linux-sg2042/drivers/scsi/cxlflash/main.c

3992 lines
107 KiB
C

/*
* CXL Flash Device Driver
*
* Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
* Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
*
* Copyright (C) 2015 IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <asm/unaligned.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <uapi/scsi/cxlflash_ioctl.h>
#include "main.h"
#include "sislite.h"
#include "common.h"
MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
MODULE_LICENSE("GPL");
static struct class *cxlflash_class;
static u32 cxlflash_major;
static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
/**
* process_cmd_err() - command error handler
* @cmd: AFU command that experienced the error.
* @scp: SCSI command associated with the AFU command in error.
*
* Translates error bits from AFU command to SCSI command results.
*/
static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
{
struct afu *afu = cmd->parent;
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb *ioarcb;
struct sisl_ioasa *ioasa;
u32 resid;
if (unlikely(!cmd))
return;
ioarcb = &(cmd->rcb);
ioasa = &(cmd->sa);
if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
resid = ioasa->resid;
scsi_set_resid(scp, resid);
dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
__func__, cmd, scp, resid);
}
if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
__func__, cmd, scp);
scp->result = (DID_ERROR << 16);
}
dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
if (ioasa->rc.scsi_rc) {
/* We have a SCSI status */
if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
memcpy(scp->sense_buffer, ioasa->sense_data,
SISL_SENSE_DATA_LEN);
scp->result = ioasa->rc.scsi_rc;
} else
scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
}
/*
* We encountered an error. Set scp->result based on nature
* of error.
*/
if (ioasa->rc.fc_rc) {
/* We have an FC status */
switch (ioasa->rc.fc_rc) {
case SISL_FC_RC_LINKDOWN:
scp->result = (DID_REQUEUE << 16);
break;
case SISL_FC_RC_RESID:
/* This indicates an FCP resid underrun */
if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
/* If the SISL_RC_FLAGS_OVERRUN flag was set,
* then we will handle this error else where.
* If not then we must handle it here.
* This is probably an AFU bug.
*/
scp->result = (DID_ERROR << 16);
}
break;
case SISL_FC_RC_RESIDERR:
/* Resid mismatch between adapter and device */
case SISL_FC_RC_TGTABORT:
case SISL_FC_RC_ABORTOK:
case SISL_FC_RC_ABORTFAIL:
case SISL_FC_RC_NOLOGI:
case SISL_FC_RC_ABORTPEND:
case SISL_FC_RC_WRABORTPEND:
case SISL_FC_RC_NOEXP:
case SISL_FC_RC_INUSE:
scp->result = (DID_ERROR << 16);
break;
}
}
if (ioasa->rc.afu_rc) {
/* We have an AFU error */
switch (ioasa->rc.afu_rc) {
case SISL_AFU_RC_NO_CHANNELS:
scp->result = (DID_NO_CONNECT << 16);
break;
case SISL_AFU_RC_DATA_DMA_ERR:
switch (ioasa->afu_extra) {
case SISL_AFU_DMA_ERR_PAGE_IN:
/* Retry */
scp->result = (DID_IMM_RETRY << 16);
break;
case SISL_AFU_DMA_ERR_INVALID_EA:
default:
scp->result = (DID_ERROR << 16);
}
break;
case SISL_AFU_RC_OUT_OF_DATA_BUFS:
/* Retry */
scp->result = (DID_ALLOC_FAILURE << 16);
break;
default:
scp->result = (DID_ERROR << 16);
}
}
}
/**
* cmd_complete() - command completion handler
* @cmd: AFU command that has completed.
*
* For SCSI commands this routine prepares and submits commands that have
* either completed or timed out to the SCSI stack. For internal commands
* (TMF or AFU), this routine simply notifies the originator that the
* command has completed.
