linux-sg2042/drivers/iommu/tegra-smmu.c

1035 lines
27 KiB
C

/*
* IOMMU API for SMMU in Tegra30
*
* Copyright (c) 2011-2012, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*/
#define pr_fmt(fmt) "%s(): " fmt, __func__
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/device.h>
#include <linux/sched.h>
#include <linux/iommu.h>
#include <linux/io.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <mach/iomap.h>
#include <mach/smmu.h>
/* bitmap of the page sizes currently supported */
#define SMMU_IOMMU_PGSIZES (SZ_4K)
#define SMMU_CONFIG 0x10
#define SMMU_CONFIG_DISABLE 0
#define SMMU_CONFIG_ENABLE 1
#define SMMU_TLB_CONFIG 0x14
#define SMMU_TLB_CONFIG_STATS__MASK (1 << 31)
#define SMMU_TLB_CONFIG_STATS__ENABLE (1 << 31)
#define SMMU_TLB_CONFIG_HIT_UNDER_MISS__ENABLE (1 << 29)
#define SMMU_TLB_CONFIG_ACTIVE_LINES__VALUE 0x10
#define SMMU_TLB_CONFIG_RESET_VAL 0x20000010
#define SMMU_PTC_CONFIG 0x18
#define SMMU_PTC_CONFIG_STATS__MASK (1 << 31)
#define SMMU_PTC_CONFIG_STATS__ENABLE (1 << 31)
#define SMMU_PTC_CONFIG_CACHE__ENABLE (1 << 29)
#define SMMU_PTC_CONFIG_INDEX_MAP__PATTERN 0x3f
#define SMMU_PTC_CONFIG_RESET_VAL 0x2000003f
#define SMMU_PTB_ASID 0x1c
#define SMMU_PTB_ASID_CURRENT_SHIFT 0
#define SMMU_PTB_DATA 0x20
#define SMMU_PTB_DATA_RESET_VAL 0
#define SMMU_PTB_DATA_ASID_NONSECURE_SHIFT 29
#define SMMU_PTB_DATA_ASID_WRITABLE_SHIFT 30
#define SMMU_PTB_DATA_ASID_READABLE_SHIFT 31
#define SMMU_TLB_FLUSH 0x30
#define SMMU_TLB_FLUSH_VA_MATCH_ALL 0
#define SMMU_TLB_FLUSH_VA_MATCH_SECTION 2
#define SMMU_TLB_FLUSH_VA_MATCH_GROUP 3
#define SMMU_TLB_FLUSH_ASID_SHIFT 29
#define SMMU_TLB_FLUSH_ASID_MATCH_DISABLE 0
#define SMMU_TLB_FLUSH_ASID_MATCH_ENABLE 1
#define SMMU_TLB_FLUSH_ASID_MATCH_SHIFT 31
#define SMMU_PTC_FLUSH 0x34
#define SMMU_PTC_FLUSH_TYPE_ALL 0
#define SMMU_PTC_FLUSH_TYPE_ADR 1
#define SMMU_PTC_FLUSH_ADR_SHIFT 4
#define SMMU_ASID_SECURITY 0x38
#define SMMU_STATS_TLB_HIT_COUNT 0x1f0
#define SMMU_STATS_TLB_MISS_COUNT 0x1f4
#define SMMU_STATS_PTC_HIT_COUNT 0x1f8
#define SMMU_STATS_PTC_MISS_COUNT 0x1fc
#define SMMU_TRANSLATION_ENABLE_0 0x228
#define SMMU_TRANSLATION_ENABLE_1 0x22c
#define SMMU_TRANSLATION_ENABLE_2 0x230
#define SMMU_AFI_ASID 0x238 /* PCIE */
#define SMMU_AVPC_ASID 0x23c /* AVP */
#define SMMU_DC_ASID 0x240 /* Display controller */
#define SMMU_DCB_ASID 0x244 /* Display controller B */
#define SMMU_EPP_ASID 0x248 /* Encoder pre-processor */
#define SMMU_G2_ASID 0x24c /* 2D engine */
#define SMMU_HC_ASID 0x250 /* Host1x */
#define SMMU_HDA_ASID 0x254 /* High-def audio */
#define SMMU_ISP_ASID 0x258 /* Image signal processor */
#define SMMU_MPE_ASID 0x264 /* MPEG encoder */
#define SMMU_NV_ASID 0x268 /* (3D) */
#define SMMU_NV2_ASID 0x26c /* (3D) */
#define SMMU_PPCS_ASID 0x270 /* AHB */
#define SMMU_SATA_ASID 0x278 /* SATA */
#define SMMU_VDE_ASID 0x27c /* Video decoder */
#define SMMU_VI_ASID 0x280 /* Video input */
#define SMMU_PDE_NEXT_SHIFT 28
/* AHB Arbiter Registers */
#define AHB_XBAR_CTRL 0xe0
#define AHB_XBAR_CTRL_SMMU_INIT_DONE_DONE 1
#define AHB_XBAR_CTRL_SMMU_INIT_DONE_SHIFT 17
#define SMMU_NUM_ASIDS 4
#define SMMU_TLB_FLUSH_VA_SECTION__MASK 0xffc00000
#define SMMU_TLB_FLUSH_VA_SECTION__SHIFT 12 /* right shift */
#define SMMU_TLB_FLUSH_VA_GROUP__MASK 0xffffc000
#define SMMU_TLB_FLUSH_VA_GROUP__SHIFT 12 /* right shift */
#define SMMU_TLB_FLUSH_VA(iova, which) \
