linux-sg2042/fs/xfs/xfs_inode_item.c

846 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_inode_item.h"
#include "xfs_trace.h"
#include "xfs_trans_priv.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include <linux/iversion.h>
kmem_zone_t *xfs_ili_zone; /* inode log item zone */
static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
{
return container_of(lip, struct xfs_inode_log_item, ili_item);
}
STATIC void
xfs_inode_item_data_fork_size(
struct xfs_inode_log_item *iip,
int *nvecs,
int *nbytes)
{
struct xfs_inode *ip = iip->ili_inode;
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
ip->i_d.di_nextents > 0 &&
ip->i_df.if_bytes > 0) {
/* worst case, doesn't subtract delalloc extents */
*nbytes += XFS_IFORK_DSIZE(ip);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
ip->i_df.if_broot_bytes > 0) {
*nbytes += ip->i_df.if_broot_bytes;
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
ip->i_df.if_bytes > 0) {
*nbytes += roundup(ip->i_df.if_bytes, 4);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_DEV:
break;
default:
ASSERT(0);
break;
}
}
STATIC void
xfs_inode_item_attr_fork_size(
struct xfs_inode_log_item *iip,
int *nvecs,
int *nbytes)
{
struct xfs_inode *ip = iip->ili_inode;
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
ip->i_d.di_anextents > 0 &&
ip->i_afp->if_bytes > 0) {
/* worst case, doesn't subtract unused space */
*nbytes += XFS_IFORK_ASIZE(ip);
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_BTREE:
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
ip->i_afp->if_broot_bytes > 0) {
*nbytes += ip->i_afp->if_broot_bytes;
*nvecs += 1;
}
break;
case XFS_DINODE_FMT_LOCAL:
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
ip->i_afp->if_bytes > 0) {
*nbytes += roundup(ip->i_afp->if_bytes, 4);
*nvecs += 1;
}
break;
default:
ASSERT(0);
break;
}
}
/*
* This returns the number of iovecs needed to log the given inode item.
*
* We need one iovec for the inode log format structure, one for the
* inode core, and possibly one for the inode data/extents/b-tree root
* and one for the inode attribute data/extents/b-tree root.
*/
STATIC void
xfs_inode_item_size(
struct xfs_log_item *lip,
int *nvecs,
int *nbytes)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
*nvecs += 2;
*nbytes += sizeof(struct xfs_inode_log_format) +
xfs_log_dinode_size(ip->i_d.di_version);
xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
if (XFS_IFORK_Q(ip))
xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
}
STATIC void
xfs_inode_item_format_data_fork(
struct xfs_inode_log_item *iip,
struct xfs_inode_log_format *ilf,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_inode *ip = iip->ili_inode;
size_t data_bytes;
switch (ip->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DEXT) &&
ip->i_d.di_nextents > 0 &&
ip->i_df.if_bytes > 0) {
struct xfs_bmbt_rec *p;
ASSERT(xfs_iext_count(&ip->i_df) > 0);
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
xlog_finish_iovec(lv, *vecp, data_bytes);
ASSERT(data_bytes <= ip->i_df.if_bytes);
ilf->ilf_dsize = data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_DEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
ip->i_df.if_broot_bytes > 0) {
ASSERT(ip->i_df.if_broot != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
ip->i_df.if_broot,
ip->i_df.if_broot_bytes);
ilf->ilf_dsize = ip->i_df.if_broot_bytes;
ilf->ilf_size++;
} else {
ASSERT(!(iip->ili_fields &
XFS_ILOG_DBROOT));
iip->ili_fields &= ~XFS_ILOG_DBROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_fields &=
~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
if ((iip->ili_fields & XFS_ILOG_DDATA) &&
ip->i_df.if_bytes > 0) {
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_df.if_bytes, 4);
ASSERT(ip->i_df.if_u1.if_data != NULL);
ASSERT(ip->i_d.di_size > 0);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
ip->i_df.if_u1.if_data, data_bytes);
ilf->ilf_dsize = (unsigned)data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_DDATA;
}
break;
case XFS_DINODE_FMT_DEV:
iip->ili_fields &=
~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
if (iip->ili_fields & XFS_ILOG_DEV)
ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
break;
default:
ASSERT(0);
break;
}
}
STATIC void
xfs_inode_item_format_attr_fork(
struct xfs_inode_log_item *iip,
struct xfs_inode_log_format *ilf,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_inode *ip = iip->ili_inode;
size_t data_bytes;
switch (ip->i_d.di_aformat) {
case XFS_DINODE_FMT_EXTENTS:
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
if ((iip->ili_fields & XFS_ILOG_AEXT) &&
ip->i_d.di_anextents > 0 &&
ip->i_afp->if_bytes > 0) {
struct xfs_bmbt_rec *p;
ASSERT(xfs_iext_count(ip->i_afp) ==
ip->i_d.di_anextents);
p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
xlog_finish_iovec(lv, *vecp, data_bytes);
ilf->ilf_asize = data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_AEXT;
}
break;
case XFS_DINODE_FMT_BTREE:
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
ip->i_afp->if_broot_bytes > 0) {
ASSERT(ip->i_afp->if_broot != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
ip->i_afp->if_broot,
ip->i_afp->if_broot_bytes);
ilf->ilf_asize = ip->i_afp->if_broot_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_ABROOT;
}
break;
case XFS_DINODE_FMT_LOCAL:
iip->ili_fields &=
~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
if ((iip->ili_fields & XFS_ILOG_ADATA) &&
ip->i_afp->if_bytes > 0) {
/*
* Round i_bytes up to a word boundary.