*/
static void cmd_complete(struct afu_cmd *cmd)
{
struct scsi_cmnd *scp;
ulong lock_flags;
struct afu *afu = cmd->parent;
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
list_del(&cmd->list);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
if (cmd->scp) {
scp = cmd->scp;
if (unlikely(cmd->sa.ioasc))
process_cmd_err(cmd, scp);
else
scp->result = (DID_OK << 16);
dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
__func__, scp, scp->result, cmd->sa.ioasc);
scp->scsi_done(scp);
} else if (cmd->cmd_tmf) {
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
wake_up_all_locked(&cfg->tmf_waitq);
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
} else
complete(&cmd->cevent);
}
/**
* flush_pending_cmds() - flush all pending commands on this hardware queue
* @hwq: Hardware queue to flush.
*
* The hardware send queue lock associated with this hardware queue must be
* held when calling this routine.
*/
static void flush_pending_cmds(struct hwq *hwq)
{
struct cxlflash_cfg *cfg = hwq->afu->parent;
struct afu_cmd *cmd, *tmp;
struct scsi_cmnd *scp;
ulong lock_flags;
list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
/* Bypass command when on a doneq, cmd_complete() will handle */
if (!list_empty(&cmd->queue))
continue;
list_del(&cmd->list);
if (cmd->scp) {
scp = cmd->scp;
scp->result = (DID_IMM_RETRY << 16);
scp->scsi_done(scp);
} else {
cmd->cmd_aborted = true;
if (cmd->cmd_tmf) {
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
wake_up_all_locked(&cfg->tmf_waitq);
spin_unlock_irqrestore(&cfg->tmf_slock,
lock_flags);
} else
complete(&cmd->cevent);
}
}
}
/**
* context_reset() - reset context via specified register
* @hwq: Hardware queue owning the context to be reset.
* @reset_reg: MMIO register to perform reset.
*
* When the reset is successful, the SISLite specification guarantees that
* the AFU has aborted all currently pending I/O. Accordingly, these commands
* must be flushed.
*
* Return: 0 on success, -errno on failure
*/
static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
{
struct cxlflash_cfg *cfg = hwq->afu->parent;
struct device *dev = &cfg->dev->dev;
int rc = -ETIMEDOUT;
int nretry = 0;
u64 val = 0x1;
ulong lock_flags;
dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
writeq_be(val, reset_reg);
do {
val = readq_be(reset_reg);
if ((val & 0x1) == 0x0) {
rc = 0;
break;
}
/* Double delay each time */
udelay(1 << nretry);
} while (nretry++ < MC_ROOM_RETRY_CNT);
if (!rc)
flush_pending_cmds(hwq);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
__func__, rc, val, nretry);
return rc;
}
/**
* context_reset_ioarrin() - reset context via IOARRIN register
* @hwq: Hardware queue owning the context to be reset.
*
* Return: 0 on success, -errno on failure
*/
static int context_reset_ioarrin(struct hwq *hwq)
{
return context_reset(hwq, &hwq->host_map->ioarrin);
}
/**
* context_reset_sq() - reset context via SQ_CONTEXT_RESET register
* @hwq: Hardware queue owning the context to be reset.
*
* Return: 0 on success, -errno on failure
*/
static int context_reset_sq(struct hwq *hwq)
{
return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
}
/**
* send_cmd_ioarrin() - sends an AFU command via IOARRIN register
* @afu: AFU associated with the host.
* @cmd: AFU command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
int rc = 0;
s64 room;
ulong lock_flags;
/*
* To avoid the performance penalty of MMIO, spread the update of
* 'room' over multiple commands.
*/
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
if (--hwq->room < 0) {
room = readq_be(&hwq->host_map->cmd_room);
if (room <= 0) {
dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
"0x%02X, room=0x%016llX\n",
__func__, cmd->rcb.cdb[0], room);
hwq->room = 0;
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
hwq->room = room - 1;
}
list_add(&cmd->list, &hwq->pending_cmds);
writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
out:
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
return rc;
}
/**
* send_cmd_sq() - sends an AFU command via SQ ring
* @afu: AFU associated with the host.
