linux-sg2042/drivers/spi/spidev.c

685 lines
17 KiB
C

/*
* spidev.c -- simple synchronous userspace interface to SPI devices
*
* Copyright (C) 2006 SWAPP
* Andrea Paterniani <a.paterniani@swapp-eng.it>
* Copyright (C) 2007 David Brownell (simplification, cleanup)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ioctl.h>
#include <linux/fs.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/errno.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/spi/spi.h>
#include <linux/spi/spidev.h>
#include <asm/uaccess.h>
/*
* This supports acccess to SPI devices using normal userspace I/O calls.
* Note that while traditional UNIX/POSIX I/O semantics are half duplex,
* and often mask message boundaries, full SPI support requires full duplex
* transfers. There are several kinds of of internal message boundaries to
* handle chipselect management and other protocol options.
*
* SPI has a character major number assigned. We allocate minor numbers
* dynamically using a bitmask. You must use hotplug tools, such as udev
* (or mdev with busybox) to create and destroy the /dev/spidevB.C device
* nodes, since there is no fixed association of minor numbers with any
* particular SPI bus or device.
*/
#define SPIDEV_MAJOR 153 /* assigned */
#define N_SPI_MINORS 32 /* ... up to 256 */
static unsigned long minors[N_SPI_MINORS / BITS_PER_LONG];
/* Bit masks for spi_device.mode management. Note that incorrect
* settings for CS_HIGH and 3WIRE can cause *lots* of trouble for other
* devices on a shared bus: CS_HIGH, because this device will be
* active when it shouldn't be; 3WIRE, because when active it won't
* behave as it should.
*
* REVISIT should changing those two modes be privileged?
*/
#define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP)
struct spidev_data {
dev_t devt;
spinlock_t spi_lock;
struct spi_device *spi;
struct list_head device_entry;
/* buffer is NULL unless this device is open (users > 0) */
struct mutex buf_lock;
unsigned users;
u8 *buffer;
};
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_lock);
static unsigned bufsiz = 4096;
module_param(bufsiz, uint, S_IRUGO);
MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
/*-------------------------------------------------------------------------*/
/*
* We can't use the standard synchronous wrappers for file I/O; we
* need to protect against async removal of the underlying spi_device.
*/
static void spidev_complete(void *arg)
{
complete(arg);
}
static ssize_t
spidev_sync(struct spidev_data *spidev, struct spi_message *message)
{
DECLARE_COMPLETION_ONSTACK(done);
int status;
message->complete = spidev_complete;
message->context = &done;
spin_lock_irq(&spidev->spi_lock);
if (spidev->spi == NULL)
status = -ESHUTDOWN;
else
status = spi_async(spidev->spi, message);
spin_unlock_irq(&spidev->spi_lock);
if (status == 0) {
wait_for_completion(&done);
status = message->status;
if (status == 0)
status = message->actual_length;
}
return status;
}
static inline ssize_t
spidev_sync_write(struct spidev_data *spidev, size_t len)
{
struct spi_transfer t = {
.tx_buf = spidev->buffer,
.len = len,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return spidev_sync(spidev, &m);
}
static inline ssize_t
spidev_sync_read(struct spidev_data *spidev, size_t len)
{
struct spi_transfer t = {
.rx_buf = spidev->buffer,
.len = len,
};
struct spi_message m;
spi_message_init(&m);
spi_message_add_tail(&t, &m);
return spidev_sync(spidev, &m);
}
/*-------------------------------------------------------------------------*/
/* Read-only message with current device setup */
static ssize_t
spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
ssize_t status = 0;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
spidev = filp->private_data;
mutex_lock(&spidev->buf_lock);
status = spidev_sync_read(spidev, count);
if (status > 0) {
unsigned long missing;
missing = copy_to_user(buf, spidev->buffer, status);
if (missing == status)
status = -EFAULT;
else
status = status - missing;
}
mutex_unlock(&spidev->buf_lock);
return status;
}
/* Write-only message with current device setup */
static ssize_t
spidev_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
ssize_t status = 0;
unsigned long missing;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
spidev = filp->private_data;
mutex_lock(&spidev->buf_lock);
missing = copy_from_user(spidev->buffer, buf, count);
if (missing == 0) {
status = spidev_sync_write(spidev, count);
} else
status = -EFAULT;
mutex_unlock(&spidev->buf_lock);
return status;
}
static int spidev_message(struct spidev_data *spidev,
struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
{
struct spi_message msg;
struct spi_transfer *k_xfers;
struct spi_transfer *k_tmp;
struct spi_ioc_transfer *u_tmp;
unsigned n, total;
u8 *buf;
int status = -EFAULT;
spi_message_init(&msg);
k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
if (k_xfers == NULL)
return -ENOMEM;
/* Construct spi_message, copying any tx data to bounce buffer.
