linux-sg2042/arch/mips/cavium-octeon/setup.c

1162 lines
31 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004-2007 Cavium Networks
* Copyright (C) 2008, 2009 Wind River Systems
* written by Ralf Baechle <ralf@linux-mips.org>
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/serial.h>
#include <linux/smp.h>
#include <linux/types.h>
#include <linux/string.h> /* for memset */
#include <linux/tty.h>
#include <linux/time.h>
#include <linux/platform_device.h>
#include <linux/serial_core.h>
#include <linux/serial_8250.h>
#include <linux/of_fdt.h>
#include <linux/libfdt.h>
#include <linux/kexec.h>
#include <asm/processor.h>
#include <asm/reboot.h>
#include <asm/smp-ops.h>
#include <asm/irq_cpu.h>
#include <asm/mipsregs.h>
#include <asm/bootinfo.h>
#include <asm/sections.h>
#include <asm/time.h>
#include <asm/octeon/octeon.h>
#include <asm/octeon/pci-octeon.h>
#include <asm/octeon/cvmx-mio-defs.h>
#ifdef CONFIG_CAVIUM_DECODE_RSL
extern void cvmx_interrupt_rsl_decode(void);
extern int __cvmx_interrupt_ecc_report_single_bit_errors;
extern void cvmx_interrupt_rsl_enable(void);
#endif
extern struct plat_smp_ops octeon_smp_ops;
#ifdef CONFIG_PCI
extern void pci_console_init(const char *arg);
#endif
static unsigned long long MAX_MEMORY = 512ull << 20;
struct octeon_boot_descriptor *octeon_boot_desc_ptr;
struct cvmx_bootinfo *octeon_bootinfo;
EXPORT_SYMBOL(octeon_bootinfo);
static unsigned long long RESERVE_LOW_MEM = 0ull;
#ifdef CONFIG_KEXEC
#ifdef CONFIG_SMP
/*
* Wait for relocation code is prepared and send
* secondary CPUs to spin until kernel is relocated.
*/
static void octeon_kexec_smp_down(void *ignored)
{
int cpu = smp_processor_id();
local_irq_disable();
set_cpu_online(cpu, false);
while (!atomic_read(&kexec_ready_to_reboot))
cpu_relax();
asm volatile (
" sync \n"
" synci ($0) \n");
relocated_kexec_smp_wait(NULL);
}
#endif
#define OCTEON_DDR0_BASE (0x0ULL)
#define OCTEON_DDR0_SIZE (0x010000000ULL)
#define OCTEON_DDR1_BASE (0x410000000ULL)
#define OCTEON_DDR1_SIZE (0x010000000ULL)
#define OCTEON_DDR2_BASE (0x020000000ULL)
#define OCTEON_DDR2_SIZE (0x3e0000000ULL)
#define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
static struct kimage *kimage_ptr;
static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
{
int64_t addr;
struct cvmx_bootmem_desc *bootmem_desc;
bootmem_desc = cvmx_bootmem_get_desc();
if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
mem_size = OCTEON_MAX_PHY_MEM_SIZE;
pr_err("Error: requested memory too large,"
"truncating to maximum size\n");
}
bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
addr = (OCTEON_DDR0_BASE + RESERVE_LOW_MEM + low_reserved_bytes);
bootmem_desc->head_addr = 0;
if (mem_size <= OCTEON_DDR0_SIZE) {
__cvmx_bootmem_phy_free(addr,
mem_size - RESERVE_LOW_MEM -
low_reserved_bytes, 0);
return;
}
__cvmx_bootmem_phy_free(addr,
OCTEON_DDR0_SIZE - RESERVE_LOW_MEM -
low_reserved_bytes, 0);
mem_size -= OCTEON_DDR0_SIZE;
if (mem_size > OCTEON_DDR1_SIZE) {
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
__cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
mem_size - OCTEON_DDR1_SIZE, 0);
} else
__cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
}
static int octeon_kexec_prepare(struct kimage *image)
{
int i;
char *bootloader = "kexec";
octeon_boot_desc_ptr->argc = 0;
for (i = 0; i < image->nr_segments; i++) {
if (!strncmp(bootloader, (char *)image->segment[i].buf,
strlen(bootloader))) {
/*
* convert command line string to array
* of parameters (as bootloader does).