((((iova) & SMMU_TLB_FLUSH_VA_##which##__MASK) >> \
SMMU_TLB_FLUSH_VA_##which##__SHIFT) | \
SMMU_TLB_FLUSH_VA_MATCH_##which)
#define SMMU_PTB_ASID_CUR(n) \
((n) << SMMU_PTB_ASID_CURRENT_SHIFT)
#define SMMU_TLB_FLUSH_ASID_MATCH_disable \
(SMMU_TLB_FLUSH_ASID_MATCH_DISABLE << \
SMMU_TLB_FLUSH_ASID_MATCH_SHIFT)
#define SMMU_TLB_FLUSH_ASID_MATCH__ENABLE \
(SMMU_TLB_FLUSH_ASID_MATCH_ENABLE << \
SMMU_TLB_FLUSH_ASID_MATCH_SHIFT)
#define SMMU_PAGE_SHIFT 12
#define SMMU_PAGE_SIZE (1 << SMMU_PAGE_SHIFT)
#define SMMU_PDIR_COUNT 1024
#define SMMU_PDIR_SIZE (sizeof(unsigned long) * SMMU_PDIR_COUNT)
#define SMMU_PTBL_COUNT 1024
#define SMMU_PTBL_SIZE (sizeof(unsigned long) * SMMU_PTBL_COUNT)
#define SMMU_PDIR_SHIFT 12
#define SMMU_PDE_SHIFT 12
#define SMMU_PTE_SHIFT 12
#define SMMU_PFN_MASK 0x000fffff
#define SMMU_ADDR_TO_PFN(addr) ((addr) >> 12)
#define SMMU_ADDR_TO_PDN(addr) ((addr) >> 22)
#define SMMU_PDN_TO_ADDR(addr) ((pdn) << 22)
#define _READABLE (1 << SMMU_PTB_DATA_ASID_READABLE_SHIFT)
#define _WRITABLE (1 << SMMU_PTB_DATA_ASID_WRITABLE_SHIFT)
#define _NONSECURE (1 << SMMU_PTB_DATA_ASID_NONSECURE_SHIFT)
#define _PDE_NEXT (1 << SMMU_PDE_NEXT_SHIFT)
#define _MASK_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PDIR_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PDE_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PDE_ATTR_N (_PDE_ATTR | _PDE_NEXT)
#define _PDE_VACANT(pdn) (((pdn) << 10) | _PDE_ATTR)
#define _PTE_ATTR (_READABLE | _WRITABLE | _NONSECURE)
#define _PTE_VACANT(addr) (((addr) >> SMMU_PAGE_SHIFT) | _PTE_ATTR)
#define SMMU_MK_PDIR(page, attr) \
((page_to_phys(page) >> SMMU_PDIR_SHIFT) | (attr))
#define SMMU_MK_PDE(page, attr) \
(unsigned long)((page_to_phys(page) >> SMMU_PDE_SHIFT) | (attr))
#define SMMU_EX_PTBL_PAGE(pde) \
pfn_to_page((unsigned long)(pde) & SMMU_PFN_MASK)
#define SMMU_PFN_TO_PTE(pfn, attr) (unsigned long)((pfn) | (attr))
#define SMMU_ASID_ENABLE(asid) ((asid) | (1 << 31))
#define SMMU_ASID_DISABLE 0
#define SMMU_ASID_ASID(n) ((n) & ~SMMU_ASID_ENABLE(0))
#define smmu_client_enable_hwgrp(c, m) smmu_client_set_hwgrp(c, m, 1)
#define smmu_client_disable_hwgrp(c) smmu_client_set_hwgrp(c, 0, 0)
#define __smmu_client_enable_hwgrp(c, m) __smmu_client_set_hwgrp(c, m, 1)
#define __smmu_client_disable_hwgrp(c) __smmu_client_set_hwgrp(c, 0, 0)
#define HWGRP_INIT(client) [HWGRP_##client] = SMMU_##client##_ASID
static const u32 smmu_hwgrp_asid_reg[] = {
HWGRP_INIT(AFI),
HWGRP_INIT(AVPC),
HWGRP_INIT(DC),
HWGRP_INIT(DCB),
HWGRP_INIT(EPP),
HWGRP_INIT(G2),
HWGRP_INIT(HC),
HWGRP_INIT(HDA),
HWGRP_INIT(ISP),
HWGRP_INIT(MPE),
HWGRP_INIT(NV),
HWGRP_INIT(NV2),
HWGRP_INIT(PPCS),
HWGRP_INIT(SATA),
HWGRP_INIT(VDE),
HWGRP_INIT(VI),
};
#define HWGRP_ASID_REG(x) (smmu_hwgrp_asid_reg[x])
/*
* Per client for address space
*/
struct smmu_client {
struct device *dev;
struct list_head list;
struct smmu_as *as;
u32 hwgrp;
};
/*
* Per address space
*/
struct smmu_as {
struct smmu_device *smmu; /* back pointer to container */
unsigned int asid;
spinlock_t lock; /* for pagetable */
struct page *pdir_page;
unsigned long pdir_attr;
unsigned long pde_attr;
unsigned long pte_attr;
unsigned int *pte_count;
struct list_head client;
spinlock_t client_lock; /* for client list */
};
/*
* Per SMMU device - IOMMU device
*/
struct smmu_device {
void __iomem *regs, *regs_ahbarb;
unsigned long iovmm_base; /* remappable base address */