* The underlying memory is guaranteed to
* to be there by xfs_idata_realloc().
*/
data_bytes = roundup(ip->i_afp->if_bytes, 4);
ASSERT(ip->i_afp->if_u1.if_data != NULL);
xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
ip->i_afp->if_u1.if_data,
data_bytes);
ilf->ilf_asize = (unsigned)data_bytes;
ilf->ilf_size++;
} else {
iip->ili_fields &= ~XFS_ILOG_ADATA;
}
break;
default:
ASSERT(0);
break;
}
}
static void
xfs_inode_to_log_dinode(
struct xfs_inode *ip,
struct xfs_log_dinode *to,
xfs_lsn_t lsn)
{
struct xfs_icdinode *from = &ip->i_d;
struct inode *inode = VFS_I(ip);
to->di_magic = XFS_DINODE_MAGIC;
to->di_version = from->di_version;
to->di_format = from->di_format;
to->di_uid = from->di_uid;
to->di_gid = from->di_gid;
to->di_projid_lo = from->di_projid_lo;
to->di_projid_hi = from->di_projid_hi;
memset(to->di_pad, 0, sizeof(to->di_pad));
memset(to->di_pad3, 0, sizeof(to->di_pad3));
to->di_atime.t_sec = inode->i_atime.tv_sec;
to->di_atime.t_nsec = inode->i_atime.tv_nsec;
to->di_mtime.t_sec = inode->i_mtime.tv_sec;
to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
to->di_ctime.t_sec = inode->i_ctime.tv_sec;
to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
to->di_nlink = inode->i_nlink;
to->di_gen = inode->i_generation;
to->di_mode = inode->i_mode;
to->di_size = from->di_size;
to->di_nblocks = from->di_nblocks;
to->di_extsize = from->di_extsize;
to->di_nextents = from->di_nextents;
to->di_anextents = from->di_anextents;
to->di_forkoff = from->di_forkoff;
to->di_aformat = from->di_aformat;
to->di_dmevmask = from->di_dmevmask;
to->di_dmstate = from->di_dmstate;
to->di_flags = from->di_flags;
/* log a dummy value to ensure log structure is fully initialised */
to->di_next_unlinked = NULLAGINO;
if (from->di_version == 3) {
to->di_changecount = inode_peek_iversion(inode);
to->di_crtime.t_sec = from->di_crtime.t_sec;
to->di_crtime.t_nsec = from->di_crtime.t_nsec;
to->di_flags2 = from->di_flags2;
to->di_cowextsize = from->di_cowextsize;
to->di_ino = ip->i_ino;
to->di_lsn = lsn;
memset(to->di_pad2, 0, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
to->di_flushiter = 0;
} else {
to->di_flushiter = from->di_flushiter;
}
}
/*
* Format the inode core. Current timestamp data is only in the VFS inode
* fields, so we need to grab them from there. Hence rather than just copying
* the XFS inode core structure, format the fields directly into the iovec.
*/
static void
xfs_inode_item_format_core(
struct xfs_inode *ip,
struct xfs_log_vec *lv,
struct xfs_log_iovec **vecp)
{
struct xfs_log_dinode *dic;
dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_d.di_version));
}
/*
* This is called to fill in the vector of log iovecs for the given inode
* log item. It fills the first item with an inode log format structure,
* the second with the on-disk inode structure, and a possible third and/or
* fourth with the inode data/extents/b-tree root and inode attributes
* data/extents/b-tree root.
