2240 lines
58 KiB
C
2240 lines
58 KiB
C
/*
|
|
* Copyright (C) 2010,2015 Broadcom
|
|
* Copyright (C) 2012 Stephen Warren
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
|
|
*
|
|
* The clock tree on the 2835 has several levels. There's a root
|
|
* oscillator running at 19.2Mhz. After the oscillator there are 5
|
|
* PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
|
|
* and "HDMI displays". Those 5 PLLs each can divide their output to
|
|
* produce up to 4 channels. Finally, there is the level of clocks to
|
|
* be consumed by other hardware components (like "H264" or "HDMI
|
|
* state machine"), which divide off of some subset of the PLL
|
|
* channels.
|
|
*
|
|
* All of the clocks in the tree are exposed in the DT, because the DT
|
|
* may want to make assignments of the final layer of clocks to the
|
|
* PLL channels, and some components of the hardware will actually
|
|
* skip layers of the tree (for example, the pixel clock comes
|
|
* directly from the PLLH PIX channel without using a CM_*CTL clock
|
|
* generator).
|
|
*/
|
|
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/clkdev.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/clk/bcm2835.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <dt-bindings/clock/bcm2835.h>
|
|
|
|
#define CM_PASSWORD 0x5a000000
|
|
|
|
#define CM_GNRICCTL 0x000
|
|
#define CM_GNRICDIV 0x004
|
|
# define CM_DIV_FRAC_BITS 12
|
|
# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
|
|
|
|
#define CM_VPUCTL 0x008
|
|
#define CM_VPUDIV 0x00c
|
|
#define CM_SYSCTL 0x010
|
|
#define CM_SYSDIV 0x014
|
|
#define CM_PERIACTL 0x018
|
|
#define CM_PERIADIV 0x01c
|
|
#define CM_PERIICTL 0x020
|
|
#define CM_PERIIDIV 0x024
|
|
#define CM_H264CTL 0x028
|
|
#define CM_H264DIV 0x02c
|
|
#define CM_ISPCTL 0x030
|
|
#define CM_ISPDIV 0x034
|
|
#define CM_V3DCTL 0x038
|
|
#define CM_V3DDIV 0x03c
|
|
#define CM_CAM0CTL 0x040
|
|
#define CM_CAM0DIV 0x044
|
|
#define CM_CAM1CTL 0x048
|
|
#define CM_CAM1DIV 0x04c
|
|
#define CM_CCP2CTL 0x050
|
|
#define CM_CCP2DIV 0x054
|
|
#define CM_DSI0ECTL 0x058
|
|
#define CM_DSI0EDIV 0x05c
|
|
#define CM_DSI0PCTL 0x060
|
|
#define CM_DSI0PDIV 0x064
|
|
#define CM_DPICTL 0x068
|
|
#define CM_DPIDIV 0x06c
|
|
#define CM_GP0CTL 0x070
|
|
#define CM_GP0DIV 0x074
|
|
#define CM_GP1CTL 0x078
|
|
#define CM_GP1DIV 0x07c
|
|
#define CM_GP2CTL 0x080
|
|
#define CM_GP2DIV 0x084
|
|
#define CM_HSMCTL 0x088
|
|
#define CM_HSMDIV 0x08c
|
|
#define CM_OTPCTL 0x090
|
|
#define CM_OTPDIV 0x094
|
|
#define CM_PCMCTL 0x098
|
|
#define CM_PCMDIV 0x09c
|
|
#define CM_PWMCTL 0x0a0
|
|
#define CM_PWMDIV 0x0a4
|
|
#define CM_SLIMCTL 0x0a8
|
|
#define CM_SLIMDIV 0x0ac
|
|
#define CM_SMICTL 0x0b0
|
|
#define CM_SMIDIV 0x0b4
|
|
/* no definition for 0x0b8 and 0x0bc */
|
|
#define CM_TCNTCTL 0x0c0
|
|
# define CM_TCNT_SRC1_SHIFT 12
|
|
#define CM_TCNTCNT 0x0c4
|
|
#define CM_TECCTL 0x0c8
|
|
#define CM_TECDIV 0x0cc
|
|
#define CM_TD0CTL 0x0d0
|
|
#define CM_TD0DIV 0x0d4
|
|
#define CM_TD1CTL 0x0d8
|
|
#define CM_TD1DIV 0x0dc
|
|
#define CM_TSENSCTL 0x0e0
|
|
#define CM_TSENSDIV 0x0e4
|
|
#define CM_TIMERCTL 0x0e8
|
|
#define CM_TIMERDIV 0x0ec
|
|
#define CM_UARTCTL 0x0f0
|
|
#define CM_UARTDIV 0x0f4
|
|
#define CM_VECCTL 0x0f8
|
|
#define CM_VECDIV 0x0fc
|
|
#define CM_PULSECTL 0x190
|
|
#define CM_PULSEDIV 0x194
|
|
#define CM_SDCCTL 0x1a8
|
|
#define CM_SDCDIV 0x1ac
|
|
#define CM_ARMCTL 0x1b0
|
|
#define CM_AVEOCTL 0x1b8
|
|
#define CM_AVEODIV 0x1bc
|
|
#define CM_EMMCCTL 0x1c0
|
|
#define CM_EMMCDIV 0x1c4
|
|
|
|
/* General bits for the CM_*CTL regs */
|
|
# define CM_ENABLE BIT(4)
|
|
# define CM_KILL BIT(5)
|
|
# define CM_GATE_BIT 6
|
|
# define CM_GATE BIT(CM_GATE_BIT)
|
|
# define CM_BUSY BIT(7)
|
|
# define CM_BUSYD BIT(8)
|
|
# define CM_FRAC BIT(9)
|
|
# define CM_SRC_SHIFT 0
|
|
# define CM_SRC_BITS 4
|
|
# define CM_SRC_MASK 0xf
|
|
# define CM_SRC_GND 0
|
|
# define CM_SRC_OSC 1
|
|
# define CM_SRC_TESTDEBUG0 2
|
|
# define CM_SRC_TESTDEBUG1 3
|
|
# define CM_SRC_PLLA_CORE 4
|
|
# define CM_SRC_PLLA_PER 4
|
|
# define CM_SRC_PLLC_CORE0 5
|
|
# define CM_SRC_PLLC_PER 5
|
|
# define CM_SRC_PLLC_CORE1 8
|
|
# define CM_SRC_PLLD_CORE 6
|
|
# define CM_SRC_PLLD_PER 6
|
|
# define CM_SRC_PLLH_AUX 7
|
|
# define CM_SRC_PLLC_CORE1 8
|
|
# define CM_SRC_PLLC_CORE2 9
|
|
|
|
#define CM_OSCCOUNT 0x100
|
|
|
|
#define CM_PLLA 0x104
|
|
# define CM_PLL_ANARST BIT(8)
|
|
# define CM_PLLA_HOLDPER BIT(7)
|
|
# define CM_PLLA_LOADPER BIT(6)
|
|
# define CM_PLLA_HOLDCORE BIT(5)
|
|
# define CM_PLLA_LOADCORE BIT(4)
|
|
# define CM_PLLA_HOLDCCP2 BIT(3)
|
|
# define CM_PLLA_LOADCCP2 BIT(2)
|
|
# define CM_PLLA_HOLDDSI0 BIT(1)
|
|
# define CM_PLLA_LOADDSI0 BIT(0)
|
|
|
|
#define CM_PLLC 0x108
|
|
# define CM_PLLC_HOLDPER BIT(7)
|
|
# define CM_PLLC_LOADPER BIT(6)
|
|
# define CM_PLLC_HOLDCORE2 BIT(5)
|
|
# define CM_PLLC_LOADCORE2 BIT(4)
|
|
# define CM_PLLC_HOLDCORE1 BIT(3)
|
|
# define CM_PLLC_LOADCORE1 BIT(2)
|
|
# define CM_PLLC_HOLDCORE0 BIT(1)
|
|
# define CM_PLLC_LOADCORE0 BIT(0)
|
|
|
|
#define CM_PLLD 0x10c
|
|
# define CM_PLLD_HOLDPER BIT(7)
|
|
# define CM_PLLD_LOADPER BIT(6)
|
|
# define CM_PLLD_HOLDCORE BIT(5)
|
|
# define CM_PLLD_LOADCORE BIT(4)
|
|
# define CM_PLLD_HOLDDSI1 BIT(3)
|
|
# define CM_PLLD_LOADDSI1 BIT(2)
|
|
# define CM_PLLD_HOLDDSI0 BIT(1)
|
|
# define CM_PLLD_LOADDSI0 BIT(0)
|
|
|
|
#define CM_PLLH 0x110
|
|
# define CM_PLLH_LOADRCAL BIT(2)
|
|
# define CM_PLLH_LOADAUX BIT(1)
|
|
# define CM_PLLH_LOADPIX BIT(0)
|
|
|
|
#define CM_LOCK 0x114
|
|
# define CM_LOCK_FLOCKH BIT(12)
|
|
# define CM_LOCK_FLOCKD BIT(11)
|
|
# define CM_LOCK_FLOCKC BIT(10)
|
|
# define CM_LOCK_FLOCKB BIT(9)
|
|
# define CM_LOCK_FLOCKA BIT(8)
|
|
|
|
#define CM_EVENT 0x118
|
|
#define CM_DSI1ECTL 0x158
|
|
#define CM_DSI1EDIV 0x15c
|
|
#define CM_DSI1PCTL 0x160
|
|
#define CM_DSI1PDIV 0x164
|
|
#define CM_DFTCTL 0x168
|
|
#define CM_DFTDIV 0x16c
|
|
|
|
#define CM_PLLB 0x170
|
|
# define CM_PLLB_HOLDARM BIT(1)
|
|
# define CM_PLLB_LOADARM BIT(0)
|
|
|
|
#define A2W_PLLA_CTRL 0x1100
|
|
#define A2W_PLLC_CTRL 0x1120