unsigned long page_count; /* total remappable size */
spinlock_t lock;
char *name;
struct device *dev;
int num_as;
struct smmu_as *as; /* Run-time allocated array */
struct page *avp_vector_page; /* dummy page shared by all AS's */
/*
* Register image savers for suspend/resume
*/
unsigned long translation_enable_0;
unsigned long translation_enable_1;
unsigned long translation_enable_2;
unsigned long asid_security;
};
static struct smmu_device *smmu_handle; /* unique for a system */
/*
* SMMU/AHB register accessors
*/
static inline u32 smmu_read(struct smmu_device *smmu, size_t offs)
{
return readl(smmu->regs + offs);
}
static inline void smmu_write(struct smmu_device *smmu, u32 val, size_t offs)
{
writel(val, smmu->regs + offs);
}
static inline u32 ahb_read(struct smmu_device *smmu, size_t offs)
{
return readl(smmu->regs_ahbarb + offs);
}
static inline void ahb_write(struct smmu_device *smmu, u32 val, size_t offs)
{
writel(val, smmu->regs_ahbarb + offs);
}
#define VA_PAGE_TO_PA(va, page) \
(page_to_phys(page) + ((unsigned long)(va) & ~PAGE_MASK))
#define FLUSH_CPU_DCACHE(va, page, size) \
do { \
unsigned long _pa_ = VA_PAGE_TO_PA(va, page); \
__cpuc_flush_dcache_area((void *)(va), (size_t)(size)); \
outer_flush_range(_pa_, _pa_+(size_t)(size)); \
} while (0)
/*
* Any interaction between any block on PPSB and a block on APB or AHB
* must have these read-back barriers to ensure the APB/AHB bus
* transaction is complete before initiating activity on the PPSB
* block.
*/
#define FLUSH_SMMU_REGS(smmu) smmu_read(smmu, SMMU_CONFIG)
#define smmu_client_hwgrp(c) (u32)((c)->dev->platform_data)
static int __smmu_client_set_hwgrp(struct smmu_client *c,
unsigned long map, int on)
{
int i;
struct smmu_as *as = c->as;
u32 val, offs, mask = SMMU_ASID_ENABLE(as->asid);
struct smmu_device *smmu = as->smmu;
WARN_ON(!on && map);
if (on && !map)
return -EINVAL;
if (!on)
map = smmu_client_hwgrp(c);
for_each_set_bit(i, &map, HWGRP_COUNT) {
offs = HWGRP_ASID_REG(i);
val = smmu_read(smmu, offs);
if (on) {
if (WARN_ON(val & mask))
goto err_hw_busy;
val |= mask;
} else {
WARN_ON((val & mask) == mask);
val &= ~mask;
}
smmu_write(smmu, val, offs);
}
FLUSH_SMMU_REGS(smmu);
c->hwgrp = map;
return 0;
err_hw_busy:
for_each_set_bit(i, &map, HWGRP_COUNT) {
offs = HWGRP_ASID_REG(i);
val = smmu_read(smmu, offs);
val &= ~mask;
smmu_write(smmu, val, offs);
}
return -EBUSY;
}
static int smmu_client_set_hwgrp(struct smmu_client *c, u32 map, int on)
{
u32 val;
unsigned long flags;
struct smmu_as *as = c->as;
struct smmu_device *smmu = as->smmu;
spin_lock_irqsave(&smmu->lock, flags);
val = __smmu_client_set_hwgrp(c, map, on);
spin_unlock_irqrestore(&smmu->lock, flags);
return val;
}
/*
* Flush all TLB entries and all PTC entries
* Caller must lock smmu
*/
static void smmu_flush_regs(struct smmu_device *smmu, int enable)
{
u32 val;
smmu_write(smmu, SMMU_PTC_FLUSH_TYPE_ALL, SMMU_PTC_FLUSH);
FLUSH_SMMU_REGS(smmu);
val = SMMU_TLB_FLUSH_VA_MATCH_ALL |
SMMU_TLB_FLUSH_ASID_MATCH_disable;
smmu_write(smmu, val, SMMU_TLB_FLUSH);
if (enable)
smmu_write(smmu, SMMU_CONFIG_ENABLE, SMMU_CONFIG);
FLUSH_SMMU_REGS(smmu);
}
static void smmu_setup_regs(struct smmu_device *smmu)
{
int i;
u32 val;
for (i = 0; i < smmu->num_as; i++) {
struct smmu_as *as = &smmu->as[i];
struct smmu_client *c;
smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID);
val = as->pdir_page ?