*
* Note: Always use the 64 bit inode log format structure so we don't
* leave an uninitialised hole in the format item on 64 bit systems. Log
* recovery on 32 bit systems handles this just fine, so there's no reason
* for not using an initialising the properly padded structure all the time.
*/
STATIC void
xfs_inode_item_format(
struct xfs_log_item *lip,
struct xfs_log_vec *lv)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_log_iovec *vecp = NULL;
struct xfs_inode_log_format *ilf;
ASSERT(ip->i_d.di_version > 1);
ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
ilf->ilf_type = XFS_LI_INODE;
ilf->ilf_ino = ip->i_ino;
ilf->ilf_blkno = ip->i_imap.im_blkno;
ilf->ilf_len = ip->i_imap.im_len;
ilf->ilf_boffset = ip->i_imap.im_boffset;
ilf->ilf_fields = XFS_ILOG_CORE;
ilf->ilf_size = 2; /* format + core */
/*
* make sure we don't leak uninitialised data into the log in the case
* when we don't log every field in the inode.
*/
ilf->ilf_dsize = 0;
ilf->ilf_asize = 0;
ilf->ilf_pad = 0;
memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
xlog_finish_iovec(lv, vecp, sizeof(*ilf));
xfs_inode_item_format_core(ip, lv, &vecp);
xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
if (XFS_IFORK_Q(ip)) {
xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
} else {
iip->ili_fields &=
~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
}
/* update the format with the exact fields we actually logged */
ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
}
/*
* This is called to pin the inode associated with the inode log
* item in memory so it cannot be written out.
*/
STATIC void
xfs_inode_item_pin(
struct xfs_log_item *lip)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
trace_xfs_inode_pin(ip, _RET_IP_);
atomic_inc(&ip->i_pincount);
}
/*
* This is called to unpin the inode associated with the inode log
* item which was previously pinned with a call to xfs_inode_item_pin().
*
* Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
*/
STATIC void
xfs_inode_item_unpin(
struct xfs_log_item *lip,
int remove)
{
struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
trace_xfs_inode_unpin(ip, _RET_IP_);
ASSERT(atomic_read(&ip->i_pincount) > 0);
if (atomic_dec_and_test(&ip->i_pincount))
wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
}
/*
* Callback used to mark a buffer with XFS_LI_FAILED when items in the buffer
* have been failed during writeback
*
* This informs the AIL that the inode is already flush locked on the next push,
* and acquires a hold on the buffer to ensure that it isn't reclaimed before
* dirty data makes it to disk.
*/
STATIC void
xfs_inode_item_error(
struct xfs_log_item *lip,
struct xfs_buf *bp)
{
ASSERT(xfs_isiflocked(INODE_ITEM(lip)->ili_inode));
xfs_set_li_failed(lip, bp);
}
STATIC uint
xfs_inode_item_push(
struct xfs_log_item *lip,
struct list_head *buffer_list)
__releases(&lip->li_ailp->ail_lock)
__acquires(&lip->li_ailp->ail_lock)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
struct xfs_buf *bp = lip->li_buf;
uint rval = XFS_ITEM_SUCCESS;
int error;
if (xfs_ipincount(ip) > 0)
return XFS_ITEM_PINNED;
/*
* The buffer containing this item failed to be written back
* previously. Resubmit the buffer for IO.
*/
if (test_bit(XFS_LI_FAILED, &lip->li_flags)) {
if (!xfs_buf_trylock(bp))
return XFS_ITEM_LOCKED;
if (!xfs_buf_resubmit_failed_buffers(bp, buffer_list))
rval = XFS_ITEM_FLUSHING;
xfs_buf_unlock(bp);
return rval;
}
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
return XFS_ITEM_LOCKED;
/*
* Re-check the pincount now that we stabilized the value by
* taking the ilock.
*/
if (xfs_ipincount(ip) > 0) {
rval = XFS_ITEM_PINNED;
goto out_unlock;
}
/*
* Stale inode items should force out the iclog.
*/
if (ip->i_flags & XFS_ISTALE) {
rval = XFS_ITEM_PINNED;
goto out_unlock;
}
/*
* Someone else is already flushing the inode. Nothing we can do
* here but wait for the flush to finish and remove the item from
* the AIL.