|
|
#define A2W_PLLD_CTRL 0x1140
|
|
#define A2W_PLLH_CTRL 0x1160
|
|
#define A2W_PLLB_CTRL 0x11e0
|
|
# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
|
|
# define A2W_PLL_CTRL_PWRDN BIT(16)
|
|
# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
|
|
# define A2W_PLL_CTRL_PDIV_SHIFT 12
|
|
# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
|
|
# define A2W_PLL_CTRL_NDIV_SHIFT 0
|
|
|
|
#define A2W_PLLA_ANA0 0x1010
|
|
#define A2W_PLLC_ANA0 0x1030
|
|
#define A2W_PLLD_ANA0 0x1050
|
|
#define A2W_PLLH_ANA0 0x1070
|
|
#define A2W_PLLB_ANA0 0x10f0
|
|
|
|
#define A2W_PLL_KA_SHIFT 7
|
|
#define A2W_PLL_KA_MASK GENMASK(9, 7)
|
|
#define A2W_PLL_KI_SHIFT 19
|
|
#define A2W_PLL_KI_MASK GENMASK(21, 19)
|
|
#define A2W_PLL_KP_SHIFT 15
|
|
#define A2W_PLL_KP_MASK GENMASK(18, 15)
|
|
|
|
#define A2W_PLLH_KA_SHIFT 19
|
|
#define A2W_PLLH_KA_MASK GENMASK(21, 19)
|
|
#define A2W_PLLH_KI_LOW_SHIFT 22
|
|
#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
|
|
#define A2W_PLLH_KI_HIGH_SHIFT 0
|
|
#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
|
|
#define A2W_PLLH_KP_SHIFT 1
|
|
#define A2W_PLLH_KP_MASK GENMASK(4, 1)
|
|
|
|
#define A2W_XOSC_CTRL 0x1190
|
|
# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
|
|
# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
|
|
# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
|
|
# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
|
|
# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
|
|
# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
|
|
# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
|
|
# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
|
|
|
|
#define A2W_PLLA_FRAC 0x1200
|
|
#define A2W_PLLC_FRAC 0x1220
|
|
#define A2W_PLLD_FRAC 0x1240
|
|
#define A2W_PLLH_FRAC 0x1260
|
|
#define A2W_PLLB_FRAC 0x12e0
|
|
# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
|
|
# define A2W_PLL_FRAC_BITS 20
|
|
|
|
#define A2W_PLL_CHANNEL_DISABLE BIT(8)
|
|
#define A2W_PLL_DIV_BITS 8
|
|
#define A2W_PLL_DIV_SHIFT 0
|
|
|
|
#define A2W_PLLA_DSI0 0x1300
|
|
#define A2W_PLLA_CORE 0x1400
|
|
#define A2W_PLLA_PER 0x1500
|
|
#define A2W_PLLA_CCP2 0x1600
|
|
|
|
#define A2W_PLLC_CORE2 0x1320
|
|
#define A2W_PLLC_CORE1 0x1420
|
|
#define A2W_PLLC_PER 0x1520
|
|
#define A2W_PLLC_CORE0 0x1620
|
|
|
|
#define A2W_PLLD_DSI0 0x1340
|
|
#define A2W_PLLD_CORE 0x1440
|
|
#define A2W_PLLD_PER 0x1540
|
|
#define A2W_PLLD_DSI1 0x1640
|
|
|
|
#define A2W_PLLH_AUX 0x1360
|
|
#define A2W_PLLH_RCAL 0x1460
|
|
#define A2W_PLLH_PIX 0x1560
|
|
#define A2W_PLLH_STS 0x1660
|
|
|
|
#define A2W_PLLH_CTRLR 0x1960
|
|
#define A2W_PLLH_FRACR 0x1a60
|
|
#define A2W_PLLH_AUXR 0x1b60
|
|
#define A2W_PLLH_RCALR 0x1c60
|
|
#define A2W_PLLH_PIXR 0x1d60
|
|
#define A2W_PLLH_STSR 0x1e60
|
|
|
|
#define A2W_PLLB_ARM 0x13e0
|
|
#define A2W_PLLB_SP0 0x14e0
|
|
#define A2W_PLLB_SP1 0x15e0
|
|
#define A2W_PLLB_SP2 0x16e0
|
|
|
|
#define LOCK_TIMEOUT_NS 100000000
|
|
#define BCM2835_MAX_FB_RATE 1750000000u
|
|
|
|
/*
|
|
* Names of clocks used within the driver that need to be replaced
|
|
* with an external parent's name. This array is in the order that
|
|
* the clocks node in the DT references external clocks.
|
|
*/
|
|
static const char *const cprman_parent_names[] = {
|
|
"xosc",
|
|
"dsi0_byte",
|
|
"dsi0_ddr2",
|
|
"dsi0_ddr",
|
|
"dsi1_byte",
|
|
"dsi1_ddr2",
|
|
"dsi1_ddr",
|
|
};
|
|
|
|
struct bcm2835_cprman {
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
spinlock_t regs_lock; /* spinlock for all clocks */
|
|
|
|
/*
|
|
* Real names of cprman clock parents looked up through
|
|
* of_clk_get_parent_name(), which will be used in the
|
|
* parent_names[] arrays for clock registration.
|
|
*/
|
|
const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
|
|
|
|
/* Must be last */
|
|
struct clk_hw_onecell_data onecell;
|
|
};
|
|
|
|
static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
|
|
{
|
|
writel(CM_PASSWORD | val, cprman->regs + reg);
|
|
}
|
|
|
|
static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
|
|
{
|
|
return readl(cprman->regs + reg);
|
|
}
|
|
|
|
/* Does a cycle of measuring a clock through the TCNT clock, which may
|
|
* source from many other clocks in the system.
|
|
*/
|
|
static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
|
|
u32 tcnt_mux)
|
|
{
|
|
u32 osccount = 19200; /* 1ms */
|
|
u32 count;
|
|
ktime_t timeout;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
|
|
cprman_write(cprman, CM_TCNTCTL, CM_KILL);
|
|
|
|
cprman_write(cprman, CM_TCNTCTL,
|
|
(tcnt_mux & CM_SRC_MASK) |
|
|
(tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
|
|
|
|
cprman_write(cprman, CM_OSCCOUNT, osccount);
|
|
|
|
/* do a kind delay at the start */
|
|
mdelay(1);
|
|
|
|
/* Finish off whatever is left of OSCCOUNT */
|
|
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
while (cprman_read(cprman, CM_OSCCOUNT)) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
/* Wait for BUSY to clear. */
|
|
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "timeout waiting for !BUSY\n");
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
count = cprman_read(cprman, CM_TCNTCNT);
|
|
|
|
cprman_write(cprman, CM_TCNTCTL, 0);
|
|
|
|
out:
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
return count * 1000;
|
|
}
|
|
|
|
static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
|
|
struct debugfs_reg32 *regs, size_t nregs,
|
|
struct dentry *dentry)
|
|
{
|
|
struct dentry *regdump;
|
|
struct debugfs_regset32 *regset;
|
|
|
|
regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
|
|
if (!regset)
|
|
return -ENOMEM;
|
|
|
|
regset->regs = regs;
|
|
regset->nregs = nregs;
|
|
regset->base = cprman->regs + base;
|
|
|
|
regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
|
|
regset);
|
|
|
|
return regdump ? 0 : -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* These are fixed clocks. They're probably not all root clocks and it may
|
|
* be possible to turn them on and off but until this is mapped out better
|
|
* it's the only way they can be used.