SMMU_MK_PDIR(as->pdir_page, as->pdir_attr) :
SMMU_PTB_DATA_RESET_VAL;
smmu_write(smmu, val, SMMU_PTB_DATA);
list_for_each_entry(c, &as->client, list)
__smmu_client_set_hwgrp(c, c->hwgrp, 1);
}
smmu_write(smmu, smmu->translation_enable_0, SMMU_TRANSLATION_ENABLE_0);
smmu_write(smmu, smmu->translation_enable_1, SMMU_TRANSLATION_ENABLE_1);
smmu_write(smmu, smmu->translation_enable_2, SMMU_TRANSLATION_ENABLE_2);
smmu_write(smmu, smmu->asid_security, SMMU_ASID_SECURITY);
smmu_write(smmu, SMMU_TLB_CONFIG_RESET_VAL, SMMU_TLB_CONFIG);
smmu_write(smmu, SMMU_PTC_CONFIG_RESET_VAL, SMMU_PTC_CONFIG);
smmu_flush_regs(smmu, 1);
val = ahb_read(smmu, AHB_XBAR_CTRL);
val |= AHB_XBAR_CTRL_SMMU_INIT_DONE_DONE <<
AHB_XBAR_CTRL_SMMU_INIT_DONE_SHIFT;
ahb_write(smmu, val, AHB_XBAR_CTRL);
}
static void flush_ptc_and_tlb(struct smmu_device *smmu,
struct smmu_as *as, dma_addr_t iova,
unsigned long *pte, struct page *page, int is_pde)
{
u32 val;
unsigned long tlb_flush_va = is_pde
? SMMU_TLB_FLUSH_VA(iova, SECTION)
: SMMU_TLB_FLUSH_VA(iova, GROUP);
val = SMMU_PTC_FLUSH_TYPE_ADR | VA_PAGE_TO_PA(pte, page);
smmu_write(smmu, val, SMMU_PTC_FLUSH);
FLUSH_SMMU_REGS(smmu);
val = tlb_flush_va |
SMMU_TLB_FLUSH_ASID_MATCH__ENABLE |
(as->asid << SMMU_TLB_FLUSH_ASID_SHIFT);
smmu_write(smmu, val, SMMU_TLB_FLUSH);
FLUSH_SMMU_REGS(smmu);
}
static void free_ptbl(struct smmu_as *as, dma_addr_t iova)
{
unsigned long pdn = SMMU_ADDR_TO_PDN(iova);
unsigned long *pdir = (unsigned long *)page_address(as->pdir_page);
if (pdir[pdn] != _PDE_VACANT(pdn)) {
dev_dbg(as->smmu->dev, "pdn: %lx\n", pdn);
ClearPageReserved(SMMU_EX_PTBL_PAGE(pdir[pdn]));
__free_page(SMMU_EX_PTBL_PAGE(pdir[pdn]));
pdir[pdn] = _PDE_VACANT(pdn);
FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]);
flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn],
as->pdir_page, 1);
}
}
static void free_pdir(struct smmu_as *as)
{
unsigned addr;
int count;
struct device *dev = as->smmu->dev;
if (!as->pdir_page)
return;
addr = as->smmu->iovmm_base;
count = as->smmu->page_count;
while (count-- > 0) {
free_ptbl(as, addr);
addr += SMMU_PAGE_SIZE * SMMU_PTBL_COUNT;
}
ClearPageReserved(as->pdir_page);
__free_page(as->pdir_page);
as->pdir_page = NULL;
devm_kfree(dev, as->pte_count);
as->pte_count = NULL;
}
/*
* Maps PTBL for given iova and returns the PTE address
* Caller must unmap the mapped PTBL returned in *ptbl_page_p
*/
static unsigned long *locate_pte(struct smmu_as *as,
dma_addr_t iova, bool allocate,
struct page **ptbl_page_p,
unsigned int **count)
{
unsigned long ptn = SMMU_ADDR_TO_PFN(iova);
unsigned long pdn = SMMU_ADDR_TO_PDN(iova);
unsigned long *pdir = page_address(as->pdir_page);
unsigned long *ptbl;
if (pdir[pdn] != _PDE_VACANT(pdn)) {
/* Mapped entry table already exists */
*ptbl_page_p = SMMU_EX_PTBL_PAGE(pdir[pdn]);
