linux-sg2042/drivers/firewire/fw-card.c

556 lines
14 KiB
C

/*
* Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/completion.h>
#include <linux/crc-itu-t.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/kref.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
int fw_compute_block_crc(u32 *block)
{
__be32 be32_block[256];
int i, length;
length = (*block >> 16) & 0xff;
for (i = 0; i < length; i++)
be32_block[i] = cpu_to_be32(block[i + 1]);
*block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
return length;
}
static DEFINE_MUTEX(card_mutex);
static LIST_HEAD(card_list);
static LIST_HEAD(descriptor_list);
static int descriptor_count;
#define BIB_CRC(v) ((v) << 0)
#define BIB_CRC_LENGTH(v) ((v) << 16)
#define BIB_INFO_LENGTH(v) ((v) << 24)
#define BIB_LINK_SPEED(v) ((v) << 0)
#define BIB_GENERATION(v) ((v) << 4)
#define BIB_MAX_ROM(v) ((v) << 8)
#define BIB_MAX_RECEIVE(v) ((v) << 12)
#define BIB_CYC_CLK_ACC(v) ((v) << 16)
#define BIB_PMC ((1) << 27)
#define BIB_BMC ((1) << 28)
#define BIB_ISC ((1) << 29)
#define BIB_CMC ((1) << 30)
#define BIB_IMC ((1) << 31)
static u32 *
generate_config_rom(struct fw_card *card, size_t *config_rom_length)
{
struct fw_descriptor *desc;
static u32 config_rom[256];
int i, j, length;
/*
* Initialize contents of config rom buffer. On the OHCI
* controller, block reads to the config rom accesses the host
* memory, but quadlet read access the hardware bus info block
* registers. That's just crack, but it means we should make
* sure the contents of bus info block in host memory mathces
* the version stored in the OHCI registers.
*/
memset(config_rom, 0, sizeof(config_rom));
config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
config_rom[1] = 0x31333934;
config_rom[2] =
BIB_LINK_SPEED(card->link_speed) |
BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
BIB_MAX_ROM(2) |
BIB_MAX_RECEIVE(card->max_receive) |
BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
config_rom[3] = card->guid >> 32;
config_rom[4] = card->guid;
/* Generate root directory. */
i = 5;
config_rom[i++] = 0;
config_rom[i++] = 0x0c0083c0; /* node capabilities */
j = i + descriptor_count;
/* Generate root directory entries for descriptors. */
list_for_each_entry (desc, &descriptor_list, link) {
if (desc->immediate > 0)
config_rom[i++] = desc->immediate;
config_rom[i] = desc->key | (j - i);
i++;
j += desc->length;
}
/* Update root directory length. */
config_rom[5] = (i - 5 - 1) << 16;
/* End of root directory, now copy in descriptors. */
list_for_each_entry (desc, &descriptor_list, link) {
memcpy(&config_rom[i], desc->data, desc->length * 4);
i += desc->length;
}
/* Calculate CRCs for all blocks in the config rom. This
* assumes that CRC length and info length are identical for
* the bus info block, which is always the case for this
* implementation. */
for (i = 0; i < j; i += length + 1)
length = fw_compute_block_crc(config_rom + i);
*config_rom_length = j;
return config_rom;
}
static void
update_config_roms(void)
{
struct fw_card *card;
u32 *config_rom;
size_t length;
list_for_each_entry (card, &card_list, link) {
config_rom = generate_config_rom(card, &length);
card->driver->set_config_rom(card, config_rom, length);
}
}
int
fw_core_add_descriptor(struct fw_descriptor *desc)
{
size_t i;
/*
* Check descriptor is valid; the length of all blocks in the
* descriptor has to add up to exactly the length of the
* block.
