linux-sg2042/drivers/net/mace.c

1037 lines
28 KiB
C

/*
* Network device driver for the MACE ethernet controller on
* Apple Powermacs. Assumes it's under a DBDMA controller.
*
* Copyright (C) 1996 Paul Mackerras.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/init.h>
#include <linux/crc32.h>
#include <linux/spinlock.h>
#include <linux/bitrev.h>
#include <asm/prom.h>
#include <asm/dbdma.h>
#include <asm/io.h>
#include <asm/pgtable.h>
#include <asm/macio.h>
#include "mace.h"
static int port_aaui = -1;
#define N_RX_RING 8
#define N_TX_RING 6
#define MAX_TX_ACTIVE 1
#define NCMDS_TX 1 /* dma commands per element in tx ring */
#define RX_BUFLEN (ETH_FRAME_LEN + 8)
#define TX_TIMEOUT HZ /* 1 second */
/* Chip rev needs workaround on HW & multicast addr change */
#define BROKEN_ADDRCHG_REV 0x0941
/* Bits in transmit DMA status */
#define TX_DMA_ERR 0x80
struct mace_data {
volatile struct mace __iomem *mace;
volatile struct dbdma_regs __iomem *tx_dma;
int tx_dma_intr;
volatile struct dbdma_regs __iomem *rx_dma;
int rx_dma_intr;
volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */
volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */
struct sk_buff *rx_bufs[N_RX_RING];
int rx_fill;
int rx_empty;
struct sk_buff *tx_bufs[N_TX_RING];
int tx_fill;
int tx_empty;
unsigned char maccc;
unsigned char tx_fullup;
unsigned char tx_active;
unsigned char tx_bad_runt;
struct net_device_stats stats;
struct timer_list tx_timeout;
int timeout_active;
int port_aaui;
int chipid;
struct macio_dev *mdev;
spinlock_t lock;
};
/*
* Number of bytes of private data per MACE: allow enough for
* the rx and tx dma commands plus a branch dma command each,
* and another 16 bytes to allow us to align the dma command
* buffers on a 16 byte boundary.
*/
#define PRIV_BYTES (sizeof(struct mace_data) \
+ (N_RX_RING + NCMDS_TX * N_TX_RING + 3) * sizeof(struct dbdma_cmd))
static int mace_open(struct net_device *dev);
static int mace_close(struct net_device *dev);
static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
static struct net_device_stats *mace_stats(struct net_device *dev);
static void mace_set_multicast(struct net_device *dev);
static void mace_reset(struct net_device *dev);
static int mace_set_address(struct net_device *dev, void *addr);
static irqreturn_t mace_interrupt(int irq, void *dev_id);
static irqreturn_t mace_txdma_intr(int irq, void *dev_id);
static irqreturn_t mace_rxdma_intr(int irq, void *dev_id);
static void mace_set_timeout(struct net_device *dev);
static void mace_tx_timeout(unsigned long data);
static inline void dbdma_reset(volatile struct dbdma_regs __iomem *dma);
static inline void mace_clean_rings(struct mace_data *mp);
static void __mace_set_address(struct net_device *dev, void *addr);
/*
* If we can't get a skbuff when we need it, we use this area for DMA.