|
|
*/
|
|
void __init bcm2835_init_clocks(void)
|
|
{
|
|
struct clk_hw *hw;
|
|
int ret;
|
|
|
|
hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
|
|
if (IS_ERR(hw))
|
|
pr_err("apb_pclk not registered\n");
|
|
|
|
hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
|
|
if (IS_ERR(hw))
|
|
pr_err("uart0_pclk not registered\n");
|
|
ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
|
|
if (ret)
|
|
pr_err("uart0_pclk alias not registered\n");
|
|
|
|
hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
|
|
if (IS_ERR(hw))
|
|
pr_err("uart1_pclk not registered\n");
|
|
ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
|
|
if (ret)
|
|
pr_err("uart1_pclk alias not registered\n");
|
|
}
|
|
|
|
struct bcm2835_pll_data {
|
|
const char *name;
|
|
u32 cm_ctrl_reg;
|
|
u32 a2w_ctrl_reg;
|
|
u32 frac_reg;
|
|
u32 ana_reg_base;
|
|
u32 reference_enable_mask;
|
|
/* Bit in CM_LOCK to indicate when the PLL has locked. */
|
|
u32 lock_mask;
|
|
|
|
const struct bcm2835_pll_ana_bits *ana;
|
|
|
|
unsigned long min_rate;
|
|
unsigned long max_rate;
|
|
/*
|
|
* Highest rate for the VCO before we have to use the
|
|
* pre-divide-by-2.
|
|
*/
|
|
unsigned long max_fb_rate;
|
|
};
|
|
|
|
struct bcm2835_pll_ana_bits {
|
|
u32 mask0;
|
|
u32 set0;
|
|
u32 mask1;
|
|
u32 set1;
|
|
u32 mask3;
|
|
u32 set3;
|
|
u32 fb_prediv_mask;
|
|
};
|
|
|
|
static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
|
|
.mask0 = 0,
|
|
.set0 = 0,
|
|
.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
|
|
.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
|
|
.mask3 = (u32)~A2W_PLL_KA_MASK,
|
|
.set3 = (2 << A2W_PLL_KA_SHIFT),
|
|
.fb_prediv_mask = BIT(14),
|
|
};
|
|
|
|
static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
|
|
.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
|
|
.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
|
|
.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
|
|
.set1 = (6 << A2W_PLLH_KP_SHIFT),
|
|
.mask3 = 0,
|
|
.set3 = 0,
|
|
.fb_prediv_mask = BIT(11),
|
|
};
|
|
|
|
struct bcm2835_pll_divider_data {
|
|
const char *name;
|
|
const char *source_pll;
|
|
|
|
u32 cm_reg;
|
|
u32 a2w_reg;
|
|
|
|
u32 load_mask;
|
|
u32 hold_mask;
|
|
u32 fixed_divider;
|
|
u32 flags;
|
|
};
|
|
|
|
struct bcm2835_clock_data {
|
|
const char *name;
|
|
|
|
const char *const *parents;
|
|
int num_mux_parents;
|
|
|
|
/* Bitmap encoding which parents accept rate change propagation. */
|
|
unsigned int set_rate_parent;
|
|
|
|
u32 ctl_reg;
|
|
u32 div_reg;
|
|
|
|
/* Number of integer bits in the divider */
|
|
u32 int_bits;
|
|
/* Number of fractional bits in the divider */
|
|
u32 frac_bits;
|
|
|
|
u32 flags;
|
|
|
|
bool is_vpu_clock;
|
|
bool is_mash_clock;
|
|
bool low_jitter;
|
|
|
|
u32 tcnt_mux;
|
|
};
|
|
|
|
struct bcm2835_gate_data {
|
|
const char *name;
|
|
const char *parent;
|
|
|
|
u32 ctl_reg;
|
|
};
|
|
|
|
struct bcm2835_pll {
|
|
struct clk_hw hw;
|
|
struct bcm2835_cprman *cprman;
|
|
const struct bcm2835_pll_data *data;
|
|
};
|
|
|
|
static int bcm2835_pll_is_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
|
|
return cprman_read(cprman, data->a2w_ctrl_reg) &
|
|
A2W_PLL_CTRL_PRST_DISABLE;
|
|
}
|
|
|
|
static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
|
|
unsigned long parent_rate,
|
|
u32 *ndiv, u32 *fdiv)
|
|
{
|
|
u64 div;
|
|
|
|
div = (u64)rate << A2W_PLL_FRAC_BITS;
|
|
do_div(div, parent_rate);
|
|
|
|
*ndiv = div >> A2W_PLL_FRAC_BITS;
|
|
*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
|
|
}
|
|
|
|
static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
|
|
u32 ndiv, u32 fdiv, u32 pdiv)
|
|
{
|
|
u64 rate;
|
|
|
|
if (pdiv == 0)
|
|
return 0;
|
|
|
|
rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
|
|
do_div(rate, pdiv);
|
|
return rate >> A2W_PLL_FRAC_BITS;
|
|
}
|
|
|
|
static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
u32 ndiv, fdiv;
|
|
|
|
rate = clamp(rate, data->min_rate, data->max_rate);
|
|
|
|
bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
|
|
|
|
return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
|
|
}
|
|
|
|
static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
|
|
u32 ndiv, pdiv, fdiv;
|
|
bool using_prediv;
|
|
|
|
if (parent_rate == 0)
|
|
return 0;
|
|
|
|
fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
|
|
ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
|
|
pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
|
|
using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
|
|
data->ana->fb_prediv_mask;
|
|
|
|
if (using_prediv) {
|
|
ndiv *= 2;
|
|
fdiv *= 2;
|
|
}
|
|
|
|
return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
|
|
}
|
|
|
|
static void bcm2835_pll_off(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->cm_ctrl_reg,
|
|
cprman_read(cprman, data->cm_ctrl_reg) |
|
|
CM_PLL_ANARST);
|
|
cprman_write(cprman, data->a2w_ctrl_reg,
|
|
cprman_read(cprman, data->a2w_ctrl_reg) |
|
|
A2W_PLL_CTRL_PWRDN);
|
|
spin_unlock(&cprman->regs_lock);
|
|
}
|
|
|
|
static int bcm2835_pll_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
ktime_t timeout;
|
|
|
|
cprman_write(cprman, data->a2w_ctrl_reg,
|
|
cprman_read(cprman, data->a2w_ctrl_reg) &
|
|
~A2W_PLL_CTRL_PWRDN);
|
|
|
|
/* Take the PLL out of reset. */
|
|
cprman_write(cprman, data->cm_ctrl_reg,
|
|
cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
|
|
|
|
/* Wait for the PLL to lock. */
|
|
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
|
|
clk_hw_get_name(hw));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
cpu_relax();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* ANA register setup is done as a series of writes to
|
|
* ANA3-ANA0, in that order. This lets us write all 4
|
|
* registers as a single cycle of the serdes interface (taking
|
|
* 100 xosc clocks), whereas if we were to update ana0, 1, and
|
|
* 3 individually through their partial-write registers, each
|
|
* would be their own serdes cycle.
