linux-sg2042/drivers/sh/clk-cpg.c

299 lines
7.2 KiB
C

#include <linux/clk.h>
#include <linux/compiler.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/sh_clk.h>
static int sh_clk_mstp32_enable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) & ~(1 << clk->enable_bit),
clk->enable_reg);
return 0;
}
static void sh_clk_mstp32_disable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) | (1 << clk->enable_bit),
clk->enable_reg);
}
static struct clk_ops sh_clk_mstp32_clk_ops = {
.enable = sh_clk_mstp32_enable,
.disable = sh_clk_mstp32_disable,
.recalc = followparent_recalc,
};
int __init sh_clk_mstp32_register(struct clk *clks, int nr)
{
struct clk *clkp;
int ret = 0;
int k;
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = &sh_clk_mstp32_clk_ops;
ret |= clk_register(clkp);
}
return ret;
}
static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate)
{
return clk_rate_table_round(clk, clk->freq_table, rate);
}
static int sh_clk_div6_divisors[64] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
};
static struct clk_div_mult_table sh_clk_div6_table = {
.divisors = sh_clk_div6_divisors,
.nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors),
};
static unsigned long sh_clk_div6_recalc(struct clk *clk)
{
struct clk_div_mult_table *table = &sh_clk_div6_table;
unsigned int idx;
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, NULL);
idx = __raw_readl(clk->enable_reg) & 0x003f;
return clk->freq_table[idx].frequency;
}
static int sh_clk_div6_set_rate(struct clk *clk,
unsigned long rate, int algo_id)
{
unsigned long value;
int idx;
idx = clk_rate_table_find(clk, clk->freq_table, rate);
if (idx < 0)
return idx;
value = __raw_readl(clk->enable_reg);
value &= ~0x3f;
value |= idx;
__raw_writel(value, clk->enable_reg);
return 0;
}
static int sh_clk_div6_enable(struct clk *clk)
{
unsigned long value;
int ret;
ret = sh_clk_div6_set_rate(clk, clk->rate, 0);
if (ret == 0) {
value = __raw_readl(clk->enable_reg);
value &= ~0x100; /* clear stop bit to enable clock */
__raw_writel(value, clk->enable_reg);
}
return ret;
}
static void sh_clk_div6_disable(struct clk *clk)
{
unsigned long value;
value = __raw_readl(clk->enable_reg);
value |= 0x100; /* stop clock */
value |= 0x3f; /* VDIV bits must be non-zero, overwrite divider */
__raw_writel(value, clk->enable_reg);
}
static struct clk_ops sh_clk_div6_clk_ops = {
.recalc = sh_clk_div6_recalc,
.round_rate = sh_clk_div_round_rate,
.set_rate = sh_clk_div6_set_rate,
.enable = sh_clk_div6_enable,
.disable = sh_clk_div6_disable,
};
int __init sh_clk_div6_register(struct clk *clks, int nr)
{
struct clk *clkp;
void *freq_table;
int nr_divs = sh_clk_div6_table.nr_divisors;
int freq_table_size = sizeof(struct cpufreq_frequency_table);
int ret = 0;
int k;
freq_table_size *= (nr_divs + 1);
freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
if (!freq_table) {
pr_err("sh_clk_div6_register: unable to alloc memory\n");
return -ENOMEM;
}
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = &sh_clk_div6_clk_ops;
clkp->id = -1;
clkp->freq_table = freq_table + (k * freq_table_size);
clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
ret = clk_register(clkp);
}
return ret;
}
static unsigned long sh_clk_div4_recalc(struct clk *clk)
{
struct clk_div4_table *d4t = clk->priv;
struct clk_div_mult_table *table = d4t->div_mult_table;
unsigned int idx;
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, &clk->arch_flags);
idx = (__raw_readl(clk->enable_reg) >> clk->enable_bit) & 0x000f;
return clk->freq_table[idx].frequency;
}
static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent)
{
struct clk_div4_table *d4t = clk->priv;
struct clk_div_mult_table *table = d4t->div_mult_table;
u32 value;
int ret;
/* we really need a better way to determine parent index, but for
* now assume internal parent comes with CLK_ENABLE_ON_INIT set,
* no CLK_ENABLE_ON_INIT means external clock...