*/
int argc = 0, offt;
char *str = (char *)image->segment[i].buf;
char *ptr = strchr(str, ' ');
while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
*ptr = '\0';
if (ptr[1] != ' ') {
offt = (int)(ptr - str + 1);
octeon_boot_desc_ptr->argv[argc] =
image->segment[i].mem + offt;
argc++;
}
ptr = strchr(ptr + 1, ' ');
}
octeon_boot_desc_ptr->argc = argc;
break;
}
}
/*
* Information about segments will be needed during pre-boot memory
* initialization.
*/
kimage_ptr = image;
return 0;
}
static void octeon_generic_shutdown(void)
{
int cpu, i;
struct cvmx_bootmem_desc *bootmem_desc;
void *named_block_array_ptr;
bootmem_desc = cvmx_bootmem_get_desc();
named_block_array_ptr =
cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
#ifdef CONFIG_SMP
/* disable watchdogs */
for_each_online_cpu(cpu)
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
#else
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
#endif
if (kimage_ptr != kexec_crash_image) {
memset(named_block_array_ptr,
0x0,
CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
sizeof(struct cvmx_bootmem_named_block_desc));
/*
* Mark all memory (except low 0x100000 bytes) as free.
* It is the same thing that bootloader does.
*/
kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
0x100000);
/*
* Allocate all segments to avoid their corruption during boot.
*/
for (i = 0; i < kimage_ptr->nr_segments; i++)
cvmx_bootmem_alloc_address(
kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
kimage_ptr->segment[i].mem - PAGE_SIZE,
PAGE_SIZE);
} else {
/*
* Do not mark all memory as free. Free only named sections
* leaving the rest of memory unchanged.
*/
struct cvmx_bootmem_named_block_desc *ptr =
(struct cvmx_bootmem_named_block_desc *)
named_block_array_ptr;
for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
if (ptr[i].size)
cvmx_bootmem_free_named(ptr[i].name);
}
kexec_args[2] = 1UL; /* running on octeon_main_processor */
kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
#ifdef CONFIG_SMP
secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
#endif
}
static void octeon_shutdown(void)
{
octeon_generic_shutdown();
#ifdef CONFIG_SMP
smp_call_function(octeon_kexec_smp_down, NULL, 0);
smp_wmb();
while (num_online_cpus() > 1) {
cpu_relax();
mdelay(1);
}
#endif
}
static void octeon_crash_shutdown(struct pt_regs *regs)
{
octeon_generic_shutdown();
default_machine_crash_shutdown(regs);
}
#endif /* CONFIG_KEXEC */
#ifdef CONFIG_CAVIUM_RESERVE32
uint64_t octeon_reserve32_memory;
EXPORT_SYMBOL(octeon_reserve32_memory);
#endif
#ifdef CONFIG_KEXEC
/* crashkernel cmdline parameter is parsed _after_ memory setup
* we also parse it here (workaround for EHB5200) */
static uint64_t crashk_size, crashk_base;
#endif
static int octeon_uart;
extern asmlinkage void handle_int(void);
extern asmlinkage void plat_irq_dispatch(void);
/**
* Return non zero if we are currently running in the Octeon simulator
*
* Returns
*/
int octeon_is_simulation(void)
{
return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
}
EXPORT_SYMBOL(octeon_is_simulation);
/**
* Return true if Octeon is in PCI Host mode. This means
* Linux can control the PCI bus.
*
* Returns Non zero if Octeon in host mode.