|
|
*/
|
|
for (i = 3; i >= 0; i--)
|
|
cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
|
|
}
|
|
|
|
static int bcm2835_pll_set_rate(struct clk_hw *hw,
|
|
unsigned long rate, unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
|
|
u32 ndiv, fdiv, a2w_ctl;
|
|
u32 ana[4];
|
|
int i;
|
|
|
|
if (rate > data->max_fb_rate) {
|
|
use_fb_prediv = true;
|
|
rate /= 2;
|
|
} else {
|
|
use_fb_prediv = false;
|
|
}
|
|
|
|
bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
|
|
|
|
for (i = 3; i >= 0; i--)
|
|
ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
|
|
|
|
was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
|
|
|
|
ana[0] &= ~data->ana->mask0;
|
|
ana[0] |= data->ana->set0;
|
|
ana[1] &= ~data->ana->mask1;
|
|
ana[1] |= data->ana->set1;
|
|
ana[3] &= ~data->ana->mask3;
|
|
ana[3] |= data->ana->set3;
|
|
|
|
if (was_using_prediv && !use_fb_prediv) {
|
|
ana[1] &= ~data->ana->fb_prediv_mask;
|
|
do_ana_setup_first = true;
|
|
} else if (!was_using_prediv && use_fb_prediv) {
|
|
ana[1] |= data->ana->fb_prediv_mask;
|
|
do_ana_setup_first = false;
|
|
} else {
|
|
do_ana_setup_first = true;
|
|
}
|
|
|
|
/* Unmask the reference clock from the oscillator. */
|
|
cprman_write(cprman, A2W_XOSC_CTRL,
|
|
cprman_read(cprman, A2W_XOSC_CTRL) |
|
|
data->reference_enable_mask);
|
|
|
|
if (do_ana_setup_first)
|
|
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
|
|
|
|
/* Set the PLL multiplier from the oscillator. */
|
|
cprman_write(cprman, data->frac_reg, fdiv);
|
|
|
|
a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
|
|
a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
|
|
a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
|
|
a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
|
|
a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
|
|
cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
|
|
|
|
if (!do_ana_setup_first)
|
|
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_pll_debug_init(struct clk_hw *hw,
|
|
struct dentry *dentry)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
struct debugfs_reg32 *regs;
|
|
|
|
regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
|
|
if (!regs)
|
|
return -ENOMEM;
|
|
|
|
regs[0].name = "cm_ctrl";
|
|
regs[0].offset = data->cm_ctrl_reg;
|
|
regs[1].name = "a2w_ctrl";
|
|
regs[1].offset = data->a2w_ctrl_reg;
|
|
regs[2].name = "frac";
|
|
regs[2].offset = data->frac_reg;
|
|
regs[3].name = "ana0";
|
|
regs[3].offset = data->ana_reg_base + 0 * 4;
|
|
regs[4].name = "ana1";
|
|
regs[4].offset = data->ana_reg_base + 1 * 4;
|
|
regs[5].name = "ana2";
|
|
regs[5].offset = data->ana_reg_base + 2 * 4;
|
|
regs[6].name = "ana3";
|
|
regs[6].offset = data->ana_reg_base + 3 * 4;
|
|
|
|
return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
|
|
}
|
|
|
|
static const struct clk_ops bcm2835_pll_clk_ops = {
|
|
.is_prepared = bcm2835_pll_is_on,
|
|
.prepare = bcm2835_pll_on,
|
|
.unprepare = bcm2835_pll_off,
|
|
.recalc_rate = bcm2835_pll_get_rate,
|
|
.set_rate = bcm2835_pll_set_rate,
|
|
.round_rate = bcm2835_pll_round_rate,
|
|
.debug_init = bcm2835_pll_debug_init,
|
|
};
|
|
|
|
struct bcm2835_pll_divider {
|
|
struct clk_divider div;
|
|
struct bcm2835_cprman *cprman;
|
|
const struct bcm2835_pll_divider_data *data;
|
|
};
|
|
|
|
static struct bcm2835_pll_divider *
|
|
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
|
|
{
|
|
return container_of(hw, struct bcm2835_pll_divider, div.hw);
|
|
}
|
|
|
|
static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
|
|
return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
|
|
}
|
|
|
|
static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
|
|
unsigned long rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
return clk_divider_ops.round_rate(hw, rate, parent_rate);
|
|
}
|
|
|
|
static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
return clk_divider_ops.recalc_rate(hw, parent_rate);
|
|
}
|
|
|
|
static void bcm2835_pll_divider_off(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->cm_reg,
|
|
(cprman_read(cprman, data->cm_reg) &
|
|
~data->load_mask) | data->hold_mask);
|
|
cprman_write(cprman, data->a2w_reg,
|
|
cprman_read(cprman, data->a2w_reg) |
|
|
A2W_PLL_CHANNEL_DISABLE);
|
|
spin_unlock(&cprman->regs_lock);
|
|
}
|
|
|
|
static int bcm2835_pll_divider_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->a2w_reg,
|
|
cprman_read(cprman, data->a2w_reg) &
|
|
~A2W_PLL_CHANNEL_DISABLE);
|
|
|
|
cprman_write(cprman, data->cm_reg,
|
|
cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
|
|
unsigned long rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
|
|
|
|
div = DIV_ROUND_UP_ULL(parent_rate, rate);
|
|
|
|
div = min(div, max_div);
|
|
if (div == max_div)
|
|
div = 0;
|
|
|
|
cprman_write(cprman, data->a2w_reg, div);
|
|
cm = cprman_read(cprman, data->cm_reg);
|
|
cprman_write(cprman, data->cm_reg, cm | data->load_mask);
|
|
cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
|
|
struct dentry *dentry)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
struct debugfs_reg32 *regs;
|
|
|
|
regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
|
|
if (!regs)
|
|
return -ENOMEM;
|
|
|
|
regs[0].name = "cm";
|
|
regs[0].offset = data->cm_reg;
|
|
regs[1].name = "a2w";
|
|
regs[1].offset = data->a2w_reg;
|
|
|
|
return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
|
|
}
|
|
|
|
static const struct clk_ops bcm2835_pll_divider_clk_ops = {
|
|
.is_prepared = bcm2835_pll_divider_is_on,
|
|
.prepare = bcm2835_pll_divider_on,
|
|
.unprepare = bcm2835_pll_divider_off,
|
|
.recalc_rate = bcm2835_pll_divider_get_rate,
|
|
.set_rate = bcm2835_pll_divider_set_rate,
|
|
.round_rate = bcm2835_pll_divider_round_rate,
|
|
.debug_init = bcm2835_pll_divider_debug_init,
|
|
};
|
|
|
|
/*
|
|
* The CM dividers do fixed-point division, so we can't use the
|
|
* generic integer divider code like the PLL dividers do (and we can't
|
|
* fake it by having some fixed shifts preceding it in the clock tree,
|
|
* because we'd run out of bits in a 32-bit unsigned long).
|
|
*/
|
|
struct bcm2835_clock {
|
|
struct clk_hw hw;
|
|
struct bcm2835_cprman *cprman;
|
|
const struct bcm2835_clock_data *data;
|
|
};
|
|
|
|
static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
|
|
{
|
|
return container_of(hw, struct bcm2835_clock, hw);
|
|
}
|
|
|
|
static int bcm2835_clock_is_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
|
|
}
|
|
|
|
static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
|
|
unsigned long rate,
|
|
unsigned long parent_rate,
|
|
bool round_up)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 unused_frac_mask =
|
|
GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
|
|
u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
|
|
u64 rem;
|
|
u32 div, mindiv, maxdiv;
|
|
|
|
rem = do_div(temp, rate);
|
|
div = temp;
|
|
|
|
/* Round up and mask off the unused bits */
|
|
if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
|
|
div += unused_frac_mask + 1;
|
|
div &= ~unused_frac_mask;
|
|
|
|
/* different clamping limits apply for a mash clock */
|
|
if (data->is_mash_clock) {
|
|
/* clamp to min divider of 2 */
|
|
mindiv = 2 << CM_DIV_FRAC_BITS;
|
|
/* clamp to the highest possible integer divider */
|
|
maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
|
|
} else {
|
|
/* clamp to min divider of 1 */
|
|
mindiv = 1 << CM_DIV_FRAC_BITS;
|
|
/* clamp to the highest possible fractional divider */
|
|
maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
|
|
CM_DIV_FRAC_BITS - data->frac_bits);
|
|
}
|
|
|
|
/* apply the clamping limits */
|
|
div = max_t(u32, div, mindiv);
|
|
div = min_t(u32, div, maxdiv);
|
|
|
|
return div;
|
|
}
|
|
|
|
static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
|
|
unsigned long parent_rate,
|
|
u32 div)
|
|
{
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u64 temp;
|
|
|
|
if (data->int_bits == 0 && data->frac_bits == 0)
|
|
return parent_rate;
|
|
|
|
/*
|
|
* The divisor is a 12.12 fixed point field, but only some of
|
|
* the bits are populated in any given clock.