*/
static unsigned char *dummy_buf;
static int __devinit mace_probe(struct macio_dev *mdev, const struct of_device_id *match)
{
struct device_node *mace = macio_get_of_node(mdev);
struct net_device *dev;
struct mace_data *mp;
const unsigned char *addr;
int j, rev, rc = -EBUSY;
if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) {
printk(KERN_ERR "can't use MACE %s: need 3 addrs and 3 irqs\n",
mace->full_name);
return -ENODEV;
}
addr = of_get_property(mace, "mac-address", NULL);
if (addr == NULL) {
addr = of_get_property(mace, "local-mac-address", NULL);
if (addr == NULL) {
printk(KERN_ERR "Can't get mac-address for MACE %s\n",
mace->full_name);
return -ENODEV;
}
}
/*
* lazy allocate the driver-wide dummy buffer. (Note that we
* never have more than one MACE in the system anyway)
*/
if (dummy_buf == NULL) {
dummy_buf = kmalloc(RX_BUFLEN+2, GFP_KERNEL);
if (dummy_buf == NULL) {
printk(KERN_ERR "MACE: couldn't allocate dummy buffer\n");
return -ENOMEM;
}
}
if (macio_request_resources(mdev, "mace")) {
printk(KERN_ERR "MACE: can't request IO resources !\n");
return -EBUSY;
}
dev = alloc_etherdev(PRIV_BYTES);
if (!dev) {
printk(KERN_ERR "MACE: can't allocate ethernet device !\n");
rc = -ENOMEM;
goto err_release;
}
SET_MODULE_OWNER(dev);
SET_NETDEV_DEV(dev, &mdev->ofdev.dev);
mp = dev->priv;
mp->mdev = mdev;
macio_set_drvdata(mdev, dev);
dev->base_addr = macio_resource_start(mdev, 0);
mp->mace = ioremap(dev->base_addr, 0x1000);
if (mp->mace == NULL) {
printk(KERN_ERR "MACE: can't map IO resources !\n");
rc = -ENOMEM;
goto err_free;
}
dev->irq = macio_irq(mdev, 0);
rev = addr[0] == 0 && addr[1] == 0xA0;
for (j = 0; j < 6; ++j) {
dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j];
}
mp->chipid = (in_8(&mp->mace->chipid_hi) << 8) |
in_8(&mp->mace->chipid_lo);
mp = (struct mace_data *) dev->priv;
mp->maccc = ENXMT | ENRCV;
mp->tx_dma = ioremap(macio_resource_start(mdev, 1), 0x1000);
if (mp->tx_dma == NULL) {
printk(KERN_ERR "MACE: can't map TX DMA resources !\n");
rc = -ENOMEM;
goto err_unmap_io;
}
mp->tx_dma_intr = macio_irq(mdev, 1);
mp->rx_dma = ioremap(macio_resource_start(mdev, 2), 0x1000);
if (mp->rx_dma == NULL) {
printk(KERN_ERR "MACE: can't map RX DMA resources !\n");
rc = -ENOMEM;
goto err_unmap_tx_dma;
}
mp->rx_dma_intr = macio_irq(mdev, 2);
mp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(mp + 1);
mp->rx_cmds = mp->tx_cmds + NCMDS_TX * N_TX_RING + 1;
memset(&mp->stats, 0, sizeof(mp->stats));
memset((char *) mp->tx_cmds, 0,
(NCMDS_TX*N_TX_RING + N_RX_RING + 2) * sizeof(struct dbdma_cmd));
init_timer(&mp->tx_timeout);
spin_lock_init(&mp->lock);
mp->timeout_active = 0;
if (port_aaui >= 0)
mp->port_aaui = port_aaui;
else {
/* Apple Network Server uses the AAUI port */
if (machine_is_compatible("AAPL,ShinerESB"))
mp->port_aaui = 1;
else {
#ifdef CONFIG_MACE_AAUI_PORT
mp->port_aaui = 1;
#else
mp->port_aaui = 0;
#endif
}
}
dev->open = mace_open;
dev->stop = mace_close;
dev->hard_start_xmit = mace_xmit_start;
dev->get_stats = mace_stats;
dev->set_multicast_list = mace_set_multicast;
dev->set_mac_address = mace_set_address;
/*
* Most of what is below could be moved to mace_open()
*/
mace_reset(dev);
rc = request_irq(dev->irq, mace_interrupt, 0, "MACE", dev);
if (rc) {
printk(KERN_ERR "MACE: can't get irq %d\n", dev->irq);
goto err_unmap_rx_dma;
}
rc = request_irq(mp->tx_dma_intr, mace_txdma_intr, 0, "MACE-txdma", dev);
if (rc) {
printk(KERN_ERR "MACE: can't get irq %d\n", mp->tx_dma_intr);