*/
int octeon_is_pci_host(void)
{
#ifdef CONFIG_PCI
return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
#else
return 0;
#endif
}
/**
* Get the clock rate of Octeon
*
* Returns Clock rate in HZ
*/
uint64_t octeon_get_clock_rate(void)
{
struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
return sysinfo->cpu_clock_hz;
}
EXPORT_SYMBOL(octeon_get_clock_rate);
static u64 octeon_io_clock_rate;
u64 octeon_get_io_clock_rate(void)
{
return octeon_io_clock_rate;
}
EXPORT_SYMBOL(octeon_get_io_clock_rate);
/**
* Write to the LCD display connected to the bootbus. This display
* exists on most Cavium evaluation boards. If it doesn't exist, then
* this function doesn't do anything.
*
* @s: String to write
*/
void octeon_write_lcd(const char *s)
{
if (octeon_bootinfo->led_display_base_addr) {
void __iomem *lcd_address =
ioremap_nocache(octeon_bootinfo->led_display_base_addr,
8);
int i;
for (i = 0; i < 8; i++, s++) {
if (*s)
iowrite8(*s, lcd_address + i);
else
iowrite8(' ', lcd_address + i);
}
iounmap(lcd_address);
}
}
/**
* Return the console uart passed by the bootloader
*
* Returns uart (0 or 1)
*/
int octeon_get_boot_uart(void)
{
int uart;
#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
uart = 1;
#else
uart = (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
1 : 0;
#endif
return uart;
}
/**
* Get the coremask Linux was booted on.
*
* Returns Core mask
*/
int octeon_get_boot_coremask(void)
{
return octeon_boot_desc_ptr->core_mask;
}
/**
* Check the hardware BIST results for a CPU
*/
void octeon_check_cpu_bist(void)
{
const int coreid = cvmx_get_core_num();
unsigned long long mask;
unsigned long long bist_val;
/* Check BIST results for COP0 registers */
mask = 0x1f00000000ull;
bist_val = read_octeon_c0_icacheerr();
if (bist_val & mask)
pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
coreid, bist_val);
bist_val = read_octeon_c0_dcacheerr();
if (bist_val & 1)
pr_err("Core%d L1 Dcache parity error: "
"CacheErr(dcache) = 0x%llx\n",
coreid, bist_val);
mask = 0xfc00000000000000ull;
bist_val = read_c0_cvmmemctl();
if (bist_val & mask)
pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
coreid, bist_val);
write_octeon_c0_dcacheerr(0);
}
/**
* Reboot Octeon
*
* @command: Command to pass to the bootloader. Currently ignored.
*/
static void octeon_restart(char *command)
{
/* Disable all watchdogs before soft reset. They don't get cleared */
#ifdef CONFIG_SMP
int cpu;
for_each_online_cpu(cpu)
cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
#else
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
#endif
mb();
while (1)
cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
}
/**
* Permanently stop a core.
*
* @arg: Ignored.
*/
static void octeon_kill_core(void *arg)
{
mb();
if (octeon_is_simulation()) {
/* The simulator needs the watchdog to stop for dead cores */
cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
/* A break instruction causes the simulator stop a core */
asm volatile ("sync\nbreak");
}
}
/**
* Halt the system
*/
static void octeon_halt(void)
{
smp_call_function(octeon_kill_core, NULL, 0);
switch (octeon_bootinfo->board_type) {
case CVMX_BOARD_TYPE_NAO38:
/* Driving a 1 to GPIO 12 shuts off this board */
cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
break;
default:
octeon_write_lcd("PowerOff");
break;
}
octeon_kill_core(NULL);
}
/**
* Handle all the error condition interrupts that might occur.