|
|
*/
|
|
div >>= CM_DIV_FRAC_BITS - data->frac_bits;
|
|
div &= (1 << (data->int_bits + data->frac_bits)) - 1;
|
|
|
|
if (div == 0)
|
|
return 0;
|
|
|
|
temp = (u64)parent_rate << data->frac_bits;
|
|
|
|
do_div(temp, div);
|
|
|
|
return temp;
|
|
}
|
|
|
|
static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 div;
|
|
|
|
if (data->int_bits == 0 && data->frac_bits == 0)
|
|
return parent_rate;
|
|
|
|
div = cprman_read(cprman, data->div_reg);
|
|
|
|
return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
|
|
}
|
|
|
|
static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
|
|
{
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
|
|
while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
|
|
clk_hw_get_name(&clock->hw));
|
|
return;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static void bcm2835_clock_off(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->ctl_reg,
|
|
cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
/* BUSY will remain high until the divider completes its cycle. */
|
|
bcm2835_clock_wait_busy(clock);
|
|
}
|
|
|
|
static int bcm2835_clock_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->ctl_reg,
|
|
cprman_read(cprman, data->ctl_reg) |
|
|
CM_ENABLE |
|
|
CM_GATE);
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
/* Debug code to measure the clock once it's turned on to see
|
|
* if it's ticking at the rate we expect.
|
|
*/
|
|
if (data->tcnt_mux && false) {
|
|
dev_info(cprman->dev,
|
|
"clk %s: rate %ld, measure %ld\n",
|
|
data->name,
|
|
clk_hw_get_rate(hw),
|
|
bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_clock_set_rate(struct clk_hw *hw,
|
|
unsigned long rate, unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
|
|
u32 ctl;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
|
|
/*
|
|
* Setting up frac support
|
|
*
|
|
* In principle it is recommended to stop/start the clock first,
|
|
* but as we set CLK_SET_RATE_GATE during registration of the
|
|
* clock this requirement should be take care of by the
|
|
* clk-framework.
|
|
*/
|
|
ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
|
|
ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
|
|
cprman_write(cprman, data->ctl_reg, ctl);
|
|
|
|
cprman_write(cprman, data->div_reg, div);
|
|
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
bcm2835_clk_is_pllc(struct clk_hw *hw)
|
|
{
|
|
if (!hw)
|
|
return false;
|
|
|
|
return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
|
|
}
|
|
|
|
static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
|
|
int parent_idx,
|
|
unsigned long rate,
|
|
u32 *div,
|
|
unsigned long *prate,
|
|
unsigned long *avgrate)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
unsigned long best_rate = 0;
|
|
u32 curdiv, mindiv, maxdiv;
|
|
struct clk_hw *parent;
|
|
|
|
parent = clk_hw_get_parent_by_index(hw, parent_idx);
|
|
|
|
if (!(BIT(parent_idx) & data->set_rate_parent)) {
|
|
*prate = clk_hw_get_rate(parent);
|
|
*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
|
|
|
|
*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
|
|
|
|
if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
|
|
unsigned long high, low;
|
|
u32 int_div = *div & ~CM_DIV_FRAC_MASK;
|
|
|
|
high = bcm2835_clock_rate_from_divisor(clock, *prate,
|
|
int_div);
|
|
int_div += CM_DIV_FRAC_MASK + 1;
|
|
low = bcm2835_clock_rate_from_divisor(clock, *prate,
|
|
int_div);
|
|
|
|
/*
|
|
* Return a value which is the maximum deviation
|
|
* below the ideal rate, for use as a metric.
|
|
*/
|
|
return *avgrate - max(*avgrate - low, high - *avgrate);
|
|
}
|
|
return *avgrate;
|
|
}
|
|
|
|
if (data->frac_bits)
|
|
dev_warn(cprman->dev,
|
|
"frac bits are not used when propagating rate change");
|
|
|
|
/* clamp to min divider of 2 if we're dealing with a mash clock */
|
|
mindiv = data->is_mash_clock ? 2 : 1;
|
|
maxdiv = BIT(data->int_bits) - 1;
|
|
|
|
/* TODO: Be smart, and only test a subset of the available divisors. */
|
|
for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
|
|
unsigned long tmp_rate;
|
|
|
|
tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
|
|
tmp_rate /= curdiv;
|
|
if (curdiv == mindiv ||
|
|
(tmp_rate > best_rate && tmp_rate <= rate))
|
|
best_rate = tmp_rate;
|
|
|
|
if (best_rate == rate)
|
|
break;
|
|
}
|
|
|
|
*div = curdiv << CM_DIV_FRAC_BITS;
|
|
*prate = curdiv * best_rate;
|
|
*avgrate = best_rate;
|
|
|
|
return best_rate;
|
|
}
|
|
|
|
static int bcm2835_clock_determine_rate(struct clk_hw *hw,
|
|
struct clk_rate_request *req)
|
|
{
|
|
struct clk_hw *parent, *best_parent = NULL;
|
|
bool current_parent_is_pllc;
|
|
unsigned long rate, best_rate = 0;
|
|
unsigned long prate, best_prate = 0;
|
|
unsigned long avgrate, best_avgrate = 0;
|
|
size_t i;
|
|
u32 div;
|
|
|
|
current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
|
|
|
|
/*
|
|
* Select parent clock that results in the closest but lower rate
|
|
*/
|
|
for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
|
|
parent = clk_hw_get_parent_by_index(hw, i);
|
|
if (!parent)
|
|
continue;
|
|
|
|
/*
|
|
* Don't choose a PLLC-derived clock as our parent
|
|
* unless it had been manually set that way. PLLC's
|
|
* frequency gets adjusted by the firmware due to
|
|
* over-temp or under-voltage conditions, without
|
|
* prior notification to our clock consumer.
|
|
*/
|
|
if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
|
|
continue;
|
|
|
|
rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
|
|
&div, &prate,
|
|
&avgrate);
|
|
if (rate > best_rate && rate <= req->rate) {
|
|
best_parent = parent;
|
|
best_prate = prate;
|
|
best_rate = rate;
|
|
best_avgrate = avgrate;
|
|
}
|
|
}
|
|
|
|
if (!best_parent)
|
|
return -EINVAL;
|
|
|
|
req->best_parent_hw = best_parent;
|
|
req->best_parent_rate = best_prate;
|
|
|
|
req->rate = best_avgrate;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
|
|
|
|
cprman_write(cprman, data->ctl_reg, src);
|
|
return 0;
|
|
}
|
|
|
|
static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 src = cprman_read(cprman, data->ctl_reg);
|
|
|
|
return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
|
|
}
|
|
|
|
static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
|
|
{
|
|
.name = "ctl",
|
|
.offset = 0,
|
|
},
|
|
{
|
|
.name = "div",
|
|
.offset = 4,
|
|
},
|
|
};
|
|
|
|
static int bcm2835_clock_debug_init(struct clk_hw *hw,
|
|
struct dentry *dentry)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
return bcm2835_debugfs_regset(
|
|
cprman, data->ctl_reg,
|
|
bcm2835_debugfs_clock_reg32,
|
|
ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
|
|
dentry);
|
|
}
|
|
|
|
static const struct clk_ops bcm2835_clock_clk_ops = {
|
|
.is_prepared = bcm2835_clock_is_on,
|
|
.prepare = bcm2835_clock_on,
|
|
.unprepare = bcm2835_clock_off,
|
|
.recalc_rate = bcm2835_clock_get_rate,
|
|
.set_rate = bcm2835_clock_set_rate,
|
|
.determine_rate = bcm2835_clock_determine_rate,
|
|
.set_parent = bcm2835_clock_set_parent,
|
|
.get_parent = bcm2835_clock_get_parent,
|
|
.debug_init = bcm2835_clock_debug_init,
|
|
};
|
|
|
|
static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The VPU clock can never be disabled (it doesn't have an ENABLE
|
|
* bit), so it gets its own set of clock ops.