* @cmd: AFU command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
int rc = 0;
int newval;
ulong lock_flags;
newval = atomic_dec_if_positive(&hwq->hsq_credits);
if (newval <= 0) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
cmd->rcb.ioasa = &cmd->sa;
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
*hwq->hsq_curr = cmd->rcb;
if (hwq->hsq_curr < hwq->hsq_end)
hwq->hsq_curr++;
else
hwq->hsq_curr = hwq->hsq_start;
list_add(&cmd->list, &hwq->pending_cmds);
writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
out:
dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
"head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
readq_be(&hwq->host_map->sq_head),
readq_be(&hwq->host_map->sq_tail));
return rc;
}
/**
* wait_resp() - polls for a response or timeout to a sent AFU command
* @afu: AFU associated with the host.
* @cmd: AFU command that was sent.
*
* Return: 0 on success, -errno on failure
*/
static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
int rc = 0;
ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
if (!timeout)
rc = -ETIMEDOUT;
if (cmd->cmd_aborted)
rc = -EAGAIN;
if (unlikely(cmd->sa.ioasc != 0)) {
dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
rc = -EIO;
}
return rc;
}
/**
* cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
* @host: SCSI host associated with device.
* @scp: SCSI command to send.
* @afu: SCSI command to send.
*
* Hashes a command based upon the hardware queue mode.
*
* Return: Trusted index of target hardware queue
*/
static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
struct afu *afu)
{
u32 tag;
u32 hwq = 0;
if (afu->num_hwqs == 1)
return 0;
switch (afu->hwq_mode) {
case HWQ_MODE_RR:
hwq = afu->hwq_rr_count++ % afu->num_hwqs;
break;
case HWQ_MODE_TAG:
tag = blk_mq_unique_tag(scp->request);
hwq = blk_mq_unique_tag_to_hwq(tag);
break;
case HWQ_MODE_CPU:
hwq = smp_processor_id() % afu->num_hwqs;
break;
default:
WARN_ON_ONCE(1);
}
return hwq;
}
/**
* send_tmf() - sends a Task Management Function (TMF)
* @cfg: Internal structure associated with the host.
* @sdev: SCSI device destined for TMF.
* @tmfcmd: TMF command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
*/
static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
u64 tmfcmd)
{
struct afu *afu = cfg->afu;
struct afu_cmd *cmd = NULL;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
bool needs_deletion = false;
char *buf = NULL;
ulong lock_flags;
int rc = 0;
ulong to;
buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
if (unlikely(!buf)) {
dev_err(dev, "%s: no memory for command\n", __func__);
rc = -ENOMEM;
goto out;
}
cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
INIT_LIST_HEAD(&cmd->queue);
/* When Task Management Function is active do not send another */
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active)
wait_event_interruptible_lock_irq(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock);
cfg->tmf_active = true;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
cmd->parent = afu;
cmd->cmd_tmf = true;
cmd->hwq_index = hwq->index;
cmd->rcb.ctx_id = hwq->ctx_hndl;
cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
SISL_REQ_FLAGS_SUP_UNDERRUN |
SISL_REQ_FLAGS_TMF_CMD);
memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
rc = afu->send_cmd(afu, cmd);
if (unlikely(rc)) {
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
goto out;
}
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
to = msecs_to_jiffies(5000);
to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock,
to);
if (!to) {
dev_err(dev, "%s: TMF timed out\n", __func__);
rc = -ETIMEDOUT;
needs_deletion = true;
} else if (cmd->cmd_aborted) {
dev_err(dev, "%s: TMF aborted\n", __func__);
rc = -EAGAIN;
} else if (cmd->sa.ioasc) {
dev_err(dev, "%s: TMF failed ioasc=%08x\n",
__func__, cmd->sa.ioasc);
rc = -EIO;
}
cfg->tmf_active = false;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
if (needs_deletion) {
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
list_del(&cmd->list);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
}
out:
kfree(buf);
return rc;
}
/**
* cxlflash_driver_info() - information handler for this host driver
* @host: SCSI host associated with device.
*
* Return: A string describing the device.