*
*/
#ifdef CONFIG_CAVIUM_DECODE_RSL
static irqreturn_t octeon_rlm_interrupt(int cpl, void *dev_id)
{
cvmx_interrupt_rsl_decode();
return IRQ_HANDLED;
}
#endif
/**
* Return a string representing the system type
*
* Returns
*/
const char *octeon_board_type_string(void)
{
static char name[80];
sprintf(name, "%s (%s)",
cvmx_board_type_to_string(octeon_bootinfo->board_type),
octeon_model_get_string(read_c0_prid()));
return name;
}
const char *get_system_type(void)
__attribute__ ((alias("octeon_board_type_string")));
void octeon_user_io_init(void)
{
union octeon_cvmemctl cvmmemctl;
union cvmx_iob_fau_timeout fau_timeout;
union cvmx_pow_nw_tim nm_tim;
/* Get the current settings for CP0_CVMMEMCTL_REG */
cvmmemctl.u64 = read_c0_cvmmemctl();
/* R/W If set, marked write-buffer entries time out the same
* as as other entries; if clear, marked write-buffer entries
* use the maximum timeout. */
cvmmemctl.s.dismarkwblongto = 1;
/* R/W If set, a merged store does not clear the write-buffer
* entry timeout state. */
cvmmemctl.s.dismrgclrwbto = 0;
/* R/W Two bits that are the MSBs of the resultant CVMSEG LM
* word location for an IOBDMA. The other 8 bits come from the
* SCRADDR field of the IOBDMA. */
cvmmemctl.s.iobdmascrmsb = 0;
/* R/W If set, SYNCWS and SYNCS only order marked stores; if
* clear, SYNCWS and SYNCS only order unmarked
* stores. SYNCWSMARKED has no effect when DISSYNCWS is
* set. */
cvmmemctl.s.syncwsmarked = 0;
/* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
cvmmemctl.s.dissyncws = 0;
/* R/W If set, no stall happens on write buffer full. */
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
cvmmemctl.s.diswbfst = 1;
else
cvmmemctl.s.diswbfst = 0;
/* R/W If set (and SX set), supervisor-level loads/stores can
* use XKPHYS addresses with <48>==0 */
cvmmemctl.s.xkmemenas = 0;
/* R/W If set (and UX set), user-level loads/stores can use
* XKPHYS addresses with VA<48>==0 */
cvmmemctl.s.xkmemenau = 0;
/* R/W If set (and SX set), supervisor-level loads/stores can
* use XKPHYS addresses with VA<48>==1 */
cvmmemctl.s.xkioenas = 0;
/* R/W If set (and UX set), user-level loads/stores can use
* XKPHYS addresses with VA<48>==1 */
cvmmemctl.s.xkioenau = 0;
/* R/W If set, all stores act as SYNCW (NOMERGE must be set
* when this is set) RW, reset to 0. */
cvmmemctl.s.allsyncw = 0;
/* R/W If set, no stores merge, and all stores reach the
* coherent bus in order. */
cvmmemctl.s.nomerge = 0;
/* R/W Selects the bit in the counter used for DID time-outs 0
* = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
* between 1x and 2x this interval. For example, with
* DIDTTO=3, expiration interval is between 16K and 32K. */
cvmmemctl.s.didtto = 0;
/* R/W If set, the (mem) CSR clock never turns off. */
cvmmemctl.s.csrckalwys = 0;
/* R/W If set, mclk never turns off. */
cvmmemctl.s.mclkalwys = 0;
/* R/W Selects the bit in the counter used for write buffer
* flush time-outs (WBFLT+11) is the bit position in an
* internal counter used to determine expiration. The write
* buffer expires between 1x and 2x this interval. For
* example, with WBFLT = 0, a write buffer expires between 2K
* and 4K cycles after the write buffer entry is allocated. */
cvmmemctl.s.wbfltime = 0;
/* R/W If set, do not put Istream in the L2 cache. */
cvmmemctl.s.istrnol2 = 0;
/*
* R/W The write buffer threshold. As per erratum Core-14752
* for CN63XX, a sc/scd might fail if the write buffer is
* full. Lowering WBTHRESH greatly lowers the chances of the
* write buffer ever being full and triggering the erratum.