ptbl = page_address(*ptbl_page_p);
} else if (!allocate) {
return NULL;
} else {
int pn;
unsigned long addr = SMMU_PDN_TO_ADDR(pdn);
/* Vacant - allocate a new page table */
dev_dbg(as->smmu->dev, "New PTBL pdn: %lx\n", pdn);
*ptbl_page_p = alloc_page(GFP_ATOMIC);
if (!*ptbl_page_p) {
dev_err(as->smmu->dev,
"failed to allocate smmu_device page table\n");
return NULL;
}
SetPageReserved(*ptbl_page_p);
ptbl = (unsigned long *)page_address(*ptbl_page_p);
for (pn = 0; pn < SMMU_PTBL_COUNT;
pn++, addr += SMMU_PAGE_SIZE) {
ptbl[pn] = _PTE_VACANT(addr);
}
FLUSH_CPU_DCACHE(ptbl, *ptbl_page_p, SMMU_PTBL_SIZE);
pdir[pdn] = SMMU_MK_PDE(*ptbl_page_p,
as->pde_attr | _PDE_NEXT);
FLUSH_CPU_DCACHE(&pdir[pdn], as->pdir_page, sizeof pdir[pdn]);
flush_ptc_and_tlb(as->smmu, as, iova, &pdir[pdn],
as->pdir_page, 1);
}
*count = &as->pte_count[pdn];
return &ptbl[ptn % SMMU_PTBL_COUNT];
}
#ifdef CONFIG_SMMU_SIG_DEBUG
static void put_signature(struct smmu_as *as,
dma_addr_t iova, unsigned long pfn)
{
struct page *page;
unsigned long *vaddr;
page = pfn_to_page(pfn);
vaddr = page_address(page);
if (!vaddr)
return;
vaddr[0] = iova;
vaddr[1] = pfn << PAGE_SHIFT;
FLUSH_CPU_DCACHE(vaddr, page, sizeof(vaddr[0]) * 2);
}
#else
static inline void put_signature(struct smmu_as *as,
unsigned long addr, unsigned long pfn)
{
}
#endif
/*
* Caller must lock/unlock as
*/
static int alloc_pdir(struct smmu_as *as)
{
unsigned long *pdir;
int pdn;
u32 val;
struct smmu_device *smmu = as->smmu;
if (as->pdir_page)
return 0;
as->pte_count = devm_kzalloc(smmu->dev,
sizeof(as->pte_count[0]) * SMMU_PDIR_COUNT, GFP_KERNEL);
if (!as->pte_count) {
dev_err(smmu->dev,
"failed to allocate smmu_device PTE cunters\n");
return -ENOMEM;
}
as->pdir_page = alloc_page(GFP_KERNEL | __GFP_DMA);
if (!as->pdir_page) {
dev_err(smmu->dev,
"failed to allocate smmu_device page directory\n");
devm_kfree(smmu->dev, as->pte_count);
as->pte_count = NULL;
return -ENOMEM;
}
SetPageReserved(as->pdir_page);
pdir = page_address(as->pdir_page);
for (pdn = 0; pdn < SMMU_PDIR_COUNT; pdn++)
pdir[pdn] = _PDE_VACANT(pdn);
FLUSH_CPU_DCACHE(pdir, as->pdir_page, SMMU_PDIR_SIZE);
val = SMMU_PTC_FLUSH_TYPE_ADR | VA_PAGE_TO_PA(pdir, as->pdir_page);
smmu_write(smmu, val, SMMU_PTC_FLUSH);
FLUSH_SMMU_REGS(as->smmu);
val = SMMU_TLB_FLUSH_VA_MATCH_ALL |
SMMU_TLB_FLUSH_ASID_MATCH__ENABLE |
(as->asid << SMMU_TLB_FLUSH_ASID_SHIFT);
smmu_write(smmu, val, SMMU_TLB_FLUSH);
FLUSH_SMMU_REGS(as->smmu);
return 0;
}
static void __smmu_iommu_unmap(struct smmu_as *as, dma_addr_t iova)
{
unsigned long *pte;
struct page *page;
unsigned int *count;
pte = locate_pte(as, iova, false, &page, &count);
if (WARN_ON(!pte))
return;
if (WARN_ON(*pte == _PTE_VACANT(iova)))
return;
*pte = _PTE_VACANT(iova);
FLUSH_CPU_DCACHE(pte, page, sizeof(*pte));
flush_ptc_and_tlb(as->smmu, as, iova, pte, page, 0);