*/
static const char *cxlflash_driver_info(struct Scsi_Host *host)
{
return CXLFLASH_ADAPTER_NAME;
}
/**
* cxlflash_queuecommand() - sends a mid-layer request
* @host: SCSI host associated with device.
* @scp: SCSI command to send.
*
* Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
{
struct cxlflash_cfg *cfg = shost_priv(host);
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct afu_cmd *cmd = sc_to_afuci(scp);
struct scatterlist *sg = scsi_sglist(scp);
int hwq_index = cmd_to_target_hwq(host, scp, afu);
struct hwq *hwq = get_hwq(afu, hwq_index);
u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
ulong lock_flags;
int rc = 0;
dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
"cdb=(%08x-%08x-%08x-%08x)\n",
__func__, scp, host->host_no, scp->device->channel,
scp->device->id, scp->device->lun,
get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
/*
* If a Task Management Function is active, wait for it to complete
* before continuing with regular commands.
*/
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active) {
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
switch (cfg->state) {
case STATE_PROBING:
case STATE_PROBED:
case STATE_RESET:
dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
case STATE_FAILTERM:
dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
scp->result = (DID_NO_CONNECT << 16);
scp->scsi_done(scp);
rc = 0;
goto out;
default:
atomic_inc(&afu->cmds_active);
break;
}
if (likely(sg)) {
cmd->rcb.data_len = sg->length;
cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
}
cmd->scp = scp;
cmd->parent = afu;
cmd->hwq_index = hwq_index;
cmd->sa.ioasc = 0;
cmd->rcb.ctx_id = hwq->ctx_hndl;
cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
if (scp->sc_data_direction == DMA_TO_DEVICE)
req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
cmd->rcb.req_flags = req_flags;
memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
rc = afu->send_cmd(afu, cmd);
atomic_dec(&afu->cmds_active);
out:
return rc;
}
/**
* cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
if (pci_channel_offline(pdev))
wait_event_timeout(cfg->reset_waitq,
!pci_channel_offline(pdev),
CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
}
/**
* free_mem() - free memory associated with the AFU
* @cfg: Internal structure associated with the host.
*/
static void free_mem(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
if (cfg->afu) {
free_pages((ulong)afu, get_order(sizeof(struct afu)));
cfg->afu = NULL;
}
}
/**
* cxlflash_reset_sync() - synchronizing point for asynchronous resets
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
{
if (cfg->async_reset_cookie == 0)
return;
/* Wait until all async calls prior to this cookie have completed */
async_synchronize_cookie(cfg->async_reset_cookie + 1);
cfg->async_reset_cookie = 0;
}
/**
* stop_afu() - stops the AFU command timers and unmaps the MMIO space
* @cfg: Internal structure associated with the host.
*
* Safe to call with AFU in a partially allocated/initialized state.
*
* Cancels scheduled worker threads, waits for any active internal AFU
* commands to timeout, disables IRQ polling and then unmaps the MMIO space.
*/
static void stop_afu(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct hwq *hwq;
int i;
cancel_work_sync(&cfg->work_q);
if (!current_is_async())
cxlflash_reset_sync(cfg);
if (likely(afu)) {
while (atomic_read(&afu->cmds_active))
ssleep(1);
if (afu_is_irqpoll_enabled(afu)) {
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
irq_poll_disable(&hwq->irqpoll);
}
}
if (likely(afu->afu_map)) {
cfg->ops->psa_unmap(afu->afu_map);
afu->afu_map = NULL;
}
}
}
/**
* term_intr() - disables all AFU interrupts
* @cfg: Internal structure associated with the host.
* @level: Depth of allocation, where to begin waterfall tear down.
* @index: Index of the hardware queue.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
u32 index)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
if (!afu) {
dev_err(dev, "%s: returning with NULL afu\n", __func__);
return;
}
hwq = get_hwq(afu, index);
if (!hwq->ctx_cookie) {
dev_err(dev, "%s: returning with NULL MC\n", __func__);
return;
}
switch (level) {
case UNMAP_THREE:
/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
if (index == PRIMARY_HWQ)
cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
case UNMAP_TWO:
cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
case UNMAP_ONE:
cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
case FREE_IRQ:
cfg->ops->free_afu_irqs(hwq->ctx_cookie);
/* fall through */
case UNDO_NOOP:
/* No action required */
break;
}
}
/**
* term_mc() - terminates the master context
* @cfg: Internal structure associated with the host.