*/
i = 0;
while (i < desc->length)
i += (desc->data[i] >> 16) + 1;
if (i != desc->length)
return -EINVAL;
mutex_lock(&card_mutex);
list_add_tail(&desc->link, &descriptor_list);
descriptor_count++;
if (desc->immediate > 0)
descriptor_count++;
update_config_roms();
mutex_unlock(&card_mutex);
return 0;
}
void
fw_core_remove_descriptor(struct fw_descriptor *desc)
{
mutex_lock(&card_mutex);
list_del(&desc->link);
descriptor_count--;
if (desc->immediate > 0)
descriptor_count--;
update_config_roms();
mutex_unlock(&card_mutex);
}
static const char gap_count_table[] = {
63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};
struct bm_data {
struct fw_transaction t;
struct {
__be32 arg;
__be32 data;
} lock;
u32 old;
int rcode;
struct completion done;
};
static void
complete_bm_lock(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct bm_data *bmd = data;
if (rcode == RCODE_COMPLETE)
bmd->old = be32_to_cpu(*(__be32 *) payload);
bmd->rcode = rcode;
complete(&bmd->done);
}
static void
fw_card_bm_work(struct work_struct *work)
{
struct fw_card *card = container_of(work, struct fw_card, work.work);
struct fw_device *root_device;
struct fw_node *root_node, *local_node;
struct bm_data bmd;
unsigned long flags;
int root_id, new_root_id, irm_id, gap_count, generation, grace;
bool do_reset = false;
spin_lock_irqsave(&card->lock, flags);
local_node = card->local_node;
root_node = card->root_node;
if (local_node == NULL) {
spin_unlock_irqrestore(&card->lock, flags);
return;
}
fw_node_get(local_node);
fw_node_get(root_node);
generation = card->generation;
root_device = root_node->data;
if (root_device)
fw_device_get(root_device);
root_id = root_node->node_id;
grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));
if (card->bm_generation + 1 == generation ||
(card->bm_generation != generation && grace)) {
/*
* This first step is to figure out who is IRM and
* then try to become bus manager. If the IRM is not
* well defined (e.g. does not have an active link
* layer or does not responds to our lock request, we
* will have to do a little vigilante bus management.
* In that case, we do a goto into the gap count logic
* so that when we do the reset, we still optimize the
* gap count. That could well save a reset in the
* next generation.
*/
irm_id = card->irm_node->node_id;
if (!card->irm_node->link_on) {
new_root_id = local_node->node_id;
fw_notify("IRM has link off, making local node (%02x) root.\n",
new_root_id);
goto pick_me;
}
bmd.lock.arg = cpu_to_be32(0x3f);
bmd.lock.data = cpu_to_be32(local_node->node_id);
spin_unlock_irqrestore(&card->lock, flags);
init_completion(&bmd.done);
fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP,
irm_id, generation,
SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
&bmd.lock, sizeof(bmd.lock),
complete_bm_lock, &bmd);
wait_for_completion(&bmd.done);
if (bmd.rcode == RCODE_GENERATION) {
/*
* Another bus reset happened. Just return,
* the BM work has been rescheduled.
*/
goto out;
}
if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f)
/* Somebody else is BM, let them do the work. */
goto out;
spin_lock_irqsave(&card->lock, flags);
if (bmd.rcode != RCODE_COMPLETE) {
/*
* The lock request failed, maybe the IRM
* isn't really IRM capable after all. Let's
* do a bus reset and pick the local node as
* root, and thus, IRM.
*/
new_root_id = local_node->node_id;
fw_notify("BM lock failed, making local node (%02x) root.\n",
new_root_id);
goto pick_me;
}
} else if (card->bm_generation != generation) {
/*
* OK, we weren't BM in the last generation, and it's
* less than 100ms since last bus reset. Reschedule
* this task 100ms from now.
*/
spin_unlock_irqrestore(&card->lock, flags);
schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10));
goto out;
}
/*
* We're bus manager for this generation, so next step is to
* make sure we have an active cycle master and do gap count
* optimization.
*/
card->bm_generation = generation;
if (root_device == NULL) {
/*
* Either link_on is false, or we failed to read the
* config rom. In either case, pick another root.
*/
new_root_id = local_node->node_id;
} else if (atomic_read(&root_device->state) != FW_DEVICE_RUNNING) {
/*
* If we haven't probed this device yet, bail out now
* and let's try again once that's done.
*/
spin_unlock_irqrestore(&card->lock, flags);
goto out;
} else if (root_device->cmc) {
/*
* FIXME: I suppose we should set the cmstr bit in the
* STATE_CLEAR register of this node, as described in
* 1394-1995, 8.4.2.6. Also, send out a force root
* packet for this node.
*/
new_root_id = root_id;
} else {
/*
* Current root has an active link layer and we
* successfully read the config rom, but it's not
* cycle master capable.
*/
new_root_id = local_node->node_id;
}
pick_me:
/*
* Pick a gap count from 1394a table E-1. The table doesn't cover
* the typically much larger 1394b beta repeater delays though.
*/
if (!card->beta_repeaters_present &&
root_node->max_hops < ARRAY_SIZE(gap_count_table))
gap_count = gap_count_table[root_node->max_hops];
else
gap_count = 63;
/*
* Finally, figure out if we should do a reset or not. If we have
* done less than 5 resets with the same physical topology and we
* have either a new root or a new gap count setting, let's do it.