if (!--(*count)) {
free_ptbl(as, iova);
smmu_flush_regs(as->smmu, 0);
}
}
static void __smmu_iommu_map_pfn(struct smmu_as *as, dma_addr_t iova,
unsigned long pfn)
{
struct smmu_device *smmu = as->smmu;
unsigned long *pte;
unsigned int *count;
struct page *page;
pte = locate_pte(as, iova, true, &page, &count);
if (WARN_ON(!pte))
return;
if (*pte == _PTE_VACANT(iova))
(*count)++;
*pte = SMMU_PFN_TO_PTE(pfn, as->pte_attr);
if (unlikely((*pte == _PTE_VACANT(iova))))
(*count)--;
FLUSH_CPU_DCACHE(pte, page, sizeof(*pte));
flush_ptc_and_tlb(smmu, as, iova, pte, page, 0);
put_signature(as, iova, pfn);
}
static int smmu_iommu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t pa, size_t bytes, int prot)
{
struct smmu_as *as = domain->priv;
unsigned long pfn = __phys_to_pfn(pa);
unsigned long flags;
dev_dbg(as->smmu->dev, "[%d] %08lx:%08x\n", as->asid, iova, pa);
if (!pfn_valid(pfn))
return -ENOMEM;
spin_lock_irqsave(&as->lock, flags);
__smmu_iommu_map_pfn(as, iova, pfn);
spin_unlock_irqrestore(&as->lock, flags);
return 0;
}
static size_t smmu_iommu_unmap(struct iommu_domain *domain, unsigned long iova,
size_t bytes)
{
struct smmu_as *as = domain->priv;
unsigned long flags;
dev_dbg(as->smmu->dev, "[%d] %08lx\n", as->asid, iova);
spin_lock_irqsave(&as->lock, flags);
__smmu_iommu_unmap(as, iova);
spin_unlock_irqrestore(&as->lock, flags);
return SMMU_PAGE_SIZE;
}
static phys_addr_t smmu_iommu_iova_to_phys(struct iommu_domain *domain,
unsigned long iova)
{
struct smmu_as *as = domain->priv;
unsigned long *pte;
unsigned int *count;
struct page *page;
unsigned long pfn;
unsigned long flags;
spin_lock_irqsave(&as->lock, flags);
pte = locate_pte(as, iova, true, &page, &count);
pfn = *pte & SMMU_PFN_MASK;
WARN_ON(!pfn_valid(pfn));
dev_dbg(as->smmu->dev,
"iova:%08lx pfn:%08lx asid:%d\n", iova, pfn, as->asid);
spin_unlock_irqrestore(&as->lock, flags);
return PFN_PHYS(pfn);
}
static int smmu_iommu_domain_has_cap(struct iommu_domain *domain,
unsigned long cap)
{
return 0;
}
static int smmu_iommu_attach_dev(struct iommu_domain *domain,
struct device *dev)
{
struct smmu_as *as = domain->priv;
struct smmu_device *smmu = as->smmu;
struct smmu_client *client, *c;
u32 map;
int err;
client = devm_kzalloc(smmu->dev, sizeof(*c), GFP_KERNEL);
if (!client)
return -ENOMEM;
client->dev = dev;
client->as = as;
map = (unsigned long)dev->platform_data;
if (!map)
return -EINVAL;
err = smmu_client_enable_hwgrp(client, map);
if (err)
goto err_hwgrp;
spin_lock(&as->client_lock);
list_for_each_entry(c, &as->client, list) {
if (c->dev == dev) {
dev_err(smmu->dev,
"%s is already attached\n", dev_name(c->dev));
err = -EINVAL;
goto err_client;
}
}
list_add(&client->list, &as->client);
spin_unlock(&as->client_lock);
/*
* Reserve "page zero" for AVP vectors using a common dummy
* page.