*/
if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
cvmmemctl.s.wbthresh = 4;
else
cvmmemctl.s.wbthresh = 10;
/* R/W If set, CVMSEG is available for loads/stores in
* kernel/debug mode. */
#if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
cvmmemctl.s.cvmsegenak = 1;
#else
cvmmemctl.s.cvmsegenak = 0;
#endif
/* R/W If set, CVMSEG is available for loads/stores in
* supervisor mode. */
cvmmemctl.s.cvmsegenas = 0;
/* R/W If set, CVMSEG is available for loads/stores in user
* mode. */
cvmmemctl.s.cvmsegenau = 0;
/* R/W Size of local memory in cache blocks, 54 (6912 bytes)
* is max legal value. */
cvmmemctl.s.lmemsz = CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE;
write_c0_cvmmemctl(cvmmemctl.u64);
if (smp_processor_id() == 0)
pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
/* Set a default for the hardware timeouts */
fau_timeout.u64 = 0;
fau_timeout.s.tout_val = 0xfff;
/* Disable tagwait FAU timeout */
fau_timeout.s.tout_enb = 0;
cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
nm_tim.u64 = 0;
/* 4096 cycles */
nm_tim.s.nw_tim = 3;
cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
write_octeon_c0_icacheerr(0);
write_c0_derraddr1(0);
}
/**
* Early entry point for arch setup
*/
void __init prom_init(void)
{
struct cvmx_sysinfo *sysinfo;
const char *arg;
char *p;
int i;
int argc;
#ifdef CONFIG_CAVIUM_RESERVE32
int64_t addr = -1;
#endif
/*
* The bootloader passes a pointer to the boot descriptor in
* $a3, this is available as fw_arg3.
*/
octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
octeon_bootinfo =
cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
sysinfo = cvmx_sysinfo_get();
memset(sysinfo, 0, sizeof(*sysinfo));
sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
sysinfo->phy_mem_desc_ptr =
cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr);
sysinfo->core_mask = octeon_bootinfo->core_mask;
sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
sysinfo->board_type = octeon_bootinfo->board_type;
sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
sizeof(sysinfo->mac_addr_base));
sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
memcpy(sysinfo->board_serial_number,
octeon_bootinfo->board_serial_number,
sizeof(sysinfo->board_serial_number));
sysinfo->compact_flash_common_base_addr =
octeon_bootinfo->compact_flash_common_base_addr;
sysinfo->compact_flash_attribute_base_addr =
octeon_bootinfo->compact_flash_attribute_base_addr;
sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
/* I/O clock runs at a different rate than the CPU. */
union cvmx_mio_rst_boot rst_boot;
rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
} else {
octeon_io_clock_rate = sysinfo->cpu_clock_hz;
}
/*
* Only enable the LED controller if we're running on a CN38XX, CN58XX,
* or CN56XX. The CN30XX and CN31XX don't have an LED controller.
*/
if (!octeon_is_simulation() &&
octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
cvmx_write_csr(CVMX_LED_EN, 0);
cvmx_write_csr(CVMX_LED_PRT, 0);
cvmx_write_csr(CVMX_LED_DBG, 0);
cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
cvmx_write_csr(CVMX_LED_EN, 1);
}
#ifdef CONFIG_CAVIUM_RESERVE32
/*
* We need to temporarily allocate all memory in the reserve32
* region. This makes sure the kernel doesn't allocate this
* memory when it is getting memory from the
* bootloader. Later, after the memory allocations are
* complete, the reserve32 will be freed.
*
* Allocate memory for RESERVED32 aligned on 2MB boundary. This
* is in case we later use hugetlb entries with it.
*/
addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
0, 0, 2 << 20,
"CAVIUM_RESERVE32", 0);
if (addr < 0)
pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
else
octeon_reserve32_memory = addr;
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
pr_info("Skipping L2 locking due to reduced L2 cache size\n");
} else {
uint32_t ebase = read_c0_ebase() & 0x3ffff000;
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
/* TLB refill */
cvmx_l2c_lock_mem_region(ebase, 0x100);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
/* General exception */
cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
/* Interrupt handler */
cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
#endif
#ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
#endif
}
#endif
octeon_check_cpu_bist();
octeon_uart = octeon_get_boot_uart();
#ifdef CONFIG_SMP
octeon_write_lcd("LinuxSMP");
#else
octeon_write_lcd("Linux");
#endif
#ifdef CONFIG_CAVIUM_GDB
/*
* When debugging the linux kernel, force the cores to enter
* the debug exception handler to break in.