goto err_free_irq;
}
rc = request_irq(mp->rx_dma_intr, mace_rxdma_intr, 0, "MACE-rxdma", dev);
if (rc) {
printk(KERN_ERR "MACE: can't get irq %d\n", mp->rx_dma_intr);
goto err_free_tx_irq;
}
rc = register_netdev(dev);
if (rc) {
printk(KERN_ERR "MACE: Cannot register net device, aborting.\n");
goto err_free_rx_irq;
}
printk(KERN_INFO "%s: MACE at", dev->name);
for (j = 0; j < 6; ++j) {
printk("%c%.2x", (j? ':': ' '), dev->dev_addr[j]);
}
printk(", chip revision %d.%d\n", mp->chipid >> 8, mp->chipid & 0xff);
return 0;
err_free_rx_irq:
free_irq(macio_irq(mdev, 2), dev);
err_free_tx_irq:
free_irq(macio_irq(mdev, 1), dev);
err_free_irq:
free_irq(macio_irq(mdev, 0), dev);
err_unmap_rx_dma:
iounmap(mp->rx_dma);
err_unmap_tx_dma:
iounmap(mp->tx_dma);
err_unmap_io:
iounmap(mp->mace);
err_free:
free_netdev(dev);
err_release:
macio_release_resources(mdev);
return rc;
}
static int __devexit mace_remove(struct macio_dev *mdev)
{
struct net_device *dev = macio_get_drvdata(mdev);
struct mace_data *mp;
BUG_ON(dev == NULL);
macio_set_drvdata(mdev, NULL);
mp = dev->priv;
unregister_netdev(dev);
free_irq(dev->irq, dev);
free_irq(mp->tx_dma_intr, dev);
free_irq(mp->rx_dma_intr, dev);
iounmap(mp->rx_dma);
iounmap(mp->tx_dma);
iounmap(mp->mace);
free_netdev(dev);
macio_release_resources(mdev);
return 0;
}
static void dbdma_reset(volatile struct dbdma_regs __iomem *dma)
{
int i;
out_le32(&dma->control, (WAKE|FLUSH|PAUSE|RUN) << 16);
/*
* Yes this looks peculiar, but apparently it needs to be this
* way on some machines.
*/
for (i = 200; i > 0; --i)
if (ld_le32(&dma->control) & RUN)
udelay(1);
}
static void mace_reset(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
int i;
/* soft-reset the chip */
i = 200;
while (--i) {
out_8(&mb->biucc, SWRST);
if (in_8(&mb->biucc) & SWRST) {
udelay(10);
continue;
}
break;
}
if (!i) {
printk(KERN_ERR "mace: cannot reset chip!\n");
return;
}
out_8(&mb->imr, 0xff); /* disable all intrs for now */
i = in_8(&mb->ir);
out_8(&mb->maccc, 0); /* turn off tx, rx */
out_8(&mb->biucc, XMTSP_64);
out_8(&mb->utr, RTRD);
out_8(&mb->fifocc, RCVFW_32 | XMTFW_16 | XMTFWU | RCVFWU | XMTBRST);
out_8(&mb->xmtfc, AUTO_PAD_XMIT); /* auto-pad short frames */
out_8(&mb->rcvfc, 0);
/* load up the hardware address */
__mace_set_address(dev, dev->dev_addr);
/* clear the multicast filter */
if (mp->chipid == BROKEN_ADDRCHG_REV)
out_8(&mb->iac, LOGADDR);
else {
out_8(&mb->iac, ADDRCHG | LOGADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
}
for (i = 0; i < 8; ++i)
out_8(&mb->ladrf, 0);
/* done changing address */
if (mp->chipid != BROKEN_ADDRCHG_REV)
out_8(&mb->iac, 0);
if (mp->port_aaui)
out_8(&mb->plscc, PORTSEL_AUI + ENPLSIO);
else
out_8(&mb->plscc, PORTSEL_GPSI + ENPLSIO);
}
static void __mace_set_address(struct net_device *dev, void *addr)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
unsigned char *p = addr;
int i;
/* load up the hardware address */
if (mp->chipid == BROKEN_ADDRCHG_REV)
out_8(&mb->iac, PHYADDR);
else {
out_8(&mb->iac, ADDRCHG | PHYADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
}
for (i = 0; i < 6; ++i)
out_8(&mb->padr, dev->dev_addr[i] = p[i]);
if (mp->chipid != BROKEN_ADDRCHG_REV)
out_8(&mb->iac, 0);
}
static int mace_set_address(struct net_device *dev, void *addr)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
__mace_set_address(dev, addr);
/* note: setting ADDRCHG clears ENRCV */
out_8(&mb->maccc, mp->maccc);
spin_unlock_irqrestore(&mp->lock, flags);