*/
if (card->bm_retries++ < 5 &&
(card->gap_count != gap_count || new_root_id != root_id))
do_reset = true;
spin_unlock_irqrestore(&card->lock, flags);
if (do_reset) {
fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
card->index, new_root_id, gap_count);
fw_send_phy_config(card, new_root_id, generation, gap_count);
fw_core_initiate_bus_reset(card, 1);
}
out:
if (root_device)
fw_device_put(root_device);
fw_node_put(root_node);
fw_node_put(local_node);
}
static void
flush_timer_callback(unsigned long data)
{
struct fw_card *card = (struct fw_card *)data;
fw_flush_transactions(card);
}
void
fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
struct device *device)
{
static atomic_t index = ATOMIC_INIT(-1);
card->index = atomic_inc_return(&index);
card->driver = driver;
card->device = device;
card->current_tlabel = 0;
card->tlabel_mask = 0;
card->color = 0;
card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
kref_init(&card->kref);
init_completion(&card->done);
INIT_LIST_HEAD(&card->transaction_list);
spin_lock_init(&card->lock);
setup_timer(&card->flush_timer,
flush_timer_callback, (unsigned long)card);
card->local_node = NULL;
INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
}
EXPORT_SYMBOL(fw_card_initialize);
int
fw_card_add(struct fw_card *card,
u32 max_receive, u32 link_speed, u64 guid)
{
u32 *config_rom;
size_t length;
card->max_receive = max_receive;
card->link_speed = link_speed;
card->guid = guid;
mutex_lock(&card_mutex);
config_rom = generate_config_rom(card, &length);
list_add_tail(&card->link, &card_list);
mutex_unlock(&card_mutex);
return card->driver->enable(card, config_rom, length);
}
EXPORT_SYMBOL(fw_card_add);
/*
* The next few functions implements a dummy driver that use once a
* card driver shuts down an fw_card. This allows the driver to
* cleanly unload, as all IO to the card will be handled by the dummy
* driver instead of calling into the (possibly) unloaded module. The
* dummy driver just fails all IO.
*/
static int
dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
BUG();
return -1;
}
static int
dummy_update_phy_reg(struct fw_card *card, int address,
int clear_bits, int set_bits)
{
return -ENODEV;
}
static int
dummy_set_config_rom(struct fw_card *card,
u32 *config_rom, size_t length)
{
/*
* We take the card out of card_list before setting the dummy
* driver, so this should never get called.
*/
BUG();
return -1;
}
static void
dummy_send_request(struct fw_card *card, struct fw_packet *packet)
{
packet->callback(packet, card, -ENODEV);
}
static void
dummy_send_response(struct fw_card *card, struct fw_packet *packet)
{
packet->callback(packet, card, -ENODEV);
}
static int
dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
return -ENOENT;
}
static int
dummy_enable_phys_dma(struct fw_card *card,
int node_id, int generation)
{
return -ENODEV;
}
static struct fw_card_driver dummy_driver = {
.enable = dummy_enable,
.update_phy_reg = dummy_update_phy_reg,
.set_config_rom = dummy_set_config_rom,
.send_request = dummy_send_request,
.cancel_packet = dummy_cancel_packet,
.send_response = dummy_send_response,
.enable_phys_dma = dummy_enable_phys_dma,
};
void
fw_card_release(struct kref *kref)
{
struct fw_card *card = container_of(kref, struct fw_card, kref);
complete(&card->done);
}
void
fw_core_remove_card(struct fw_card *card)
{
card->driver->update_phy_reg(card, 4,
PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
fw_core_initiate_bus_reset(card, 1);
mutex_lock(&card_mutex);
list_del(&card->link);
mutex_unlock(&card_mutex);
/* Set up the dummy driver. */
card->driver = &dummy_driver;
fw_destroy_nodes(card);
/* Wait for all users, especially device workqueue jobs, to finish. */
fw_card_put(card);
wait_for_completion(&card->done);
cancel_delayed_work_sync(&card->work);
WARN_ON(!list_empty(&card->transaction_list));
del_timer_sync(&card->flush_timer);
}
EXPORT_SYMBOL(fw_core_remove_card);
int
fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
{
int reg = short_reset ? 5 : 1;
int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
return card->driver->update_phy_reg(card, reg, 0, bit);
}
EXPORT_SYMBOL(fw_core_initiate_bus_reset);