_blockpool_entry *)
list_first_entry(&blockpool->free_entry_list,
struct __vxge_hw_blockpool_entry,
item);
if (entry == NULL)
entry =
kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
GFP_KERNEL);
if (entry != NULL) {
list_del(&entry->item);
entry->length = VXGE_HW_BLOCK_SIZE;
entry->memblock = memblock;
entry->dma_addr = dma_addr;
entry->acc_handle = acc_handle;
entry->dma_handle = dma_handle;
list_add(&entry->item,
&blockpool->free_block_list);
blockpool->pool_size++;
} else {
__vxge_hw_blockpool_destroy(blockpool);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto blockpool_create_exit;
}
}
blockpool_create_exit:
return status;
}
/*
* __vxge_hw_blockpool_destroy - Deallocates the block pool
*/
void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
{
struct __vxge_hw_device *hldev;
struct list_head *p, *n;
u16 ret;
if (blockpool == NULL) {
ret = 1;
goto exit;
}
hldev = blockpool->hldev;
list_for_each_safe(p, n, &blockpool->free_block_list) {
pci_unmap_single(hldev->pdev,
((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
((struct __vxge_hw_blockpool_entry *)p)->length,
PCI_DMA_BIDIRECTIONAL);
vxge_os_dma_free(hldev->pdev,
((struct __vxge_hw_blockpool_entry *)p)->memblock,
&((struct __vxge_hw_blockpool_entry *) p)->acc_handle);
list_del(
&((struct __vxge_hw_blockpool_entry *)p)->item);
kfree(p);
blockpool->pool_size--;
}
list_for_each_safe(p, n, &blockpool->free_entry_list) {
list_del(
&((struct __vxge_hw_blockpool_entry *)p)->item);
kfree((void *)p);
}
ret = 0;
exit:
return;
}
/*
* __vxge_hw_blockpool_blocks_add - Request additional blocks
*/
static
void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
{
u32 nreq = 0, i;
if ((blockpool->pool_size + blockpool->req_out) <
VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
blockpool->req_out += nreq;
}
for (i = 0; i < nreq; i++)
vxge_os_dma_malloc_async(
((struct __vxge_hw_device *)blockpool->hldev)->pdev,
blockpool->hldev, VXGE_HW_BLOCK_SIZE);
}
/*
* __vxge_hw_blockpool_blocks_remove - Free additional blocks
*/
static
void __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
{
struct list_head *p, *n;
list_for_each_safe(p, n, &blockpool->free_block_list) {
if (blockpool->pool_size < blockpool->pool_max)
break;
pci_unmap_single(
((struct __vxge_hw_device *)blockpool->hldev)->pdev,
((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
((struct __vxge_hw_blockpool_entry *)p)->length,
PCI_DMA_BIDIRECTIONAL);
vxge_os_dma_free(
((struct __vxge_hw_device *)blockpool->hldev)->pdev,
((struct __vxge_hw_blockpool_entry *)p)->memblock,
&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
list_add(p, &blockpool->free_entry_list);
blockpool->pool_size--;
}
}
/*
* vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
* Adds a block to block pool
*/
static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
void *block_addr,
u32 length,
struct pci_dev *dma_h,
struct pci_dev *acc_handle)
{
struct __vxge_hw_blockpool *blockpool;
struct __vxge_hw_blockpool_entry *entry = NULL;
dma_addr_t dma_addr;
enum vxge_hw_status status = VXGE_HW_OK;
u32 req_out;
blockpool = &devh->block_pool;
if (block_addr == NULL) {
blockpool->req_out--;
status = VXGE_HW_FAIL;
goto exit;
}
dma_addr = pci_map_single(devh->pdev, block_addr, length,
PCI_DMA_BIDIRECTIONAL);
if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
blockpool->req_out--;
status = VXGE_HW_FAIL;
goto exit;
}
if (!list_empty(&blockpool->free_entry_list))
entry = (struct __vxge_hw_blockpool_entry *)
list_first_entry(&blockpool->free_entry_list,
struct __vxge_hw_blockpool_entry,
item);
if (entry == NULL)
entry = (struct __vxge_hw_blockpool_entry *)
vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
else
list_del(&entry->item);
if (entry != NULL) {
entry->length = length;
entry->memblock = block_addr;
entry->dma_addr = dma_addr;
entry->acc_handle = acc_handle;
entry->dma_handle = dma_h;
list_add(&entry->item, &blockpool->free_block_list);
blockpool->pool_size++;
status = VXGE_HW_OK;
} else
status = VXGE_HW_ERR_OUT_OF_MEMORY;
blockpool->req_out--;