* We walk the array of user-provided transfers, using each one
* to initialize a kernel version of the same transfer.
*/
buf = spidev->buffer;
total = 0;
for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
n;
n--, k_tmp++, u_tmp++) {
k_tmp->len = u_tmp->len;
total += k_tmp->len;
if (total > bufsiz) {
status = -EMSGSIZE;
goto done;
}
if (u_tmp->rx_buf) {
k_tmp->rx_buf = buf;
if (!access_ok(VERIFY_WRITE, (u8 __user *)
(uintptr_t) u_tmp->rx_buf,
u_tmp->len))
goto done;
}
if (u_tmp->tx_buf) {
k_tmp->tx_buf = buf;
if (copy_from_user(buf, (const u8 __user *)
(uintptr_t) u_tmp->tx_buf,
u_tmp->len))
goto done;
}
buf += k_tmp->len;
k_tmp->cs_change = !!u_tmp->cs_change;
k_tmp->bits_per_word = u_tmp->bits_per_word;
k_tmp->delay_usecs = u_tmp->delay_usecs;
k_tmp->speed_hz = u_tmp->speed_hz;
#ifdef VERBOSE
dev_dbg(&spi->dev,
" xfer len %zd %s%s%s%dbits %u usec %uHz\n",
u_tmp->len,
u_tmp->rx_buf ? "rx " : "",
u_tmp->tx_buf ? "tx " : "",
u_tmp->cs_change ? "cs " : "",
u_tmp->bits_per_word ? : spi->bits_per_word,
u_tmp->delay_usecs,
u_tmp->speed_hz ? : spi->max_speed_hz);
#endif
spi_message_add_tail(k_tmp, &msg);
}
status = spidev_sync(spidev, &msg);
if (status < 0)
goto done;
/* copy any rx data out of bounce buffer */
buf = spidev->buffer;
for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
if (u_tmp->rx_buf) {
if (__copy_to_user((u8 __user *)
(uintptr_t) u_tmp->rx_buf, buf,
u_tmp->len)) {
status = -EFAULT;
goto done;
}
}
buf += u_tmp->len;
}
status = total;
done:
kfree(k_xfers);
return status;
}
static long
spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
int err = 0;
int retval = 0;
struct spidev_data *spidev;
struct spi_device *spi;
u32 tmp;
unsigned n_ioc;
struct spi_ioc_transfer *ioc;
/* Check type and command number */
if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
return -ENOTTY;
/* Check access direction once here; don't repeat below.
* IOC_DIR is from the user perspective, while access_ok is
* from the kernel perspective; so they look reversed.
*/
if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok(VERIFY_WRITE,
(void __user *)arg, _IOC_SIZE(cmd));
if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ,
(void __user *)arg, _IOC_SIZE(cmd));
if (err)
return -EFAULT;
/* guard against device removal before, or while,
* we issue this ioctl.
*/
spidev = filp->private_data;
spin_lock_irq(&spidev->spi_lock);
spi = spi_dev_get(spidev->spi);
spin_unlock_irq(&spidev->spi_lock);
if (spi == NULL)
return -ESHUTDOWN;
/* use the buffer lock here for triple duty:
* - prevent I/O (from us) so calling spi_setup() is safe;
* - prevent concurrent SPI_IOC_WR_* from morphing
* data fields while SPI_IOC_RD_* reads them;
* - SPI_IOC_MESSAGE needs the buffer locked "normally".