|
|
*/
|
|
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
|
|
.is_prepared = bcm2835_vpu_clock_is_on,
|
|
.recalc_rate = bcm2835_clock_get_rate,
|
|
.set_rate = bcm2835_clock_set_rate,
|
|
.determine_rate = bcm2835_clock_determine_rate,
|
|
.set_parent = bcm2835_clock_set_parent,
|
|
.get_parent = bcm2835_clock_get_parent,
|
|
.debug_init = bcm2835_clock_debug_init,
|
|
};
|
|
|
|
static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_pll_data *data)
|
|
{
|
|
struct bcm2835_pll *pll;
|
|
struct clk_init_data init;
|
|
int ret;
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
|
|
/* All of the PLLs derive from the external oscillator. */
|
|
init.parent_names = &cprman->real_parent_names[0];
|
|
init.num_parents = 1;
|
|
init.name = data->name;
|
|
init.ops = &bcm2835_pll_clk_ops;
|
|
init.flags = CLK_IGNORE_UNUSED;
|
|
|
|
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
|
|
if (!pll)
|
|
return NULL;
|
|
|
|
pll->cprman = cprman;
|
|
pll->data = data;
|
|
pll->hw.init = &init;
|
|
|
|
ret = devm_clk_hw_register(cprman->dev, &pll->hw);
|
|
if (ret)
|
|
return NULL;
|
|
return &pll->hw;
|
|
}
|
|
|
|
static struct clk_hw *
|
|
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_pll_divider_data *data)
|
|
{
|
|
struct bcm2835_pll_divider *divider;
|
|
struct clk_init_data init;
|
|
const char *divider_name;
|
|
int ret;
|
|
|
|
if (data->fixed_divider != 1) {
|
|
divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
|
|
"%s_prediv", data->name);
|
|
if (!divider_name)
|
|
return NULL;
|
|
} else {
|
|
divider_name = data->name;
|
|
}
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
|
|
init.parent_names = &data->source_pll;
|
|
init.num_parents = 1;
|
|
init.name = divider_name;
|
|
init.ops = &bcm2835_pll_divider_clk_ops;
|
|
init.flags = data->flags | CLK_IGNORE_UNUSED;
|
|
|
|
divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
|
|
if (!divider)
|
|
return NULL;
|
|
|
|
divider->div.reg = cprman->regs + data->a2w_reg;
|
|
divider->div.shift = A2W_PLL_DIV_SHIFT;
|
|
divider->div.width = A2W_PLL_DIV_BITS;
|
|
divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
|
|
divider->div.lock = &cprman->regs_lock;
|
|
divider->div.hw.init = &init;
|
|
divider->div.table = NULL;
|
|
|
|
divider->cprman = cprman;
|
|
divider->data = data;
|
|
|
|
ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
/*
|
|
* PLLH's channels have a fixed divide by 10 afterwards, which
|
|
* is what our consumers are actually using.
|
|
*/
|
|
if (data->fixed_divider != 1) {
|
|
return clk_hw_register_fixed_factor(cprman->dev, data->name,
|
|
divider_name,
|
|
CLK_SET_RATE_PARENT,
|
|
1,
|
|
data->fixed_divider);
|
|
}
|
|
|
|
return ÷r->div.hw;
|
|
}
|
|
|
|
static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_clock_data *data)
|
|
{
|
|
struct bcm2835_clock *clock;
|
|
struct clk_init_data init;
|
|
const char *parents[1 << CM_SRC_BITS];
|
|
size_t i, j;
|
|
int ret;
|
|
|
|
/*
|
|
* Replace our strings referencing parent clocks with the
|
|
* actual clock-output-name of the parent.
|
|
*/
|
|
for (i = 0; i < data->num_mux_parents; i++) {
|
|
parents[i] = data->parents[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
|
|
if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
|
|
parents[i] = cprman->real_parent_names[j];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
init.parent_names = parents;
|
|
init.num_parents = data->num_mux_parents;
|
|
init.name = data->name;
|
|
init.flags = data->flags | CLK_IGNORE_UNUSED;
|
|
|
|
/*
|
|
* Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
|
|
* rate changes on at least of the parents.
|
|
*/
|
|
if (data->set_rate_parent)
|
|
init.flags |= CLK_SET_RATE_PARENT;
|
|
|
|
if (data->is_vpu_clock) {
|
|
init.ops = &bcm2835_vpu_clock_clk_ops;
|
|
} else {
|
|
init.ops = &bcm2835_clock_clk_ops;
|
|
init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
|
|
|
|
/* If the clock wasn't actually enabled at boot, it's not
|
|
* critical.
|
|
*/
|
|
if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
|
|
init.flags &= ~CLK_IS_CRITICAL;
|
|
}
|
|
|
|
clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
|
|
if (!clock)
|
|
return NULL;
|
|
|
|
clock->cprman = cprman;
|
|
clock->data = data;
|
|
clock->hw.init = &init;
|
|
|
|
ret = devm_clk_hw_register(cprman->dev, &clock->hw);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
return &clock->hw;
|
|
}
|
|
|
|
static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_gate_data *data)
|
|
{
|
|
return clk_register_gate(cprman->dev, data->name, data->parent,
|
|
CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
|
|
cprman->regs + data->ctl_reg,
|
|
CM_GATE_BIT, 0, &cprman->regs_lock);
|
|
}
|
|
|
|
typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
|
|
const void *data);
|
|
struct bcm2835_clk_desc {
|
|
bcm2835_clk_register clk_register;
|
|
const void *data;
|
|
};
|
|
|
|
/* assignment helper macros for different clock types */
|
|
#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
|
|
.data = __VA_ARGS__ }
|
|
#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
|
|
&(struct bcm2835_pll_data) \
|
|
{__VA_ARGS__})
|
|
#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
|
|
&(struct bcm2835_pll_divider_data) \
|
|
{__VA_ARGS__})
|
|
#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
|
|
&(struct bcm2835_clock_data) \
|
|
{__VA_ARGS__})
|
|
#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
|
|
&(struct bcm2835_gate_data) \
|
|
{__VA_ARGS__})
|
|
|
|
/* parent mux arrays plus helper macros */
|
|
|
|
/* main oscillator parent mux */
|
|
static const char *const bcm2835_clock_osc_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1"
|
|
};
|
|
|
|
#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
|
|
.parents = bcm2835_clock_osc_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/* main peripherial parent mux */
|
|
static const char *const bcm2835_clock_per_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"plla_per",
|
|
"pllc_per",
|
|
"plld_per",
|
|
"pllh_aux",
|
|
};
|
|
|
|
#define REGISTER_PER_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
|
|
.parents = bcm2835_clock_per_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/*
|
|
* Restrict clock sources for the PCM peripheral to the oscillator and
|
|
* PLLD_PER because other source may have varying rates or be switched
|
|
* off.
|
|
*
|
|
* Prevent other sources from being selected by replacing their names in
|
|
* the list of potential parents with dummy entries (entry index is
|
|
* significant).
|
|
*/
|
|
static const char *const bcm2835_pcm_per_parents[] = {
|
|
"-",
|
|
"xosc",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"plld_per",
|
|
"-",
|
|
};
|
|
|
|
#define REGISTER_PCM_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
|
|
.parents = bcm2835_pcm_per_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/* main vpu parent mux */
|
|
static const char *const bcm2835_clock_vpu_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"plla_core",
|
|
"pllc_core0",
|
|
"plld_core",
|
|
"pllh_aux",
|
|
"pllc_core1",
|
|
"pllc_core2",
|
|
};
|
|
|
|
#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
|
|
.parents = bcm2835_clock_vpu_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/*
|
|
* DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
|
|
* analog PHY. The _inv variants are generated internally to cprman,
|
|
* but we don't use them so they aren't hooked up.
|
|
*/
|
|
static const char *const bcm2835_clock_dsi0_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"dsi0_ddr",
|
|
"dsi0_ddr_inv",
|
|
"dsi0_ddr2",
|
|
"dsi0_ddr2_inv",
|
|
"dsi0_byte",
|
|
"dsi0_byte_inv",
|
|
};
|
|
|
|
static const char *const bcm2835_clock_dsi1_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"dsi1_ddr",
|
|
"dsi1_ddr_inv",
|
|
"dsi1_ddr2",
|
|
"dsi1_ddr2_inv",
|
|
"dsi1_byte",
|
|
"dsi1_byte_inv",
|
|
};
|
|
|
|
#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
|
|
.parents = bcm2835_clock_dsi0_parents, \
|
|
__VA_ARGS__)
|
|
|
|
#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
|
|
.parents = bcm2835_clock_dsi1_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/*
|
|
* the real definition of all the pll, pll_dividers and clocks
|
|
* these make use of the above REGISTER_* macros
|
|
*/
|
|
static const struct bcm2835_clk_desc clk_desc_array[] = {
|
|
/* the PLL + PLL dividers */
|
|
|
|
/*
|
|
* PLLA is the auxiliary PLL, used to drive the CCP2
|
|
* (Compact Camera Port 2) transmitter clock.
|
|
*
|
|
* It is in the PX LDO power domain, which is on when the
|
|
* AUDIO domain is on.