* @index: Index of the hardware queue.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_mc(struct cxlflash_cfg *cfg, u32 index)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
ulong lock_flags;
if (!afu) {
dev_err(dev, "%s: returning with NULL afu\n", __func__);
return;
}
hwq = get_hwq(afu, index);
if (!hwq->ctx_cookie) {
dev_err(dev, "%s: returning with NULL MC\n", __func__);
return;
}
WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
if (index != PRIMARY_HWQ)
WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
hwq->ctx_cookie = NULL;
spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
hwq->hrrq_online = false;
spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
flush_pending_cmds(hwq);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
}
/**
* term_afu() - terminates the AFU
* @cfg: Internal structure associated with the host.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_afu(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
int k;
/*
* Tear down is carefully orchestrated to ensure
* no interrupts can come in when the problem state
* area is unmapped.
*
* 1) Disable all AFU interrupts for each master
* 2) Unmap the problem state area
* 3) Stop each master context
*/
for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
term_intr(cfg, UNMAP_THREE, k);
stop_afu(cfg);
for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
term_mc(cfg, k);
dev_dbg(dev, "%s: returning\n", __func__);
}
/**
* notify_shutdown() - notifies device of pending shutdown
* @cfg: Internal structure associated with the host.
* @wait: Whether to wait for shutdown processing to complete.
*
* This function will notify the AFU that the adapter is being shutdown
* and will wait for shutdown processing to complete if wait is true.
* This notification should flush pending I/Os to the device and halt
* further I/Os until the next AFU reset is issued and device restarted.
*/
static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct dev_dependent_vals *ddv;
__be64 __iomem *fc_port_regs;
u64 reg, status;
int i, retry_cnt = 0;
ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
return;
if (!afu || !afu->afu_map) {
dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
return;
}
/* Notify AFU */
for (i = 0; i < cfg->num_fc_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
reg |= SISL_FC_SHUTDOWN_NORMAL;
writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
}
if (!wait)
return;
/* Wait up to 1.5 seconds for shutdown processing to complete */
for (i = 0; i < cfg->num_fc_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
retry_cnt = 0;
while (true) {
status = readq_be(&fc_port_regs[FC_STATUS / 8]);
if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
break;
if (++retry_cnt >= MC_RETRY_CNT) {
dev_dbg(dev, "%s: port %d shutdown processing "
"not yet completed\n", __func__, i);
break;
}
msleep(100 * retry_cnt);
}
}
}
/**
* cxlflash_get_minor() - gets the first available minor number
*
* Return: Unique minor number that can be used to create the character device.
*/
static int cxlflash_get_minor(void)
{
int minor;
long bit;
bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
if (bit >= CXLFLASH_MAX_ADAPTERS)
return -1;
minor = bit & MINORMASK;
set_bit(minor, cxlflash_minor);
return minor;
}
/**
* cxlflash_put_minor() - releases the minor number
* @minor: Minor number that is no longer needed.
*/
static void cxlflash_put_minor(int minor)
{
clear_bit(minor, cxlflash_minor);
}
/**
* cxlflash_release_chrdev() - release the character device for the host
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
{
device_unregister(cfg->chardev);
cfg->chardev = NULL;
cdev_del(&cfg->cdev);
cxlflash_put_minor(MINOR(cfg->cdev.dev));
}
/**
* cxlflash_remove() - PCI entry point to tear down host
* @pdev: PCI device associated with the host.
*
* Safe to use as a cleanup in partially allocated/initialized state. Note that
* the reset_waitq is flushed as part of the stop/termination of user contexts.