return 0;
}
static inline void mace_clean_rings(struct mace_data *mp)
{
int i;
/* free some skb's */
for (i = 0; i < N_RX_RING; ++i) {
if (mp->rx_bufs[i] != 0) {
dev_kfree_skb(mp->rx_bufs[i]);
mp->rx_bufs[i] = NULL;
}
}
for (i = mp->tx_empty; i != mp->tx_fill; ) {
dev_kfree_skb(mp->tx_bufs[i]);
if (++i >= N_TX_RING)
i = 0;
}
}
static int mace_open(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
volatile struct dbdma_regs __iomem *td = mp->tx_dma;
volatile struct dbdma_cmd *cp;
int i;
struct sk_buff *skb;
unsigned char *data;
/* reset the chip */
mace_reset(dev);
/* initialize list of sk_buffs for receiving and set up recv dma */
mace_clean_rings(mp);
memset((char *)mp->rx_cmds, 0, N_RX_RING * sizeof(struct dbdma_cmd));
cp = mp->rx_cmds;
for (i = 0; i < N_RX_RING - 1; ++i) {
skb = dev_alloc_skb(RX_BUFLEN + 2);
if (skb == 0) {
data = dummy_buf;
} else {
skb_reserve(skb, 2); /* so IP header lands on 4-byte bdry */
data = skb->data;
}
mp->rx_bufs[i] = skb;
st_le16(&cp->req_count, RX_BUFLEN);
st_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
st_le32(&cp->phy_addr, virt_to_bus(data));
cp->xfer_status = 0;
++cp;
}
mp->rx_bufs[i] = NULL;
st_le16(&cp->command, DBDMA_STOP);
mp->rx_fill = i;
mp->rx_empty = 0;
/* Put a branch back to the beginning of the receive command list */
++cp;
st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
st_le32(&cp->cmd_dep, virt_to_bus(mp->rx_cmds));
/* start rx dma */
out_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
out_le32(&rd->cmdptr, virt_to_bus(mp->rx_cmds));
out_le32(&rd->control, (RUN << 16) | RUN);
/* put a branch at the end of the tx command list */
cp = mp->tx_cmds + NCMDS_TX * N_TX_RING;
st_le16(&cp->command, DBDMA_NOP + BR_ALWAYS);
st_le32(&cp->cmd_dep, virt_to_bus(mp->tx_cmds));
/* reset tx dma */
out_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16);
out_le32(&td->cmdptr, virt_to_bus(mp->tx_cmds));
mp->tx_fill = 0;
mp->tx_empty = 0;
mp->tx_fullup = 0;
mp->tx_active = 0;
mp->tx_bad_runt = 0;
/* turn it on! */
out_8(&mb->maccc, mp->maccc);
/* enable all interrupts except receive interrupts */
out_8(&mb->imr, RCVINT);
return 0;
}
static int mace_close(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
volatile struct dbdma_regs __iomem *td = mp->tx_dma;
/* disable rx and tx */
out_8(&mb->maccc, 0);
out_8(&mb->imr, 0xff); /* disable all intrs */
/* disable rx and tx dma */
st_le32(&rd->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
st_le32(&td->control, (RUN|PAUSE|FLUSH|WAKE) << 16); /* clear run bit */
mace_clean_rings(mp);
return 0;
}
static inline void mace_set_timeout(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
if (mp->timeout_active)
del_timer(&mp->tx_timeout);
mp->tx_timeout.expires = jiffies + TX_TIMEOUT;
mp->tx_timeout.function = mace_tx_timeout;
mp->tx_timeout.data = (unsigned long) dev;
add_timer(&mp->tx_timeout);
mp->timeout_active = 1;
}
static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct dbdma_regs __iomem *td = mp->tx_dma;
volatile struct dbdma_cmd *cp, *np;
unsigned long flags;
int fill, next, len;
/* see if there's a free slot in the tx ring */
spin_lock_irqsave(&mp->lock, flags);
fill = mp->tx_fill;
next = fill + 1;
if (next >= N_TX_RING)
next = 0;
if (next == mp->tx_empty) {
netif_stop_queue(dev);
mp->tx_fullup = 1;
spin_unlock_irqrestore(&mp->lock, flags);
return 1; /* can't take it at the moment */
}
spin_unlock_irqrestore(&mp->lock, flags);