req_out = blockpool->req_out;
exit:
return;
}
/*
* __vxge_hw_blockpool_malloc - Allocate a memory block from pool
* Allocates a block of memory of given size, either from block pool
* or by calling vxge_os_dma_malloc()
*/
void *
__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
struct vxge_hw_mempool_dma *dma_object)
{
struct __vxge_hw_blockpool_entry *entry = NULL;
struct __vxge_hw_blockpool *blockpool;
void *memblock = NULL;
enum vxge_hw_status status = VXGE_HW_OK;
blockpool = &devh->block_pool;
if (size != blockpool->block_size) {
memblock = vxge_os_dma_malloc(devh->pdev, size,
&dma_object->handle,
&dma_object->acc_handle);
if (memblock == NULL) {
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
dma_object->addr = pci_map_single(devh->pdev, memblock, size,
PCI_DMA_BIDIRECTIONAL);
if (unlikely(pci_dma_mapping_error(devh->pdev,
dma_object->addr))) {
vxge_os_dma_free(devh->pdev, memblock,
&dma_object->acc_handle);
status = VXGE_HW_ERR_OUT_OF_MEMORY;
goto exit;
}
} else {
if (!list_empty(&blockpool->free_block_list))
entry = (struct __vxge_hw_blockpool_entry *)
list_first_entry(&blockpool->free_block_list,
struct __vxge_hw_blockpool_entry,
item);
if (entry != NULL) {
list_del(&entry->item);
dma_object->addr = entry->dma_addr;
dma_object->handle = entry->dma_handle;
dma_object->acc_handle = entry->acc_handle;
memblock = entry->memblock;
list_add(&entry->item,
&blockpool->free_entry_list);
blockpool->pool_size--;
}
if (memblock != NULL)
__vxge_hw_blockpool_blocks_add(blockpool);
}
exit:
return memblock;
}
/*
* __vxge_hw_blockpool_free - Frees the memory allcoated with
__vxge_hw_blockpool_malloc
*/
void
__vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
void *memblock, u32 size,
struct vxge_hw_mempool_dma *dma_object)
{
struct __vxge_hw_blockpool_entry *entry = NULL;
struct __vxge_hw_blockpool *blockpool;
enum vxge_hw_status status = VXGE_HW_OK;
blockpool = &devh->block_pool;
if (size != blockpool->block_size) {
pci_unmap_single(devh->pdev, dma_object->addr, size,
PCI_DMA_BIDIRECTIONAL);
vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
} else {
if (!list_empty(&blockpool->free_entry_list))
entry = (struct __vxge_hw_blockpool_entry *)
list_first_entry(&blockpool->free_entry_list,
struct __vxge_hw_blockpool_entry,
item);
if (entry == NULL)
entry = (struct __vxge_hw_blockpool_entry *)
vmalloc(sizeof(
struct __vxge_hw_blockpool_entry));
else
list_del(&entry->item);
if (entry != NULL) {
entry->length = size;
entry->memblock = memblock;
entry->dma_addr = dma_object->addr;
entry->acc_handle = dma_object->acc_handle;
entry->dma_handle = dma_object->handle;
list_add(&entry->item,
&blockpool->free_block_list);
blockpool->pool_size++;
status = VXGE_HW_OK;
} else
status = VXGE_HW_ERR_OUT_OF_MEMORY;
if (status == VXGE_HW_OK)
__vxge_hw_blockpool_blocks_remove(blockpool);
}
}
/*
* __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
* This function allocates a block from block pool or from the system
*/
struct __vxge_hw_blockpool_entry *
__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
{
struct __vxge_hw_blockpool_entry *entry = NULL;
struct __vxge_hw_blockpool *blockpool;
blockpool = &devh->block_pool;
if (size == blockpool->block_size) {
if (!list_empty(&blockpool->free_block_list))
entry = (struct __vxge_hw_blockpool_entry *)
list_first_entry(&blockpool->free_block_list,
struct __vxge_hw_blockpool_entry,
item);
if (entry != NULL) {
list_del(&entry->item);
blockpool->pool_size--;
}
}
if (entry != NULL)
__vxge_hw_blockpool_blocks_add(blockpool);
return entry;
}
/*
* __vxge_hw_blockpool_block_free - Frees a block from block pool
* @devh: Hal device
* @entry: Entry of block to be freed
*
* This function frees a block from block pool
*/
void
__vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
struct __vxge_hw_blockpool_entry *entry)
{
struct __vxge_hw_blockpool *blockpool;
blockpool = &devh->block_pool;
if (entry->length == blockpool->block_size) {
list_add(&entry->item, &blockpool->free_block_list);
blockpool->pool_size++;
}
__vxge_hw_blockpool_blocks_remove(blockpool);
}