*/
if (parent->flags & CLK_ENABLE_ON_INIT)
value = __raw_readl(clk->enable_reg) & ~(1 << 7);
else
value = __raw_readl(clk->enable_reg) | (1 << 7);
ret = clk_reparent(clk, parent);
if (ret < 0)
return ret;
__raw_writel(value, clk->enable_reg);
/* Rebiuld the frequency table */
clk_rate_table_build(clk, clk->freq_table, table->nr_divisors,
table, &clk->arch_flags);
return 0;
}
static int sh_clk_div4_set_rate(struct clk *clk, unsigned long rate, int algo_id)
{
struct clk_div4_table *d4t = clk->priv;
unsigned long value;
int idx = clk_rate_table_find(clk, clk->freq_table, rate);
if (idx < 0)
return idx;
value = __raw_readl(clk->enable_reg);
value &= ~(0xf << clk->enable_bit);
value |= (idx << clk->enable_bit);
__raw_writel(value, clk->enable_reg);
if (d4t->kick)
d4t->kick(clk);
return 0;
}
static int sh_clk_div4_enable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) & ~(1 << 8), clk->enable_reg);
return 0;
}
static void sh_clk_div4_disable(struct clk *clk)
{
__raw_writel(__raw_readl(clk->enable_reg) | (1 << 8), clk->enable_reg);
}
static struct clk_ops sh_clk_div4_clk_ops = {
.recalc = sh_clk_div4_recalc,
.set_rate = sh_clk_div4_set_rate,
.round_rate = sh_clk_div_round_rate,
};
static struct clk_ops sh_clk_div4_enable_clk_ops = {
.recalc = sh_clk_div4_recalc,
.set_rate = sh_clk_div4_set_rate,
.round_rate = sh_clk_div_round_rate,
.enable = sh_clk_div4_enable,
.disable = sh_clk_div4_disable,
};
static struct clk_ops sh_clk_div4_reparent_clk_ops = {
.recalc = sh_clk_div4_recalc,
.set_rate = sh_clk_div4_set_rate,
.round_rate = sh_clk_div_round_rate,
.enable = sh_clk_div4_enable,
.disable = sh_clk_div4_disable,
.set_parent = sh_clk_div4_set_parent,
};
static int __init sh_clk_div4_register_ops(struct clk *clks, int nr,
struct clk_div4_table *table, struct clk_ops *ops)
{
struct clk *clkp;
void *freq_table;
int nr_divs = table->div_mult_table->nr_divisors;
int freq_table_size = sizeof(struct cpufreq_frequency_table);
int ret = 0;
int k;
freq_table_size *= (nr_divs + 1);
freq_table = kzalloc(freq_table_size * nr, GFP_KERNEL);
if (!freq_table) {
pr_err("sh_clk_div4_register: unable to alloc memory\n");
return -ENOMEM;
}
for (k = 0; !ret && (k < nr); k++) {
clkp = clks + k;
clkp->ops = ops;
clkp->id = -1;
clkp->priv = table;
clkp->freq_table = freq_table + (k * freq_table_size);
clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END;
ret = clk_register(clkp);
}
return ret;
}
int __init sh_clk_div4_register(struct clk *clks, int nr,
struct clk_div4_table *table)
{
return sh_clk_div4_register_ops(clks, nr, table, &sh_clk_div4_clk_ops);
}
int __init sh_clk_div4_enable_register(struct clk *clks, int nr,
struct clk_div4_table *table)
{
return sh_clk_div4_register_ops(clks, nr, table,
&sh_clk_div4_enable_clk_ops);
}
int __init sh_clk_div4_reparent_register(struct clk *clks, int nr,
struct clk_div4_table *table)
{
return sh_clk_div4_register_ops(clks, nr, table,
&sh_clk_div4_reparent_clk_ops);
}