|
|
*/
|
|
[BCM2835_PLLA] = REGISTER_PLL(
|
|
.name = "plla",
|
|
.cm_ctrl_reg = CM_PLLA,
|
|
.a2w_ctrl_reg = A2W_PLLA_CTRL,
|
|
.frac_reg = A2W_PLLA_FRAC,
|
|
.ana_reg_base = A2W_PLLA_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKA,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 2400000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
|
|
.name = "plla_core",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_CORE,
|
|
.load_mask = CM_PLLA_LOADCORE,
|
|
.hold_mask = CM_PLLA_HOLDCORE,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
|
|
.name = "plla_per",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_PER,
|
|
.load_mask = CM_PLLA_LOADPER,
|
|
.hold_mask = CM_PLLA_HOLDPER,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
|
|
.name = "plla_dsi0",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_DSI0,
|
|
.load_mask = CM_PLLA_LOADDSI0,
|
|
.hold_mask = CM_PLLA_HOLDDSI0,
|
|
.fixed_divider = 1),
|
|
[BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
|
|
.name = "plla_ccp2",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_CCP2,
|
|
.load_mask = CM_PLLA_LOADCCP2,
|
|
.hold_mask = CM_PLLA_HOLDCCP2,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/* PLLB is used for the ARM's clock. */
|
|
[BCM2835_PLLB] = REGISTER_PLL(
|
|
.name = "pllb",
|
|
.cm_ctrl_reg = CM_PLLB,
|
|
.a2w_ctrl_reg = A2W_PLLB_CTRL,
|
|
.frac_reg = A2W_PLLB_FRAC,
|
|
.ana_reg_base = A2W_PLLB_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKB,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 3000000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
|
|
.name = "pllb_arm",
|
|
.source_pll = "pllb",
|
|
.cm_reg = CM_PLLB,
|
|
.a2w_reg = A2W_PLLB_ARM,
|
|
.load_mask = CM_PLLB_LOADARM,
|
|
.hold_mask = CM_PLLB_HOLDARM,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/*
|
|
* PLLC is the core PLL, used to drive the core VPU clock.
|
|
*
|
|
* It is in the PX LDO power domain, which is on when the
|
|
* AUDIO domain is on.
|
|
*/
|
|
[BCM2835_PLLC] = REGISTER_PLL(
|
|
.name = "pllc",
|
|
.cm_ctrl_reg = CM_PLLC,
|
|
.a2w_ctrl_reg = A2W_PLLC_CTRL,
|
|
.frac_reg = A2W_PLLC_FRAC,
|
|
.ana_reg_base = A2W_PLLC_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKC,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 3000000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
|
|
.name = "pllc_core0",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_CORE0,
|
|
.load_mask = CM_PLLC_LOADCORE0,
|
|
.hold_mask = CM_PLLC_HOLDCORE0,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
|
|
.name = "pllc_core1",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_CORE1,
|
|
.load_mask = CM_PLLC_LOADCORE1,
|
|
.hold_mask = CM_PLLC_HOLDCORE1,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
|
|
.name = "pllc_core2",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_CORE2,
|
|
.load_mask = CM_PLLC_LOADCORE2,
|
|
.hold_mask = CM_PLLC_HOLDCORE2,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
|
|
.name = "pllc_per",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_PER,
|
|
.load_mask = CM_PLLC_LOADPER,
|
|
.hold_mask = CM_PLLC_HOLDPER,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/*
|
|
* PLLD is the display PLL, used to drive DSI display panels.
|
|
*
|
|
* It is in the PX LDO power domain, which is on when the
|
|
* AUDIO domain is on.
|
|
*/
|
|
[BCM2835_PLLD] = REGISTER_PLL(
|
|
.name = "plld",
|
|
.cm_ctrl_reg = CM_PLLD,
|
|
.a2w_ctrl_reg = A2W_PLLD_CTRL,
|
|
.frac_reg = A2W_PLLD_FRAC,
|
|
.ana_reg_base = A2W_PLLD_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKD,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 2400000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
|
|
.name = "plld_core",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_CORE,
|
|
.load_mask = CM_PLLD_LOADCORE,
|
|
.hold_mask = CM_PLLD_HOLDCORE,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
|
|
.name = "plld_per",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_PER,
|
|
.load_mask = CM_PLLD_LOADPER,
|
|
.hold_mask = CM_PLLD_HOLDPER,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
|
|
.name = "plld_dsi0",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_DSI0,
|
|
.load_mask = CM_PLLD_LOADDSI0,
|
|
.hold_mask = CM_PLLD_HOLDDSI0,
|
|
.fixed_divider = 1),
|
|
[BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
|
|
.name = "plld_dsi1",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_DSI1,
|
|
.load_mask = CM_PLLD_LOADDSI1,
|
|
.hold_mask = CM_PLLD_HOLDDSI1,
|
|
.fixed_divider = 1),
|
|
|
|
/*
|
|
* PLLH is used to supply the pixel clock or the AUX clock for the
|
|
* TV encoder.
|
|
*
|
|
* It is in the HDMI power domain.
|
|
*/
|
|
[BCM2835_PLLH] = REGISTER_PLL(
|
|
"pllh",
|
|
.cm_ctrl_reg = CM_PLLH,
|
|
.a2w_ctrl_reg = A2W_PLLH_CTRL,
|
|
.frac_reg = A2W_PLLH_FRAC,
|
|
.ana_reg_base = A2W_PLLH_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKH,
|
|
|
|
.ana = &bcm2835_ana_pllh,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 3000000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
|
|
.name = "pllh_rcal",
|
|
.source_pll = "pllh",
|
|
.cm_reg = CM_PLLH,
|
|
.a2w_reg = A2W_PLLH_RCAL,
|
|
.load_mask = CM_PLLH_LOADRCAL,
|
|
.hold_mask = 0,
|
|
.fixed_divider = 10,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
|
|
.name = "pllh_aux",
|
|
.source_pll = "pllh",
|
|
.cm_reg = CM_PLLH,
|
|
.a2w_reg = A2W_PLLH_AUX,
|
|
.load_mask = CM_PLLH_LOADAUX,
|
|
.hold_mask = 0,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
|
|
.name = "pllh_pix",
|
|
.source_pll = "pllh",
|
|
.cm_reg = CM_PLLH,
|
|
.a2w_reg = A2W_PLLH_PIX,
|
|
.load_mask = CM_PLLH_LOADPIX,
|
|
.hold_mask = 0,
|
|
.fixed_divider = 10,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/* the clocks */
|
|
|
|
/* clocks with oscillator parent mux */
|
|
|
|
/* One Time Programmable Memory clock. Maximum 10Mhz. */
|
|
[BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
|
|
.name = "otp",
|
|
.ctl_reg = CM_OTPCTL,
|
|
.div_reg = CM_OTPDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 6),
|
|
/*
|
|
* Used for a 1Mhz clock for the system clocksource, and also used
|
|
* bythe watchdog timer and the camera pulse generator.
|
|
*/
|
|
[BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
|
|
.name = "timer",
|
|
.ctl_reg = CM_TIMERCTL,
|
|
.div_reg = CM_TIMERDIV,
|
|
.int_bits = 6,
|
|
.frac_bits = 12),
|
|
/*
|
|
* Clock for the temperature sensor.
|
|
* Generally run at 2Mhz, max 5Mhz.
|
|
*/
|
|
[BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
|
|
.name = "tsens",
|
|
.ctl_reg = CM_TSENSCTL,
|
|
.div_reg = CM_TSENSDIV,
|
|
.int_bits = 5,
|
|
.frac_bits = 0),
|
|
[BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
|
|
.name = "tec",
|
|
.ctl_reg = CM_TECCTL,
|
|
.div_reg = CM_TECDIV,
|
|
.int_bits = 6,
|
|
.frac_bits = 0),
|
|
|
|
/* clocks with vpu parent mux */
|
|
[BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
|
|
.name = "h264",
|
|
.ctl_reg = CM_H264CTL,
|
|
.div_reg = CM_H264DIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 1),
|
|
[BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
|
|
.name = "isp",
|
|
.ctl_reg = CM_ISPCTL,
|
|
.div_reg = CM_ISPDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 2),
|
|
|
|
/*
|
|
* Secondary SDRAM clock. Used for low-voltage modes when the PLL
|
|
* in the SDRAM controller can't be used.
|
|
*/
|
|
[BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
|
|
.name = "sdram",
|
|
.ctl_reg = CM_SDCCTL,
|
|
.div_reg = CM_SDCDIV,
|
|
.int_bits = 6,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 3),
|
|
[BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
|
|
.name = "v3d",
|
|
.ctl_reg = CM_V3DCTL,
|
|
.div_reg = CM_V3DDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 4),
|
|
/*
|
|
* VPU clock. This doesn't have an enable bit, since it drives
|
|
* the bus for everything else, and is special so it doesn't need
|
|
* to be gated for rate changes. It is also known as "clk_audio"
|
|
* in various hardware documentation.