/* partially fill in the dma command block */
len = skb->len;
if (len > ETH_FRAME_LEN) {
printk(KERN_DEBUG "mace: xmit frame too long (%d)\n", len);
len = ETH_FRAME_LEN;
}
mp->tx_bufs[fill] = skb;
cp = mp->tx_cmds + NCMDS_TX * fill;
st_le16(&cp->req_count, len);
st_le32(&cp->phy_addr, virt_to_bus(skb->data));
np = mp->tx_cmds + NCMDS_TX * next;
out_le16(&np->command, DBDMA_STOP);
/* poke the tx dma channel */
spin_lock_irqsave(&mp->lock, flags);
mp->tx_fill = next;
if (!mp->tx_bad_runt && mp->tx_active < MAX_TX_ACTIVE) {
out_le16(&cp->xfer_status, 0);
out_le16(&cp->command, OUTPUT_LAST);
out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
++mp->tx_active;
mace_set_timeout(dev);
}
if (++next >= N_TX_RING)
next = 0;
if (next == mp->tx_empty)
netif_stop_queue(dev);
spin_unlock_irqrestore(&mp->lock, flags);
return 0;
}
static struct net_device_stats *mace_stats(struct net_device *dev)
{
struct mace_data *p = (struct mace_data *) dev->priv;
return &p->stats;
}
static void mace_set_multicast(struct net_device *dev)
{
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
int i, j;
u32 crc;
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
mp->maccc &= ~PROM;
if (dev->flags & IFF_PROMISC) {
mp->maccc |= PROM;
} else {
unsigned char multicast_filter[8];
struct dev_mc_list *dmi = dev->mc_list;
if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < 8; i++)
multicast_filter[i] = 0xff;
} else {
for (i = 0; i < 8; i++)
multicast_filter[i] = 0;
for (i = 0; i < dev->mc_count; i++) {
crc = ether_crc_le(6, dmi->dmi_addr);
j = crc >> 26; /* bit number in multicast_filter */
multicast_filter[j >> 3] |= 1 << (j & 7);
dmi = dmi->next;
}
}
#if 0
printk("Multicast filter :");
for (i = 0; i < 8; i++)
printk("%02x ", multicast_filter[i]);
printk("\n");
#endif
if (mp->chipid == BROKEN_ADDRCHG_REV)
out_8(&mb->iac, LOGADDR);
else {
out_8(&mb->iac, ADDRCHG | LOGADDR);
while ((in_8(&mb->iac) & ADDRCHG) != 0)
;
}
for (i = 0; i < 8; ++i)
out_8(&mb->ladrf, multicast_filter[i]);
if (mp->chipid != BROKEN_ADDRCHG_REV)
out_8(&mb->iac, 0);
}
/* reset maccc */
out_8(&mb->maccc, mp->maccc);
spin_unlock_irqrestore(&mp->lock, flags);
}
static void mace_handle_misc_intrs(struct mace_data *mp, int intr)
{
volatile struct mace __iomem *mb = mp->mace;
static int mace_babbles, mace_jabbers;
if (intr & MPCO)
mp->stats.rx_missed_errors += 256;
mp->stats.rx_missed_errors += in_8(&mb->mpc); /* reading clears it */
if (intr & RNTPCO)
mp->stats.rx_length_errors += 256;
mp->stats.rx_length_errors += in_8(&mb->rntpc); /* reading clears it */
if (intr & CERR)
++mp->stats.tx_heartbeat_errors;
if (intr & BABBLE)
if (mace_babbles++ < 4)
printk(KERN_DEBUG "mace: babbling transmitter\n");
if (intr & JABBER)
if (mace_jabbers++ < 4)
printk(KERN_DEBUG "mace: jabbering transceiver\n");
}
static irqreturn_t mace_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
volatile struct dbdma_regs __iomem *td = mp->tx_dma;
volatile struct dbdma_cmd *cp;
int intr, fs, i, stat, x;
int xcount, dstat;
unsigned long flags;
/* static int mace_last_fs, mace_last_xcount; */
spin_lock_irqsave(&mp->lock, flags);
intr = in_8(&mb->ir); /* read interrupt register */
in_8(&mb->xmtrc); /* get retries */
mace_handle_misc_intrs(mp, intr);
i = mp->tx_empty;
while (in_8(&mb->pr) & XMTSV) {
del_timer(&mp->tx_timeout);
mp->timeout_active = 0;
/*
* Clear any interrupt indication associated with this status
* word. This appears to unlatch any error indication from
* the DMA controller.