*/
if (octeon_get_boot_debug_flag()) {
cvmx_write_csr(CVMX_CIU_DINT, 1 << cvmx_get_core_num());
cvmx_read_csr(CVMX_CIU_DINT);
}
#endif
octeon_setup_delays();
/*
* BIST should always be enabled when doing a soft reset. L2
* Cache locking for instance is not cleared unless BIST is
* enabled. Unfortunately due to a chip errata G-200 for
* Cn38XX and CN31XX, BIST msut be disabled on these parts.
*/
if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
OCTEON_IS_MODEL(OCTEON_CN31XX))
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
else
cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
/* Default to 64MB in the simulator to speed things up */
if (octeon_is_simulation())
MAX_MEMORY = 64ull << 20;
arg = strstr(arcs_cmdline, "mem=");
if (arg) {
MAX_MEMORY = memparse(arg + 4, &p);
if (MAX_MEMORY == 0)
MAX_MEMORY = 32ull << 30;
if (*p == '@')
RESERVE_LOW_MEM = memparse(p + 1, &p);
}
arcs_cmdline[0] = 0;
argc = octeon_boot_desc_ptr->argc;
for (i = 0; i < argc; i++) {
const char *arg =
cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
if ((strncmp(arg, "MEM=", 4) == 0) ||
(strncmp(arg, "mem=", 4) == 0)) {
MAX_MEMORY = memparse(arg + 4, &p);
if (MAX_MEMORY == 0)
MAX_MEMORY = 32ull << 30;
if (*p == '@')
RESERVE_LOW_MEM = memparse(p + 1, &p);
} else if (strcmp(arg, "ecc_verbose") == 0) {
#ifdef CONFIG_CAVIUM_REPORT_SINGLE_BIT_ECC
__cvmx_interrupt_ecc_report_single_bit_errors = 1;
pr_notice("Reporting of single bit ECC errors is "
"turned on\n");
#endif
#ifdef CONFIG_KEXEC
} else if (strncmp(arg, "crashkernel=", 12) == 0) {
crashk_size = memparse(arg+12, &p);
if (*p == '@')
crashk_base = memparse(p+1, &p);
strcat(arcs_cmdline, " ");
strcat(arcs_cmdline, arg);
/*
* To do: switch parsing to new style, something like:
* parse_crashkernel(arg, sysinfo->system_dram_size,
* &crashk_size, &crashk_base);
*/
#endif
} else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
sizeof(arcs_cmdline) - 1) {
strcat(arcs_cmdline, " ");
strcat(arcs_cmdline, arg);
}
}
if (strstr(arcs_cmdline, "console=") == NULL) {
#ifdef CONFIG_CAVIUM_OCTEON_2ND_KERNEL
strcat(arcs_cmdline, " console=ttyS0,115200");
#else
if (octeon_uart == 1)
strcat(arcs_cmdline, " console=ttyS1,115200");
else
strcat(arcs_cmdline, " console=ttyS0,115200");
#endif
}
if (octeon_is_simulation()) {
/*
* The simulator uses a mtdram device pre filled with
* the filesystem. Also specify the calibration delay
* to avoid calculating it every time.
*/
strcat(arcs_cmdline, " rw root=1f00 slram=root,0x40000000,+1073741824");
}
mips_hpt_frequency = octeon_get_clock_rate();
octeon_init_cvmcount();
_machine_restart = octeon_restart;
_machine_halt = octeon_halt;
#ifdef CONFIG_KEXEC
_machine_kexec_shutdown = octeon_shutdown;
_machine_crash_shutdown = octeon_crash_shutdown;
_machine_kexec_prepare = octeon_kexec_prepare;
#endif
octeon_user_io_init();
register_smp_ops(&octeon_smp_ops);
}
/* Exclude a single page from the regions obtained in plat_mem_setup. */
#ifndef CONFIG_CRASH_DUMP
static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
{
if (addr > *mem && addr < *mem + *size) {
u64 inc = addr - *mem;
add_memory_region(*mem, inc, BOOT_MEM_RAM);
*mem += inc;
*size -= inc;
}
if (addr == *mem && *size > PAGE_SIZE) {
*mem += PAGE_SIZE;
*size -= PAGE_SIZE;
}
}
#endif /* CONFIG_CRASH_DUMP */
void __init plat_mem_setup(void)
{
uint64_t mem_alloc_size;
uint64_t total;
uint64_t crashk_end;
#ifndef CONFIG_CRASH_DUMP
int64_t memory;
uint64_t kernel_start;
uint64_t kernel_size;
#endif
total = 0;
crashk_end = 0;
/*
* The Mips memory init uses the first memory location for
* some memory vectors. When SPARSEMEM is in use, it doesn't
* verify that the size is big enough for the final
* vectors. Making the smallest chuck 4MB seems to be enough
* to consistently work.