*/
static void cxlflash_remove(struct pci_dev *pdev)
{
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &pdev->dev;
ulong lock_flags;
if (!pci_is_enabled(pdev)) {
dev_dbg(dev, "%s: Device is disabled\n", __func__);
return;
}
/* Yield to running recovery threads before continuing with remove */
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
cfg->state != STATE_PROBING);
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active)
wait_event_interruptible_lock_irq(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock);
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
/* Notify AFU and wait for shutdown processing to complete */
notify_shutdown(cfg, true);
cfg->state = STATE_FAILTERM;
cxlflash_stop_term_user_contexts(cfg);
switch (cfg->init_state) {
case INIT_STATE_CDEV:
cxlflash_release_chrdev(cfg);
case INIT_STATE_SCSI:
cxlflash_term_local_luns(cfg);
scsi_remove_host(cfg->host);
case INIT_STATE_AFU:
term_afu(cfg);
case INIT_STATE_PCI:
cfg->ops->destroy_afu(cfg->afu_cookie);
pci_disable_device(pdev);
case INIT_STATE_NONE:
free_mem(cfg);
scsi_host_put(cfg->host);
break;
}
dev_dbg(dev, "%s: returning\n", __func__);
}
/**
* alloc_mem() - allocates the AFU and its command pool
* @cfg: Internal structure associated with the host.
*
* A partially allocated state remains on failure.
*
* Return:
* 0 on success
* -ENOMEM on failure to allocate memory
*/
static int alloc_mem(struct cxlflash_cfg *cfg)
{
int rc = 0;
struct device *dev = &cfg->dev->dev;
/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(sizeof(struct afu)));
if (unlikely(!cfg->afu)) {
dev_err(dev, "%s: cannot get %d free pages\n",
__func__, get_order(sizeof(struct afu)));
rc = -ENOMEM;
goto out;
}
cfg->afu->parent = cfg;
cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
cfg->afu->afu_map = NULL;
out:
return rc;
}
/**
* init_pci() - initializes the host as a PCI device
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_pci(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
struct device *dev = &cfg->dev->dev;
int rc = 0;
rc = pci_enable_device(pdev);
if (rc || pci_channel_offline(pdev)) {
if (pci_channel_offline(pdev)) {
cxlflash_wait_for_pci_err_recovery(cfg);
rc = pci_enable_device(pdev);
}
if (rc) {
dev_err(dev, "%s: Cannot enable adapter\n", __func__);
cxlflash_wait_for_pci_err_recovery(cfg);
goto out;
}
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_scsi() - adds the host to the SCSI stack and kicks off host scan
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_scsi(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
struct device *dev = &cfg->dev->dev;
int rc = 0;
rc = scsi_add_host(cfg->host, &pdev->dev);
if (rc) {
dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
goto out;
}
scsi_scan_host(cfg->host);
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* set_port_online() - transitions the specified host FC port to online state
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call. Online state means
* that the FC link layer has synced, completed the handshaking process, and
* is ready for login to start.
*/
static void set_port_online(__be64 __iomem *fc_regs)
{
u64 cmdcfg;
cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
}
/**
* set_port_offline() - transitions the specified host FC port to offline state
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call.
*/
static void set_port_offline(__be64 __iomem *fc_regs)
{
u64 cmdcfg;
cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
}
/**
* wait_port_online() - waits for the specified host FC port come online
* @fc_regs: Top of MMIO region defined for specified port.
* @delay_us: Number of microseconds to delay between reading port status.
* @nretry: Number of cycles to retry reading port status.
*
* The provided MMIO region must be mapped prior to call. This will timeout
* when the cable is not plugged in.
*
* Return:
* TRUE (1) when the specified port is online
* FALSE (0) when the specified port fails to come online after timeout
*/
static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
{
u64 status;
WARN_ON(delay_us < 1000);
do {
msleep(delay_us / 1000);
status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
if (status == U64_MAX)
nretry /= 2;
} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
nretry--);
return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
}
/**
* wait_port_offline() - waits for the specified host FC port go offline
* @fc_regs: Top of MMIO region defined for specified port.