*/
intr = in_8(&mb->ir);
if (intr != 0)
mace_handle_misc_intrs(mp, intr);
if (mp->tx_bad_runt) {
fs = in_8(&mb->xmtfs);
mp->tx_bad_runt = 0;
out_8(&mb->xmtfc, AUTO_PAD_XMIT);
continue;
}
dstat = ld_le32(&td->status);
/* stop DMA controller */
out_le32(&td->control, RUN << 16);
/*
* xcount is the number of complete frames which have been
* written to the fifo but for which status has not been read.
*/
xcount = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
if (xcount == 0 || (dstat & DEAD)) {
/*
* If a packet was aborted before the DMA controller has
* finished transferring it, it seems that there are 2 bytes
* which are stuck in some buffer somewhere. These will get
* transmitted as soon as we read the frame status (which
* reenables the transmit data transfer request). Turning
* off the DMA controller and/or resetting the MACE doesn't
* help. So we disable auto-padding and FCS transmission
* so the two bytes will only be a runt packet which should
* be ignored by other stations.
*/
out_8(&mb->xmtfc, DXMTFCS);
}
fs = in_8(&mb->xmtfs);
if ((fs & XMTSV) == 0) {
printk(KERN_ERR "mace: xmtfs not valid! (fs=%x xc=%d ds=%x)\n",
fs, xcount, dstat);
mace_reset(dev);
/*
* XXX mace likes to hang the machine after a xmtfs error.
* This is hard to reproduce, reseting *may* help
*/
}
cp = mp->tx_cmds + NCMDS_TX * i;
stat = ld_le16(&cp->xfer_status);
if ((fs & (UFLO|LCOL|LCAR|RTRY)) || (dstat & DEAD) || xcount == 0) {
/*
* Check whether there were in fact 2 bytes written to
* the transmit FIFO.
*/
udelay(1);
x = (in_8(&mb->fifofc) >> XMTFC_SH) & XMTFC_MASK;
if (x != 0) {
/* there were two bytes with an end-of-packet indication */
mp->tx_bad_runt = 1;
mace_set_timeout(dev);
} else {
/*
* Either there weren't the two bytes buffered up, or they
* didn't have an end-of-packet indication.
* We flush the transmit FIFO just in case (by setting the
* XMTFWU bit with the transmitter disabled).