*/
mem_alloc_size = 4 << 20;
if (mem_alloc_size > MAX_MEMORY)
mem_alloc_size = MAX_MEMORY;
/* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
#ifdef CONFIG_CRASH_DUMP
add_memory_region(RESERVE_LOW_MEM, MAX_MEMORY, BOOT_MEM_RAM);
total += MAX_MEMORY;
#else
#ifdef CONFIG_KEXEC
if (crashk_size > 0) {
add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
crashk_end = crashk_base + crashk_size;
}
#endif
/*
* When allocating memory, we want incrementing addresses from
* bootmem_alloc so the code in add_memory_region can merge
* regions next to each other.
*/
cvmx_bootmem_lock();
while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
&& (total < MAX_MEMORY)) {
memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
__pa_symbol(&__init_end), -1,
0x100000,
CVMX_BOOTMEM_FLAG_NO_LOCKING);
if (memory >= 0) {
u64 size = mem_alloc_size;
#ifdef CONFIG_KEXEC
uint64_t end;
#endif
/*
* exclude a page at the beginning and end of
* the 256MB PCIe 'hole' so the kernel will not
* try to allocate multi-page buffers that
* span the discontinuity.
*/
memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
&memory, &size);
memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
CVMX_PCIE_BAR1_PHYS_SIZE,
&memory, &size);
#ifdef CONFIG_KEXEC
end = memory + mem_alloc_size;
/*
* This function automatically merges address regions
* next to each other if they are received in
* incrementing order
*/
if (memory < crashk_base && end > crashk_end) {
/* region is fully in */
add_memory_region(memory,
crashk_base - memory,
BOOT_MEM_RAM);
total += crashk_base - memory;
add_memory_region(crashk_end,
end - crashk_end,
BOOT_MEM_RAM);
total += end - crashk_end;
continue;
}
if (memory >= crashk_base && end <= crashk_end)
/*
* Entire memory region is within the new
* kernel's memory, ignore it.
*/
continue;
if (memory > crashk_base && memory < crashk_end &&
end > crashk_end) {
/*
* Overlap with the beginning of the region,
* reserve the beginning.
*/
mem_alloc_size -= crashk_end - memory;
memory = crashk_end;
} else if (memory < crashk_base && end > crashk_base &&
end < crashk_end)
/*
* Overlap with the beginning of the region,
* chop of end.
*/
mem_alloc_size -= end - crashk_base;
#endif
add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
total += mem_alloc_size;
/* Recovering mem_alloc_size */
mem_alloc_size = 4 << 20;
} else {
break;
}
}
cvmx_bootmem_unlock();
/* Add the memory region for the kernel. */
kernel_start = (unsigned long) _text;
kernel_size = ALIGN(_end - _text, 0x100000);
/* Adjust for physical offset. */
kernel_start &= ~0xffffffff80000000ULL;
add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
#endif /* CONFIG_CRASH_DUMP */
#ifdef CONFIG_CAVIUM_RESERVE32
/*
* Now that we've allocated the kernel memory it is safe to
* free the reserved region. We free it here so that builtin
* drivers can use the memory.
*/
if (octeon_reserve32_memory)
cvmx_bootmem_free_named("CAVIUM_RESERVE32");
#endif /* CONFIG_CAVIUM_RESERVE32 */
if (total == 0)
panic("Unable to allocate memory from "
"cvmx_bootmem_phy_alloc\n");
}
/*
* Emit one character to the boot UART. Exported for use by the
* watchdog timer.