* @delay_us: Number of microseconds to delay between reading port status.
* @nretry: Number of cycles to retry reading port status.
*
* The provided MMIO region must be mapped prior to call.
*
* Return:
* TRUE (1) when the specified port is offline
* FALSE (0) when the specified port fails to go offline after timeout
*/
static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
{
u64 status;
WARN_ON(delay_us < 1000);
do {
msleep(delay_us / 1000);
status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
if (status == U64_MAX)
nretry /= 2;
} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
nretry--);
return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
}
/**
* afu_set_wwpn() - configures the WWPN for the specified host FC port
* @afu: AFU associated with the host that owns the specified FC port.
* @port: Port number being configured.
* @fc_regs: Top of MMIO region defined for specified port.
* @wwpn: The world-wide-port-number previously discovered for port.
*
* The provided MMIO region must be mapped prior to call. As part of the
* sequence to configure the WWPN, the port is toggled offline and then back
* online. This toggling action can cause this routine to delay up to a few
* seconds. When configured to use the internal LUN feature of the AFU, a
* failure to come online is overridden.
*/
static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
u64 wwpn)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
set_port_offline(fc_regs);
if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT)) {
dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
__func__, port);
}
writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
set_port_online(fc_regs);
if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT)) {
dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
__func__, port);
}
}
/**
* afu_link_reset() - resets the specified host FC port
* @afu: AFU associated with the host that owns the specified FC port.
* @port: Port number being configured.
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call. The sequence to
* reset the port involves toggling it offline and then back online. This
* action can cause this routine to delay up to a few seconds. An effort
* is made to maintain link with the device by switching to host to use
* the alternate port exclusively while the reset takes place.
* failure to come online is overridden.
*/
static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
u64 port_sel;
/* first switch the AFU to the other links, if any */
port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
port_sel &= ~(1ULL << port);
writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
set_port_offline(fc_regs);
if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT))
dev_err(dev, "%s: wait on port %d to go offline timed out\n",
__func__, port);
set_port_online(fc_regs);
if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT))
dev_err(dev, "%s: wait on port %d to go online timed out\n",
__func__, port);
/* switch back to include this port */
port_sel |= (1ULL << port);
writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
}
/**
* afu_err_intr_init() - clears and initializes the AFU for error interrupts
* @afu: AFU associated with the host.
*/
static void afu_err_intr_init(struct afu *afu)
{
struct cxlflash_cfg *cfg = afu->parent;
__be64 __iomem *fc_port_regs;
int i;
struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
u64 reg;
/* global async interrupts: AFU clears afu_ctrl on context exit
* if async interrupts were sent to that context. This prevents
* the AFU form sending further async interrupts when
* there is
* nobody to receive them.
*/
/* mask all */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
/* set LISN# to send and point to primary master context */
reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
if (afu->internal_lun)
reg |= 1; /* Bit 63 indicates local lun */
writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
/* clear all */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
/* unmask bits that are of interest */
/* note: afu can send an interrupt after this step */
writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
/* clear again in case a bit came on after previous clear but before */
/* unmask */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
/* Clear/Set internal lun bits */
fc_port_regs = get_fc_port_regs(cfg, 0);
reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
reg &= SISL_FC_INTERNAL_MASK;
if (afu->internal_lun)
reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
/* now clear FC errors */
for (i = 0; i < cfg->num_fc_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
}
/* sync interrupts for master's IOARRIN write */
/* note that unlike asyncs, there can be no pending sync interrupts */
/* at this time (this is a fresh context and master has not written */
/* IOARRIN yet), so there is nothing to clear. */
/* set LISN#, it is always sent to the context that wrote IOARRIN */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
reg = readq_be(&hwq->host_map->ctx_ctrl);
WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
reg |= SISL_MSI_SYNC_ERROR;
writeq_be(reg, &hwq->host_map->ctx_ctrl);
writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
}
}
/**
* cxlflash_sync_err_irq() - interrupt handler for synchronous errors
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: Always return IRQ_HANDLED.