*/
out_8(&mb->maccc, in_8(&mb->maccc) & ~ENXMT);
out_8(&mb->fifocc, in_8(&mb->fifocc) | XMTFWU);
udelay(1);
out_8(&mb->maccc, in_8(&mb->maccc) | ENXMT);
out_8(&mb->xmtfc, AUTO_PAD_XMIT);
}
}
/* dma should have finished */
if (i == mp->tx_fill) {
printk(KERN_DEBUG "mace: tx ring ran out? (fs=%x xc=%d ds=%x)\n",
fs, xcount, dstat);
continue;
}
/* Update stats */
if (fs & (UFLO|LCOL|LCAR|RTRY)) {
++mp->stats.tx_errors;
if (fs & LCAR)
++mp->stats.tx_carrier_errors;
if (fs & (UFLO|LCOL|RTRY))
++mp->stats.tx_aborted_errors;
} else {
mp->stats.tx_bytes += mp->tx_bufs[i]->len;
++mp->stats.tx_packets;
}
dev_kfree_skb_irq(mp->tx_bufs[i]);
--mp->tx_active;
if (++i >= N_TX_RING)
i = 0;
#if 0
mace_last_fs = fs;
mace_last_xcount = xcount;
#endif
}
if (i != mp->tx_empty) {
mp->tx_fullup = 0;
netif_wake_queue(dev);
}
mp->tx_empty = i;
i += mp->tx_active;
if (i >= N_TX_RING)
i -= N_TX_RING;
if (!mp->tx_bad_runt && i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE) {
do {
/* set up the next one */
cp = mp->tx_cmds + NCMDS_TX * i;
out_le16(&cp->xfer_status, 0);
out_le16(&cp->command, OUTPUT_LAST);
++mp->tx_active;
if (++i >= N_TX_RING)
i = 0;
} while (i != mp->tx_fill && mp->tx_active < MAX_TX_ACTIVE);
out_le32(&td->control, ((RUN|WAKE) << 16) + (RUN|WAKE));
mace_set_timeout(dev);
}
spin_unlock_irqrestore(&mp->lock, flags);
return IRQ_HANDLED;
}
static void mace_tx_timeout(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct mace __iomem *mb = mp->mace;
volatile struct dbdma_regs __iomem *td = mp->tx_dma;
volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
volatile struct dbdma_cmd *cp;
unsigned long flags;
int i;
spin_lock_irqsave(&mp->lock, flags);
mp->timeout_active = 0;
if (mp->tx_active == 0 && !mp->tx_bad_runt)
goto out;
/* update various counters */
mace_handle_misc_intrs(mp, in_8(&mb->ir));
cp = mp->tx_cmds + NCMDS_TX * mp->tx_empty;
/* turn off both tx and rx and reset the chip */
out_8(&mb->maccc, 0);
printk(KERN_ERR "mace: transmit timeout - resetting\n");
dbdma_reset(td);
mace_reset(dev);
/* restart rx dma */
cp = bus_to_virt(ld_le32(&rd->cmdptr));
dbdma_reset(rd);
out_le16(&cp->xfer_status, 0);
out_le32(&rd->cmdptr, virt_to_bus(cp));
out_le32(&rd->control, (RUN << 16) | RUN);
/* fix up the transmit side */
i = mp->tx_empty;
mp->tx_active = 0;
++mp->stats.tx_errors;
if (mp->tx_bad_runt) {
mp->tx_bad_runt = 0;
} else if (i != mp->tx_fill) {
dev_kfree_skb(mp->tx_bufs[i]);
if (++i >= N_TX_RING)
i = 0;
mp->tx_empty = i;
}
mp->tx_fullup = 0;
netif_wake_queue(dev);
if (i != mp->tx_fill) {
cp = mp->tx_cmds + NCMDS_TX * i;
out_le16(&cp->xfer_status, 0);
out_le16(&cp->command, OUTPUT_LAST);
out_le32(&td->cmdptr, virt_to_bus(cp));
out_le32(&td->control, (RUN << 16) | RUN);
++mp->tx_active;
mace_set_timeout(dev);
}
/* turn it back on */
out_8(&mb->imr, RCVINT);
out_8(&mb->maccc, mp->maccc);
out:
spin_unlock_irqrestore(&mp->lock, flags);
}
static irqreturn_t mace_txdma_intr(int irq, void *dev_id)
{
return IRQ_HANDLED;
}
static irqreturn_t mace_rxdma_intr(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *) dev_id;
struct mace_data *mp = (struct mace_data *) dev->priv;
volatile struct dbdma_regs __iomem *rd = mp->rx_dma;
volatile struct dbdma_cmd *cp, *np;