*/
if (map & HWG_AVPC) {
struct page *page;
page = as->smmu->avp_vector_page;
__smmu_iommu_map_pfn(as, 0, page_to_pfn(page));
pr_info("Reserve \"page zero\" for AVP vectors using a common dummy\n");
}
dev_dbg(smmu->dev, "%s is attached\n", dev_name(dev));
return 0;
err_client:
smmu_client_disable_hwgrp(client);
spin_unlock(&as->client_lock);
err_hwgrp:
devm_kfree(smmu->dev, client);
return err;
}
static void smmu_iommu_detach_dev(struct iommu_domain *domain,
struct device *dev)
{
struct smmu_as *as = domain->priv;
struct smmu_device *smmu = as->smmu;
struct smmu_client *c;
spin_lock(&as->client_lock);
list_for_each_entry(c, &as->client, list) {
if (c->dev == dev) {
smmu_client_disable_hwgrp(c);
list_del(&c->list);
devm_kfree(smmu->dev, c);
c->as = NULL;
dev_dbg(smmu->dev,
"%s is detached\n", dev_name(c->dev));
goto out;
}
}
dev_err(smmu->dev, "Couldn't find %s\n", dev_name(c->dev));
out:
spin_unlock(&as->client_lock);
}
static int smmu_iommu_domain_init(struct iommu_domain *domain)
{
int i;
unsigned long flags;
struct smmu_as *as;
struct smmu_device *smmu = smmu_handle;
/* Look for a free AS with lock held */
for (i = 0; i < smmu->num_as; i++) {
struct smmu_as *tmp = &smmu->as[i];
spin_lock_irqsave(&tmp->lock, flags);
if (!tmp->pdir_page) {
as = tmp;
goto found;
}
spin_unlock_irqrestore(&tmp->lock, flags);
}
dev_err(smmu->dev, "no free AS\n");
return -ENODEV;
found:
if (alloc_pdir(as) < 0)
goto err_alloc_pdir;
spin_lock(&smmu->lock);
/* Update PDIR register */
smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID);
smmu_write(smmu,
SMMU_MK_PDIR(as->pdir_page, as->pdir_attr), SMMU_PTB_DATA);
FLUSH_SMMU_REGS(smmu);
spin_unlock(&smmu->lock);
spin_unlock_irqrestore(&as->lock, flags);
domain->priv = as;
dev_dbg(smmu->dev, "smmu_as@%p\n", as);
return 0;
err_alloc_pdir:
spin_unlock_irqrestore(&as->lock, flags);
return -ENODEV;
}
static void smmu_iommu_domain_destroy(struct iommu_domain *domain)
{
struct smmu_as *as = domain->priv;
struct smmu_device *smmu = as->smmu;
unsigned long flags;
spin_lock_irqsave(&as->lock, flags);
if (as->pdir_page) {
spin_lock(&smmu->lock);
smmu_write(smmu, SMMU_PTB_ASID_CUR(as->asid), SMMU_PTB_ASID);
smmu_write(smmu, SMMU_PTB_DATA_RESET_VAL, SMMU_PTB_DATA);
FLUSH_SMMU_REGS(smmu);
spin_unlock(&smmu->lock);
free_pdir(as);
}
if (!list_empty(&as->client)) {
struct smmu_client *c;
list_for_each_entry(c, &as->client, list)
smmu_iommu_detach_dev(domain, c->dev);
}
spin_unlock_irqrestore(&as->lock, flags);
domain->priv = NULL;
dev_dbg(smmu->dev, "smmu_as@%p\n", as);
}
static struct iommu_ops smmu_iommu_ops = {
.domain_init = smmu_iommu_domain_init,
.domain_destroy = smmu_iommu_domain_destroy,
.attach_dev = smmu_iommu_attach_dev,
.detach_dev = smmu_iommu_detach_dev,
.map = smmu_iommu_map,
.unmap = smmu_iommu_unmap,
.iova_to_phys = smmu_iommu_iova_to_phys,
.domain_has_cap = smmu_iommu_domain_has_cap,
.pgsize_bitmap = SMMU_IOMMU_PGSIZES,
};
static int tegra_smmu_suspend(struct device *dev)
{
struct smmu_device *smmu = dev_get_drvdata(dev);
smmu->translation_enable_0 = smmu_read(smmu, SMMU_TRANSLATION_ENABLE_0);
smmu->translation_enable_1 = smmu_read(smmu, SMMU_TRANSLATION_ENABLE_1);
smmu->translation_enable_2 = smmu_read(smmu, SMMU_TRANSLATION_ENABLE_2);
smmu->asid_security = smmu_read(smmu, SMMU_ASID_SECURITY);
return 0;
}
static int tegra_smmu_resume(struct device *dev)
{
struct smmu_device *smmu = dev_get_drvdata(dev);
unsigned long flags;
spin_lock_irqsave(&smmu->lock, flags);
smmu_setup_regs(smmu);
spin_unlock_irqrestore(&smmu->lock, flags);
return 0;