*/
mutex_lock(&spidev->buf_lock);
switch (cmd) {
/* read requests */
case SPI_IOC_RD_MODE:
retval = __put_user(spi->mode & SPI_MODE_MASK,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_LSB_FIRST:
retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
(__u8 __user *)arg);
break;
case SPI_IOC_RD_BITS_PER_WORD:
retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
break;
case SPI_IOC_RD_MAX_SPEED_HZ:
retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
break;
/* write requests */
case SPI_IOC_WR_MODE:
retval = __get_user(tmp, (u8 __user *)arg);
if (retval == 0) {
u8 save = spi->mode;
if (tmp & ~SPI_MODE_MASK) {
retval = -EINVAL;
break;
}
tmp |= spi->mode & ~SPI_MODE_MASK;
spi->mode = (u8)tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
}
break;
case SPI_IOC_WR_LSB_FIRST:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u8 save = spi->mode;
if (tmp)
spi->mode |= SPI_LSB_FIRST;
else
spi->mode &= ~SPI_LSB_FIRST;
retval = spi_setup(spi);
if (retval < 0)
spi->mode = save;
else
dev_dbg(&spi->dev, "%csb first\n",
tmp ? 'l' : 'm');
}
break;
case SPI_IOC_WR_BITS_PER_WORD:
retval = __get_user(tmp, (__u8 __user *)arg);
if (retval == 0) {
u8 save = spi->bits_per_word;
spi->bits_per_word = tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->bits_per_word = save;
else
dev_dbg(&spi->dev, "%d bits per word\n", tmp);
}
break;
case SPI_IOC_WR_MAX_SPEED_HZ:
retval = __get_user(tmp, (__u32 __user *)arg);
if (retval == 0) {
u32 save = spi->max_speed_hz;
spi->max_speed_hz = tmp;
retval = spi_setup(spi);
if (retval < 0)
spi->max_speed_hz = save;
else
dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
}
break;
default:
/* segmented and/or full-duplex I/O request */
if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
|| _IOC_DIR(cmd) != _IOC_WRITE) {
retval = -ENOTTY;
break;
}
tmp = _IOC_SIZE(cmd);
if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {
retval = -EINVAL;
break;
}
n_ioc = tmp / sizeof(struct spi_ioc_transfer);
if (n_ioc == 0)
break;
/* copy into scratch area */
ioc = kmalloc(tmp, GFP_KERNEL);
if (!ioc) {
retval = -ENOMEM;
break;
}
if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
kfree(ioc);
retval = -EFAULT;
break;
}
/* translate to spi_message, execute */
retval = spidev_message(spidev, ioc, n_ioc);
kfree(ioc);
break;
}
mutex_unlock(&spidev->buf_lock);
spi_dev_put(spi);
return retval;
}
static int spidev_open(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = -ENXIO;
lock_kernel();
mutex_lock(&device_list_lock);
list_for_each_entry(spidev, &device_list, device_entry) {
if (spidev->devt == inode->i_rdev) {
status = 0;
break;
}
}
if (status == 0) {
if (!spidev->buffer) {
spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!spidev->buffer) {
dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
status = -ENOMEM;
}
}
if (status == 0) {
spidev->users++;
filp->private_data = spidev;
nonseekable_open(inode, filp);
}
} else
pr_debug("spidev: nothing for minor %d\n", iminor(inode));
mutex_unlock(&device_list_lock);
unlock_kernel();
return status;
}
static int spidev_release(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = 0;
mutex_lock(&device_list_lock);
spidev = filp->private_data;
filp->private_data = NULL;
/* last close? */
spidev->users--;
if (!spidev->users) {
int dofree;
kfree(spidev->buffer);
spidev->buffer = NULL;
/* ... after we unbound from the underlying device? */
spin_lock_irq(&spidev->spi_lock);
dofree = (spidev->spi == NULL);
spin_unlock_irq(&spidev->spi_lock);
if (dofree)
kfree(spidev);
}
mutex_unlock(&device_list_lock);
return status;
}
static struct file_operations spidev_fops = {
.owner = THIS_MODULE,
/* REVISIT switch to aio primitives, so that userspace
* gets more complete API coverage. It'll simplify things
* too, except for the locking.