int i, nb, stat, next;
struct sk_buff *skb;
unsigned frame_status;
static int mace_lost_status;
unsigned char *data;
unsigned long flags;
spin_lock_irqsave(&mp->lock, flags);
for (i = mp->rx_empty; i != mp->rx_fill; ) {
cp = mp->rx_cmds + i;
stat = ld_le16(&cp->xfer_status);
if ((stat & ACTIVE) == 0) {
next = i + 1;
if (next >= N_RX_RING)
next = 0;
np = mp->rx_cmds + next;
if (next != mp->rx_fill
&& (ld_le16(&np->xfer_status) & ACTIVE) != 0) {
printk(KERN_DEBUG "mace: lost a status word\n");
++mace_lost_status;
} else
break;
}
nb = ld_le16(&cp->req_count) - ld_le16(&cp->res_count);
out_le16(&cp->command, DBDMA_STOP);
/* got a packet, have a look at it */
skb = mp->rx_bufs[i];
if (skb == 0) {
++mp->stats.rx_dropped;
} else if (nb > 8) {
data = skb->data;
frame_status = (data[nb-3] << 8) + data[nb-4];
if (frame_status & (RS_OFLO|RS_CLSN|RS_FRAMERR|RS_FCSERR)) {
++mp->stats.rx_errors;
if (frame_status & RS_OFLO)
++mp->stats.rx_over_errors;
if (frame_status & RS_FRAMERR)
++mp->stats.rx_frame_errors;
if (frame_status & RS_FCSERR)
++mp->stats.rx_crc_errors;
} else {
/* Mace feature AUTO_STRIP_RCV is on by default, dropping the
* FCS on frames with 802.3 headers. This means that Ethernet
* frames have 8 extra octets at the end, while 802.3 frames
* have only 4. We need to correctly account for this. */
if (*(unsigned short *)(data+12) < 1536) /* 802.3 header */
nb -= 4;
else /* Ethernet header; mace includes FCS */
nb -= 8;
skb_put(skb, nb);
skb->protocol = eth_type_trans(skb, dev);
mp->stats.rx_bytes += skb->len;
netif_rx(skb);
dev->last_rx = jiffies;
mp->rx_bufs[i] = NULL;
++mp->stats.rx_packets;
}
} else {
++mp->stats.rx_errors;
++mp->stats.rx_length_errors;
}
/* advance to next */
if (++i >= N_RX_RING)
i = 0;
}
mp->rx_empty = i;
i = mp->rx_fill;
for (;;) {
next = i + 1;
if (next >= N_RX_RING)
next = 0;
if (next == mp->rx_empty)
break;
cp = mp->rx_cmds + i;
skb = mp->rx_bufs[i];
if (skb == 0) {
skb = dev_alloc_skb(RX_BUFLEN + 2);
if (skb != 0) {
skb_reserve(skb, 2);
mp->rx_bufs[i] = skb;
}
}
st_le16(&cp->req_count, RX_BUFLEN);
data = skb? skb->data: dummy_buf;
st_le32(&cp->phy_addr, virt_to_bus(data));
out_le16(&cp->xfer_status, 0);
out_le16(&cp->command, INPUT_LAST + INTR_ALWAYS);
#if 0
if ((ld_le32(&rd->status) & ACTIVE) != 0) {
out_le32(&rd->control, (PAUSE << 16) | PAUSE);
while ((in_le32(&rd->status) & ACTIVE) != 0)
;
}
#endif
i = next;
}
if (i != mp->rx_fill) {
out_le32(&rd->control, ((RUN|WAKE) << 16) | (RUN|WAKE));
mp->rx_fill = i;
}
spin_unlock_irqrestore(&mp->lock, flags);
return IRQ_HANDLED;
}
static struct of_device_id mace_match[] =
{
{
.name = "mace",
},
{},
};
MODULE_DEVICE_TABLE (of, mace_match);
static struct macio_driver mace_driver =
{
.name = "mace",
.match_table = mace_match,
.probe = mace_probe,
.remove = mace_remove,
};
static int __init mace_init(void)
{
return macio_register_driver(&mace_driver);
}
static void __exit mace_cleanup(void)
{
macio_unregister_driver(&mace_driver);
kfree(dummy_buf);
dummy_buf = NULL;
}
MODULE_AUTHOR("Paul Mackerras");
MODULE_DESCRIPTION("PowerMac MACE driver.");
module_param(port_aaui, int, 0);
MODULE_PARM_DESC(port_aaui, "MACE uses AAUI port (0-1)");
MODULE_LICENSE("GPL");
module_init(mace_init);
module_exit(mace_cleanup);