}
static int tegra_smmu_probe(struct platform_device *pdev)
{
struct smmu_device *smmu;
struct resource *regs, *regs2, *window;
struct device *dev = &pdev->dev;
int i, err = 0;
if (smmu_handle)
return -EIO;
BUILD_BUG_ON(PAGE_SHIFT != SMMU_PAGE_SHIFT);
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
regs2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
window = platform_get_resource(pdev, IORESOURCE_MEM, 2);
if (!regs || !regs2 || !window) {
dev_err(dev, "No SMMU resources\n");
return -ENODEV;
}
smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
if (!smmu) {
dev_err(dev, "failed to allocate smmu_device\n");
return -ENOMEM;
}
smmu->dev = dev;
smmu->num_as = SMMU_NUM_ASIDS;
smmu->iovmm_base = (unsigned long)window->start;
smmu->page_count = resource_size(window) >> SMMU_PAGE_SHIFT;
smmu->regs = devm_ioremap(dev, regs->start, resource_size(regs));
smmu->regs_ahbarb = devm_ioremap(dev, regs2->start,
resource_size(regs2));
if (!smmu->regs || !smmu->regs_ahbarb) {
dev_err(dev, "failed to remap SMMU registers\n");
err = -ENXIO;
goto fail;
}
smmu->translation_enable_0 = ~0;
smmu->translation_enable_1 = ~0;
smmu->translation_enable_2 = ~0;
smmu->asid_security = 0;
smmu->as = devm_kzalloc(dev,
sizeof(smmu->as[0]) * smmu->num_as, GFP_KERNEL);
if (!smmu->as) {
dev_err(dev, "failed to allocate smmu_as\n");
err = -ENOMEM;
goto fail;
}
for (i = 0; i < smmu->num_as; i++) {
struct smmu_as *as = &smmu->as[i];
as->smmu = smmu;
as->asid = i;
as->pdir_attr = _PDIR_ATTR;
as->pde_attr = _PDE_ATTR;
as->pte_attr = _PTE_ATTR;
spin_lock_init(&as->lock);
INIT_LIST_HEAD(&as->client);
}
spin_lock_init(&smmu->lock);
smmu_setup_regs(smmu);
platform_set_drvdata(pdev, smmu);
smmu->avp_vector_page = alloc_page(GFP_KERNEL);
if (!smmu->avp_vector_page)
goto fail;
smmu_handle = smmu;
return 0;
fail:
if (smmu->avp_vector_page)
__free_page(smmu->avp_vector_page);
if (smmu->regs)
devm_iounmap(dev, smmu->regs);
if (smmu->regs_ahbarb)
devm_iounmap(dev, smmu->regs_ahbarb);
if (smmu && smmu->as) {
for (i = 0; i < smmu->num_as; i++) {
if (smmu->as[i].pdir_page) {
ClearPageReserved(smmu->as[i].pdir_page);
__free_page(smmu->as[i].pdir_page);
}
}
devm_kfree(dev, smmu->as);
}
devm_kfree(dev, smmu);
return err;
}
static int tegra_smmu_remove(struct platform_device *pdev)
{
struct smmu_device *smmu = platform_get_drvdata(pdev);
struct device *dev = smmu->dev;
smmu_write(smmu, SMMU_CONFIG_DISABLE, SMMU_CONFIG);
platform_set_drvdata(pdev, NULL);
if (smmu->as) {
int i;
for (i = 0; i < smmu->num_as; i++)
free_pdir(&smmu->as[i]);
devm_kfree(dev, smmu->as);
}
if (smmu->avp_vector_page)
__free_page(smmu->avp_vector_page);
if (smmu->regs)
devm_iounmap(dev, smmu->regs);
if (smmu->regs_ahbarb)
devm_iounmap(dev, smmu->regs_ahbarb);
devm_kfree(dev, smmu);
smmu_handle = NULL;
return 0;
}
const struct dev_pm_ops tegra_smmu_pm_ops = {
.suspend = tegra_smmu_suspend,
.resume = tegra_smmu_resume,
};
static struct platform_driver tegra_smmu_driver = {
.probe = tegra_smmu_probe,
.remove = tegra_smmu_remove,
.driver = {
.owner = THIS_MODULE,
.name = "tegra-smmu",
.pm = &tegra_smmu_pm_ops,
},
};
static int __devinit tegra_smmu_init(void)
{
bus_set_iommu(&platform_bus_type, &smmu_iommu_ops);
return platform_driver_register(&tegra_smmu_driver);
}
static void __exit tegra_smmu_exit(void)
{
platform_driver_unregister(&tegra_smmu_driver);
}
subsys_initcall(tegra_smmu_init);
module_exit(tegra_smmu_exit);
MODULE_DESCRIPTION("IOMMU API for SMMU in Tegra30");
MODULE_AUTHOR("Hiroshi DOYU <hdoyu@nvidia.com>");
MODULE_LICENSE("GPL v2");