|
|
*/
|
|
[BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
|
|
.name = "vpu",
|
|
.ctl_reg = CM_VPUCTL,
|
|
.div_reg = CM_VPUDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 8,
|
|
.flags = CLK_IS_CRITICAL,
|
|
.is_vpu_clock = true,
|
|
.tcnt_mux = 5),
|
|
|
|
/* clocks with per parent mux */
|
|
[BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
|
|
.name = "aveo",
|
|
.ctl_reg = CM_AVEOCTL,
|
|
.div_reg = CM_AVEODIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 38),
|
|
[BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
|
|
.name = "cam0",
|
|
.ctl_reg = CM_CAM0CTL,
|
|
.div_reg = CM_CAM0DIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 14),
|
|
[BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
|
|
.name = "cam1",
|
|
.ctl_reg = CM_CAM1CTL,
|
|
.div_reg = CM_CAM1DIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 15),
|
|
[BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
|
|
.name = "dft",
|
|
.ctl_reg = CM_DFTCTL,
|
|
.div_reg = CM_DFTDIV,
|
|
.int_bits = 5,
|
|
.frac_bits = 0),
|
|
[BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
|
|
.name = "dpi",
|
|
.ctl_reg = CM_DPICTL,
|
|
.div_reg = CM_DPIDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 17),
|
|
|
|
/* Arasan EMMC clock */
|
|
[BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
|
|
.name = "emmc",
|
|
.ctl_reg = CM_EMMCCTL,
|
|
.div_reg = CM_EMMCDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 39),
|
|
|
|
/* General purpose (GPIO) clocks */
|
|
[BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
|
|
.name = "gp0",
|
|
.ctl_reg = CM_GP0CTL,
|
|
.div_reg = CM_GP0DIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 20),
|
|
[BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
|
|
.name = "gp1",
|
|
.ctl_reg = CM_GP1CTL,
|
|
.div_reg = CM_GP1DIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.flags = CLK_IS_CRITICAL,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 21),
|
|
[BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
|
|
.name = "gp2",
|
|
.ctl_reg = CM_GP2CTL,
|
|
.div_reg = CM_GP2DIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.flags = CLK_IS_CRITICAL),
|
|
|
|
/* HDMI state machine */
|
|
[BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
|
|
.name = "hsm",
|
|
.ctl_reg = CM_HSMCTL,
|
|
.div_reg = CM_HSMDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 22),
|
|
[BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
|
|
.name = "pcm",
|
|
.ctl_reg = CM_PCMCTL,
|
|
.div_reg = CM_PCMDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.low_jitter = true,
|
|
.tcnt_mux = 23),
|
|
[BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
|
|
.name = "pwm",
|
|
.ctl_reg = CM_PWMCTL,
|
|
.div_reg = CM_PWMDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 24),
|
|
[BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
|
|
.name = "slim",
|
|
.ctl_reg = CM_SLIMCTL,
|
|
.div_reg = CM_SLIMDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 25),
|
|
[BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
|
|
.name = "smi",
|
|
.ctl_reg = CM_SMICTL,
|
|
.div_reg = CM_SMIDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 27),
|
|
[BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
|
|
.name = "uart",
|
|
.ctl_reg = CM_UARTCTL,
|
|
.div_reg = CM_UARTDIV,
|
|
.int_bits = 10,
|
|
.frac_bits = 12,
|
|
.tcnt_mux = 28),
|
|
|
|
/* TV encoder clock. Only operating frequency is 108Mhz. */
|
|
[BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
|
|
.name = "vec",
|
|
.ctl_reg = CM_VECCTL,
|
|
.div_reg = CM_VECDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 0,
|
|
/*
|
|
* Allow rate change propagation only on PLLH_AUX which is
|
|
* assigned index 7 in the parent array.
|
|
*/
|
|
.set_rate_parent = BIT(7),
|
|
.tcnt_mux = 29),
|
|
|
|
/* dsi clocks */
|
|
[BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
|
|
.name = "dsi0e",
|
|
.ctl_reg = CM_DSI0ECTL,
|
|
.div_reg = CM_DSI0EDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 18),
|
|
[BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
|
|
.name = "dsi1e",
|
|
.ctl_reg = CM_DSI1ECTL,
|
|
.div_reg = CM_DSI1EDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 19),
|
|
[BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
|
|
.name = "dsi0p",
|
|
.ctl_reg = CM_DSI0PCTL,
|
|
.div_reg = CM_DSI0PDIV,
|
|
.int_bits = 0,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 12),
|
|
[BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
|
|
.name = "dsi1p",
|
|
.ctl_reg = CM_DSI1PCTL,
|
|
.div_reg = CM_DSI1PDIV,
|
|
.int_bits = 0,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 13),
|
|
|
|
/* the gates */
|
|
|
|
/*
|
|
* CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
|
|
* you have the debug bit set in the power manager, which we
|
|
* don't bother exposing) are individual gates off of the
|
|
* non-stop vpu clock.
|
|
*/
|
|
[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
|
|
.name = "peri_image",
|
|
.parent = "vpu",
|
|
.ctl_reg = CM_PERIICTL),
|
|
};
|
|
|
|
/*
|
|
* Permanently take a reference on the parent of the SDRAM clock.
|
|
*
|
|
* While the SDRAM is being driven by its dedicated PLL most of the
|
|
* time, there is a little loop running in the firmware that
|
|
* periodically switches the SDRAM to using our CM clock to do PVT
|
|
* recalibration, with the assumption that the previously configured
|
|
* SDRAM parent is still enabled and running.
|
|
*/
|
|
static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
|
|
{
|
|
struct clk *parent = clk_get_parent(sdc);
|
|
|
|
if (IS_ERR(parent))
|
|
return PTR_ERR(parent);
|
|
|
|
return clk_prepare_enable(parent);
|
|
}
|
|
|
|
static int bcm2835_clk_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct clk_hw **hws;
|
|
struct bcm2835_cprman *cprman;
|
|
struct resource *res;
|
|
const struct bcm2835_clk_desc *desc;
|
|
const size_t asize = ARRAY_SIZE(clk_desc_array);
|
|
size_t i;
|
|
int ret;
|
|
|
|
cprman = devm_kzalloc(dev, sizeof(*cprman) +
|
|
sizeof(*cprman->onecell.hws) * asize,
|
|
GFP_KERNEL);
|
|
if (!cprman)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&cprman->regs_lock);
|
|
cprman->dev = dev;
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
cprman->regs = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(cprman->regs))
|
|
return PTR_ERR(cprman->regs);
|
|
|
|
memcpy(cprman->real_parent_names, cprman_parent_names,
|
|
sizeof(cprman_parent_names));
|
|
of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
|
|
ARRAY_SIZE(cprman_parent_names));
|
|
|
|
/*
|
|
* Make sure the external oscillator has been registered.
|
|
*
|
|
* The other (DSI) clocks are not present on older device
|
|
* trees, which we still need to support for backwards
|
|
* compatibility.
|
|
*/
|
|
if (!cprman->real_parent_names[0])
|
|
return -ENODEV;
|
|
|
|
platform_set_drvdata(pdev, cprman);
|
|
|
|
cprman->onecell.num = asize;
|
|
hws = cprman->onecell.hws;
|
|
|
|
for (i = 0; i < asize; i++) {
|
|
desc = &clk_desc_array[i];
|
|
if (desc->clk_register && desc->data)
|
|
hws[i] = desc->clk_register(cprman, desc->data);
|
|
}
|
|
|
|
ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
|
|
&cprman->onecell);
|
|
}
|
|
|
|
static const struct of_device_id bcm2835_clk_of_match[] = {
|
|
{ .compatible = "brcm,bcm2835-cprman", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
|
|
|
|
static struct platform_driver bcm2835_clk_driver = {
|
|
.driver = {
|
|
.name = "bcm2835-clk",
|
|
.of_match_table = bcm2835_clk_of_match,
|
|
},
|
|
.probe = bcm2835_clk_probe,
|
|
};
|
|
|
|
builtin_platform_driver(bcm2835_clk_driver);
|
|
|
|
MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
|
|
MODULE_DESCRIPTION("BCM2835 clock driver");
|
|
MODULE_LICENSE("GPL v2");
|