*/
if (!xfs_iflock_nowait(ip)) {
rval = XFS_ITEM_FLUSHING;
goto out_unlock;
}
ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
spin_unlock(&lip->li_ailp->ail_lock);
error = xfs_iflush(ip, &bp);
if (!error) {
if (!xfs_buf_delwri_queue(bp, buffer_list))
rval = XFS_ITEM_FLUSHING;
xfs_buf_relse(bp);
}
spin_lock(&lip->li_ailp->ail_lock);
out_unlock:
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return rval;
}
/*
* Unlock the inode associated with the inode log item.
*/
STATIC void
xfs_inode_item_release(
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
unsigned short lock_flags;
ASSERT(ip->i_itemp != NULL);
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
lock_flags = iip->ili_lock_flags;
iip->ili_lock_flags = 0;
if (lock_flags)
xfs_iunlock(ip, lock_flags);
}
/*
* This is called to find out where the oldest active copy of the inode log
* item in the on disk log resides now that the last log write of it completed
* at the given lsn. Since we always re-log all dirty data in an inode, the
* latest copy in the on disk log is the only one that matters. Therefore,
* simply return the given lsn.
*
* If the inode has been marked stale because the cluster is being freed, we
* don't want to (re-)insert this inode into the AIL. There is a race condition
* where the cluster buffer may be unpinned before the inode is inserted into
* the AIL during transaction committed processing. If the buffer is unpinned
* before the inode item has been committed and inserted, then it is possible
* for the buffer to be written and IO completes before the inode is inserted
* into the AIL. In that case, we'd be inserting a clean, stale inode into the
* AIL which will never get removed. It will, however, get reclaimed which
* triggers an assert in xfs_inode_free() complaining about freein an inode
* still in the AIL.
*
* To avoid this, just unpin the inode directly and return a LSN of -1 so the
* transaction committed code knows that it does not need to do any further
* processing on the item.
*/
STATIC xfs_lsn_t
xfs_inode_item_committed(
struct xfs_log_item *lip,
xfs_lsn_t lsn)
{
struct xfs_inode_log_item *iip = INODE_ITEM(lip);
struct xfs_inode *ip = iip->ili_inode;
if (xfs_iflags_test(ip, XFS_ISTALE)) {
xfs_inode_item_unpin(lip, 0);
return -1;
}
return lsn;
}
STATIC void
xfs_inode_item_committing(
struct xfs_log_item *lip,
xfs_lsn_t commit_lsn)
{
INODE_ITEM(lip)->ili_last_lsn = commit_lsn;
return xfs_inode_item_release(lip);
}
static const struct xfs_item_ops xfs_inode_item_ops = {
.iop_size = xfs_inode_item_size,
.iop_format = xfs_inode_item_format,
.iop_pin = xfs_inode_item_pin,
.iop_unpin = xfs_inode_item_unpin,
.iop_release = xfs_inode_item_release,
.iop_committed = xfs_inode_item_committed,
.iop_push = xfs_inode_item_push,
.iop_committing = xfs_inode_item_committing,
.iop_error = xfs_inode_item_error
};
/*
* Initialize the inode log item for a newly allocated (in-core) inode.
*/
void
xfs_inode_item_init(
struct xfs_inode *ip,
struct xfs_mount *mp)
{
struct xfs_inode_log_item *iip;
ASSERT(ip->i_itemp == NULL);
iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, 0);
iip->ili_inode = ip;
xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
&xfs_inode_item_ops);
}
/*
* Free the inode log item and any memory hanging off of it.
*/
void
xfs_inode_item_destroy(
xfs_inode_t *ip)
{
kmem_free(ip->i_itemp->ili_item.li_lv_shadow);
kmem_zone_free(xfs_ili_zone, ip->i_itemp);
}
/*
* This is the inode flushing I/O completion routine. It is called
* from interrupt level when the buffer containing the inode is
* flushed to disk. It is responsible for removing the inode item
* from the AIL if it has not been re-logged, and unlocking the inode's
* flush lock.
*
* To reduce AIL lock traffic as much as possible, we scan the buffer log item
* list for other inodes that will run this function. We remove them from the
* buffer list so we can process all the inode IO completions in one AIL lock
* traversal.
*/
void
xfs_iflush_done(
struct xfs_buf *bp,
struct xfs_log_item *lip)
{
struct xfs_inode_log_item *iip;
struct xfs_log_item *blip, *n;
struct xfs_ail *ailp = lip->li_ailp;
int need_ail = 0;
LIST_HEAD(tmp);
/*
* Scan the buffer IO completions for other inodes being completed and
* attach them to the current inode log item.