*/
.write = spidev_write,
.read = spidev_read,
.unlocked_ioctl = spidev_ioctl,
.open = spidev_open,
.release = spidev_release,
};
/*-------------------------------------------------------------------------*/
/* The main reason to have this class is to make mdev/udev create the
* /dev/spidevB.C character device nodes exposing our userspace API.
* It also simplifies memory management.
*/
static struct class *spidev_class;
/*-------------------------------------------------------------------------*/
static int spidev_probe(struct spi_device *spi)
{
struct spidev_data *spidev;
int status;
unsigned long minor;
/* Allocate driver data */
spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
if (!spidev)
return -ENOMEM;
/* Initialize the driver data */
spidev->spi = spi;
spin_lock_init(&spidev->spi_lock);
mutex_init(&spidev->buf_lock);
INIT_LIST_HEAD(&spidev->device_entry);
/* If we can allocate a minor number, hook up this device.
* Reusing minors is fine so long as udev or mdev is working.
*/
mutex_lock(&device_list_lock);
minor = find_first_zero_bit(minors, N_SPI_MINORS);
if (minor < N_SPI_MINORS) {
struct device *dev;
spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
dev = device_create_drvdata(spidev_class, &spi->dev,
spidev->devt, spidev,
"spidev%d.%d",
spi->master->bus_num, spi->chip_select);
status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
} else {
dev_dbg(&spi->dev, "no minor number available!\n");
status = -ENODEV;
}
if (status == 0) {
set_bit(minor, minors);
list_add(&spidev->device_entry, &device_list);
}
mutex_unlock(&device_list_lock);
if (status != 0)
kfree(spidev);
return status;
}
static int spidev_remove(struct spi_device *spi)
{
struct spidev_data *spidev = spi_get_drvdata(spi);
/* make sure ops on existing fds can abort cleanly */
spin_lock_irq(&spidev->spi_lock);
spidev->spi = NULL;
spi_set_drvdata(spi, NULL);
spin_unlock_irq(&spidev->spi_lock);
/* prevent new opens */
mutex_lock(&device_list_lock);
list_del(&spidev->device_entry);
device_destroy(spidev_class, spidev->devt);
clear_bit(MINOR(spidev->devt), minors);
if (spidev->users == 0)
kfree(spidev);
mutex_unlock(&device_list_lock);
return 0;
}
static struct spi_driver spidev_spi = {
.driver = {
.name = "spidev",
.owner = THIS_MODULE,
},
.probe = spidev_probe,
.remove = __devexit_p(spidev_remove),
/* NOTE: suspend/resume methods are not necessary here.
* We don't do anything except pass the requests to/from
* the underlying controller. The refrigerator handles
* most issues; the controller driver handles the rest.
*/
};
/*-------------------------------------------------------------------------*/
static int __init spidev_init(void)
{
int status;
/* Claim our 256 reserved device numbers. Then register a class
* that will key udev/mdev to add/remove /dev nodes. Last, register
* the driver which manages those device numbers.
*/
BUILD_BUG_ON(N_SPI_MINORS > 256);
status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
if (status < 0)
return status;
spidev_class = class_create(THIS_MODULE, "spidev");
if (IS_ERR(spidev_class)) {
unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
return PTR_ERR(spidev_class);
}
status = spi_register_driver(&spidev_spi);
if (status < 0) {
class_destroy(spidev_class);
unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
}
return status;
}
module_init(spidev_init);
static void __exit spidev_exit(void)
{
spi_unregister_driver(&spidev_spi);
class_destroy(spidev_class);
unregister_chrdev(SPIDEV_MAJOR, spidev_spi.driver.name);
}
module_exit(spidev_exit);
MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
MODULE_DESCRIPTION("User mode SPI device interface");
MODULE_LICENSE("GPL");