linux-sg2042/kernel/sched/stats.h

265 lines
7.6 KiB
C

#ifdef CONFIG_SCHEDSTATS
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
{
if (rq) {
rq->rq_sched_info.run_delay += delta;
rq->rq_sched_info.pcount++;
}
}
/*
* Expects runqueue lock to be held for atomicity of update
*/
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_cpu_time += delta;
}
static inline void
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
{
if (rq)
rq->rq_sched_info.run_delay += delta;
}
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
# define schedstat_set(var, val) do { var = (val); } while (0)
#else /* !CONFIG_SCHEDSTATS */
static inline void
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
{}
static inline void
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
{}
static inline void
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
{}
# define schedstat_inc(rq, field) do { } while (0)
# define schedstat_add(rq, field, amt) do { } while (0)
# define schedstat_set(var, val) do { } while (0)
#endif
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
static inline void sched_info_reset_dequeued(struct task_struct *t)
{
t->sched_info.last_queued = 0;
}
/*
* We are interested in knowing how long it was from the *first* time a
* task was queued to the time that it finally hit a cpu, we call this routine
* from dequeue_task() to account for possible rq->clock skew across cpus. The
* delta taken on each cpu would annul the skew.
*/
static inline void sched_info_dequeued(struct task_struct *t)
{
unsigned long long now = rq_clock(task_rq(t)), delta = 0;
if (unlikely(sched_info_on()))
if (t->sched_info.last_queued)
delta = now - t->sched_info.last_queued;
sched_info_reset_dequeued(t);
t->sched_info.run_delay += delta;
rq_sched_info_dequeued(task_rq(t), delta);
}
/*
* Called when a task finally hits the cpu. We can now calculate how
* long it was waiting to run. We also note when it began so that we
* can keep stats on how long its timeslice is.
*/
static void sched_info_arrive(struct task_struct *t)
{
unsigned long long now = rq_clock(task_rq(t)), delta = 0;
if (t->sched_info.last_queued)
delta = now - t->sched_info.last_queued;
sched_info_reset_dequeued(t);
t->sched_info.run_delay += delta;
t->sched_info.last_arrival = now;
t->sched_info.pcount++;
rq_sched_info_arrive(task_rq(t), delta);
}
/*
* This function is only called from enqueue_task(), but also only updates
* the timestamp if it is already not set. It's assumed that
* sched_info_dequeued() will clear that stamp when appropriate.
*/
static inline void sched_info_queued(struct task_struct *t)
{
if (unlikely(sched_info_on()))
if (!t->sched_info.last_queued)
t->sched_info.last_queued = rq_clock(task_rq(t));
}
/*
* Called when a process ceases being the active-running process, either
* voluntarily or involuntarily. Now we can calculate how long we ran.
* Also, if the process is still in the TASK_RUNNING state, call
* sched_info_queued() to mark that it has now again started waiting on
* the runqueue.
*/
static inline void sched_info_depart(struct task_struct *t)
{
unsigned long long delta = rq_clock(task_rq(t)) -
t->sched_info.last_arrival;
rq_sched_info_depart(task_rq(t), delta);
if (t->state == TASK_RUNNING)
sched_info_queued(t);
}
/*
* Called when tasks are switched involuntarily due, typically, to expiring
* their time slice. (This may also be called when switching to or from
* the idle task.) We are only called when prev != next.
*/
static inline void
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
{
struct rq *rq = task_rq(prev);
/*
* prev now departs the cpu. It's not interesting to record
* stats about how efficient we were at scheduling the idle
* process, however.
*/
if (prev != rq->idle)
sched_info_depart(prev);
if (next != rq->idle)
sched_info_arrive(next);
}
static inline void
sched_info_switch(struct task_struct *prev, struct task_struct *next)
{
if (unlikely(sched_info_on()))
__sched_info_switch(prev, next);
}
#else
#define sched_info_queued(t) do { } while (0)
#define sched_info_reset_dequeued(t) do { } while (0)
#define sched_info_dequeued(t) do { } while (0)
#define sched_info_switch(t, next) do { } while (0)
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
/*
* The following are functions that support scheduler-internal time accounting.
* These functions are generally called at the timer tick. None of this depends
* on CONFIG_SCHEDSTATS.
*/
/**
* cputimer_running - return true if cputimer is running
*
* @tsk: Pointer to target task.
*/
static inline bool cputimer_running(struct task_struct *tsk)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
if (!cputimer->running)
return false;
/*
* After we flush the task's sum_exec_runtime to sig->sum_sched_runtime
* in __exit_signal(), we won't account to the signal struct further
* cputime consumed by that task, even though the task can still be
* ticking after __exit_signal().
*
* In order to keep a consistent behaviour between thread group cputime
* and thread group cputimer accounting, lets also ignore the cputime
* elapsing after __exit_signal() in any thread group timer running.
*
* This makes sure that POSIX CPU clocks and timers are synchronized, so
* that a POSIX CPU timer won't expire while the corresponding POSIX CPU
* clock delta is behind the expiring timer value.
*/
if (unlikely(!tsk->sighand))
return false;
return true;
}
/**
* account_group_user_time - Maintain utime for a thread group.
*
* @tsk: Pointer to task structure.
* @cputime: Time value by which to increment the utime field of the
* thread_group_cputime structure.
*
* If thread group time is being maintained, get the structure for the
* running CPU and update the utime field there.
*/
static inline void account_group_user_time(struct task_struct *tsk,
cputime_t cputime)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
if (!cputimer_running(tsk))
return;
raw_spin_lock(&cputimer->lock);
cputimer->cputime.utime += cputime;
raw_spin_unlock(&cputimer->lock);
}
/**
* account_group_system_time - Maintain stime for a thread group.
*
* @tsk: Pointer to task structure.
* @cputime: Time value by which to increment the stime field of the
* thread_group_cputime structure.
*
* If thread group time is being maintained, get the structure for the
* running CPU and update the stime field there.
*/
static inline void account_group_system_time(struct task_struct *tsk,
cputime_t cputime)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
if (!cputimer_running(tsk))
return;
raw_spin_lock(&cputimer->lock);
cputimer->cputime.stime += cputime;
raw_spin_unlock(&cputimer->lock);
}
/**
* account_group_exec_runtime - Maintain exec runtime for a thread group.
*
* @tsk: Pointer to task structure.
* @ns: Time value by which to increment the sum_exec_runtime field
* of the thread_group_cputime structure.
*
* If thread group time is being maintained, get the structure for the
* running CPU and update the sum_exec_runtime field there.
*/
static inline void account_group_exec_runtime(struct task_struct *tsk,
unsigned long long ns)
{
struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
if (!cputimer_running(tsk))
return;
raw_spin_lock(&cputimer->lock);
cputimer->cputime.sum_exec_runtime += ns;
raw_spin_unlock(&cputimer->lock);
}