*/
int prom_putchar(char c)
{
uint64_t lsrval;
/* Spin until there is room */
do {
lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
} while ((lsrval & 0x20) == 0);
/* Write the byte */
cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
return 1;
}
EXPORT_SYMBOL(prom_putchar);
void prom_free_prom_memory(void)
{
if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X)) {
/* Check for presence of Core-14449 fix. */
u32 insn;
u32 *foo;
foo = &insn;
asm volatile("# before" : : : "memory");
prefetch(foo);
asm volatile(
".set push\n\t"
".set noreorder\n\t"
"bal 1f\n\t"
"nop\n"
"1:\tlw %0,-12($31)\n\t"
".set pop\n\t"
: "=r" (insn) : : "$31", "memory");
if ((insn >> 26) != 0x33)
panic("No PREF instruction at Core-14449 probe point.");
if (((insn >> 16) & 0x1f) != 28)
panic("Core-14449 WAR not in place (%04x).\n"
"Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).", insn);
}
#ifdef CONFIG_CAVIUM_DECODE_RSL
cvmx_interrupt_rsl_enable();
/* Add an interrupt handler for general failures. */
if (request_irq(OCTEON_IRQ_RML, octeon_rlm_interrupt, IRQF_SHARED,
"RML/RSL", octeon_rlm_interrupt)) {
panic("Unable to request_irq(OCTEON_IRQ_RML)");
}
#endif
}
int octeon_prune_device_tree(void);
extern const char __dtb_octeon_3xxx_begin;
extern const char __dtb_octeon_3xxx_end;
extern const char __dtb_octeon_68xx_begin;
extern const char __dtb_octeon_68xx_end;
void __init device_tree_init(void)
{
int dt_size;
struct boot_param_header *fdt;
bool do_prune;
if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
if (fdt_check_header(fdt))
panic("Corrupt Device Tree passed to kernel.");
dt_size = be32_to_cpu(fdt->totalsize);
do_prune = false;
} else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
fdt = (struct boot_param_header *)&__dtb_octeon_68xx_begin;
dt_size = &__dtb_octeon_68xx_end - &__dtb_octeon_68xx_begin;
do_prune = true;
} else {
fdt = (struct boot_param_header *)&__dtb_octeon_3xxx_begin;
dt_size = &__dtb_octeon_3xxx_end - &__dtb_octeon_3xxx_begin;
do_prune = true;
}
/* Copy the default tree from init memory. */
initial_boot_params = early_init_dt_alloc_memory_arch(dt_size, 8);
if (initial_boot_params == NULL)
panic("Could not allocate initial_boot_params\n");
memcpy(initial_boot_params, fdt, dt_size);
if (do_prune) {
octeon_prune_device_tree();
pr_info("Using internal Device Tree.\n");
} else {
pr_info("Using passed Device Tree.\n");
}
unflatten_device_tree();
}
static int __initdata disable_octeon_edac_p;
static int __init disable_octeon_edac(char *str)
{
disable_octeon_edac_p = 1;
return 0;
}
early_param("disable_octeon_edac", disable_octeon_edac);
static char *edac_device_names[] = {
"octeon_l2c_edac",
"octeon_pc_edac",
};
static int __init edac_devinit(void)
{
struct platform_device *dev;
int i, err = 0;
int num_lmc;
char *name;
if (disable_octeon_edac_p)
return 0;
for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
name = edac_device_names[i];
dev = platform_device_register_simple(name, -1, NULL, 0);
if (IS_ERR(dev)) {
pr_err("Registation of %s failed!\n", name);
err = PTR_ERR(dev);
}
}
num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
(OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
for (i = 0; i < num_lmc; i++) {
dev = platform_device_register_simple("octeon_lmc_edac",
i, NULL, 0);
if (IS_ERR(dev)) {
pr_err("Registation of octeon_lmc_edac %d failed!\n", i);
err = PTR_ERR(dev);
}
}
return err;
}
device_initcall(edac_devinit);