*/
list_add_tail(&lip->li_bio_list, &tmp);
list_for_each_entry_safe(blip, n, &bp->b_li_list, li_bio_list) {
if (lip->li_cb != xfs_iflush_done)
continue;
list_move_tail(&blip->li_bio_list, &tmp);
/*
* while we have the item, do the unlocked check for needing
* the AIL lock.
*/
iip = INODE_ITEM(blip);
if ((iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn) ||
test_bit(XFS_LI_FAILED, &blip->li_flags))
need_ail++;
}
/* make sure we capture the state of the initial inode. */
iip = INODE_ITEM(lip);
if ((iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn) ||
test_bit(XFS_LI_FAILED, &lip->li_flags))
need_ail++;
/*
* We only want to pull the item from the AIL if it is
* actually there and its location in the log has not
* changed since we started the flush. Thus, we only bother
* if the ili_logged flag is set and the inode's lsn has not
* changed. First we check the lsn outside
* the lock since it's cheaper, and then we recheck while
* holding the lock before removing the inode from the AIL.
*/
if (need_ail) {
bool mlip_changed = false;
/* this is an opencoded batch version of xfs_trans_ail_delete */
spin_lock(&ailp->ail_lock);
list_for_each_entry(blip, &tmp, li_bio_list) {
if (INODE_ITEM(blip)->ili_logged &&
blip->li_lsn == INODE_ITEM(blip)->ili_flush_lsn)
mlip_changed |= xfs_ail_delete_one(ailp, blip);
else {
xfs_clear_li_failed(blip);
}
}
if (mlip_changed) {
if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
xlog_assign_tail_lsn_locked(ailp->ail_mount);
if (list_empty(&ailp->ail_head))
wake_up_all(&ailp->ail_empty);
}
spin_unlock(&ailp->ail_lock);
if (mlip_changed)
xfs_log_space_wake(ailp->ail_mount);
}
/*
* clean up and unlock the flush lock now we are done. We can clear the
* ili_last_fields bits now that we know that the data corresponding to
* them is safely on disk.
*/
list_for_each_entry_safe(blip, n, &tmp, li_bio_list) {
list_del_init(&blip->li_bio_list);
iip = INODE_ITEM(blip);
iip->ili_logged = 0;
iip->ili_last_fields = 0;
xfs_ifunlock(iip->ili_inode);
}
list_del(&tmp);
}
/*
* This is the inode flushing abort routine. It is called from xfs_iflush when
* the filesystem is shutting down to clean up the inode state. It is
* responsible for removing the inode item from the AIL if it has not been
* re-logged, and unlocking the inode's flush lock.
*/
void
xfs_iflush_abort(
xfs_inode_t *ip,
bool stale)
{
xfs_inode_log_item_t *iip = ip->i_itemp;
if (iip) {
if (test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags)) {
xfs_trans_ail_remove(&iip->ili_item,
stale ? SHUTDOWN_LOG_IO_ERROR :
SHUTDOWN_CORRUPT_INCORE);
}
iip->ili_logged = 0;
/*
* Clear the ili_last_fields bits now that we know that the
* data corresponding to them is safely on disk.
*/
iip->ili_last_fields = 0;
/*
* Clear the inode logging fields so no more flushes are
* attempted.
*/
iip->ili_fields = 0;
iip->ili_fsync_fields = 0;
}
/*
* Release the inode's flush lock since we're done with it.
*/
xfs_ifunlock(ip);
}
void
xfs_istale_done(
struct xfs_buf *bp,
struct xfs_log_item *lip)
{
xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
}
/*
* convert an xfs_inode_log_format struct from the old 32 bit version
* (which can have different field alignments) to the native 64 bit version
*/
int
xfs_inode_item_format_convert(
struct xfs_log_iovec *buf,
struct xfs_inode_log_format *in_f)
{
struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
if (buf->i_len != sizeof(*in_f32))
return -EFSCORRUPTED;
in_f->ilf_type = in_f32->ilf_type;
in_f->ilf_size = in_f32->ilf_size;
in_f->ilf_fields = in_f32->ilf_fields;
in_f->ilf_asize = in_f32->ilf_asize;
in_f->ilf_dsize = in_f32->ilf_dsize;
in_f->ilf_ino = in_f32->ilf_ino;
memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
in_f->ilf_blkno = in_f32->ilf_blkno;
in_f->ilf_len = in_f32->ilf_len;
in_f->ilf_boffset = in_f32->ilf_boffset;
return 0;
}