*/
static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
{
struct hwq *hwq = (struct hwq *)data;
struct cxlflash_cfg *cfg = hwq->afu->parent;
struct device *dev = &cfg->dev->dev;
u64 reg;
u64 reg_unmasked;
reg = readq_be(&hwq->host_map->intr_status);
reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
if (reg_unmasked == 0UL) {
dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
__func__, reg);
goto cxlflash_sync_err_irq_exit;
}
dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
__func__, reg);
writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
cxlflash_sync_err_irq_exit:
return IRQ_HANDLED;
}
/**
* process_hrrq() - process the read-response queue
* @afu: AFU associated with the host.
* @doneq: Queue of commands harvested from the RRQ.
* @budget: Threshold of RRQ entries to process.
*
* This routine must be called holding the disabled RRQ spin lock.
*
* Return: The number of entries processed.
*/
static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
{
struct afu *afu = hwq->afu;
struct afu_cmd *cmd;
struct sisl_ioasa *ioasa;
struct sisl_ioarcb *ioarcb;
bool toggle = hwq->toggle;
int num_hrrq = 0;
u64 entry,
*hrrq_start = hwq->hrrq_start,
*hrrq_end = hwq->hrrq_end,
*hrrq_curr = hwq->hrrq_curr;
/* Process ready RRQ entries up to the specified budget (if any) */
while (true) {
entry = *hrrq_curr;
if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
break;
entry &= ~SISL_RESP_HANDLE_T_BIT;
if (afu_is_sq_cmd_mode(afu)) {
ioasa = (struct sisl_ioasa *)entry;
cmd = container_of(ioasa, struct afu_cmd, sa);
} else {
ioarcb = (struct sisl_ioarcb *)entry;
cmd = container_of(ioarcb, struct afu_cmd, rcb);
}
list_add_tail(&cmd->queue, doneq);
/* Advance to next entry or wrap and flip the toggle bit */
if (hrrq_curr < hrrq_end)
hrrq_curr++;
else {
hrrq_curr = hrrq_start;
toggle ^= SISL_RESP_HANDLE_T_BIT;
}
atomic_inc(&hwq->hsq_credits);
num_hrrq++;
if (budget > 0 && num_hrrq >= budget)
break;
}
hwq->hrrq_curr = hrrq_curr;
hwq->toggle = toggle;
return num_hrrq;
}
/**
* process_cmd_doneq() - process a queue of harvested RRQ commands
* @doneq: Queue of completed commands.
*
* Note that upon return the queue can no longer be trusted.
*/
static void process_cmd_doneq(struct list_head *doneq)
{
struct afu_cmd *cmd, *tmp;
WARN_ON(list_empty(doneq));
list_for_each_entry_safe(cmd, tmp, doneq, queue)
cmd_complete(cmd);
}
/**
* cxlflash_irqpoll() - process a queue of harvested RRQ commands
* @irqpoll: IRQ poll structure associated with queue to poll.
* @budget: Threshold of RRQ entries to process per poll.
*
* Return: The number of entries processed.
*/
static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
{
struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
unsigned long hrrq_flags;
LIST_HEAD(doneq);
int num_entries = 0;
spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
num_entries = process_hrrq(hwq, &doneq, budget);
if (num_entries < budget)
irq_poll_complete(irqpoll);
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
process_cmd_doneq(&doneq);
return num_entries;
}
/**
* cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
*/
static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
{
struct hwq *hwq = (struct hwq *)data;
struct afu *afu = hwq->afu;
unsigned long hrrq_flags;
LIST_HEAD(doneq);
int num_entries = 0;
spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
/* Silently drop spurious interrupts when queue is not online */
if (!hwq->hrrq_online) {
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
return IRQ_HANDLED;
}
if (afu_is_irqpoll_enabled(afu)) {
irq_poll_sched(&hwq->irqpoll);
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
return IRQ_HANDLED;
}
num_entries = process_hrrq(hwq, &doneq, -1);
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
if (num_entries == 0)
return IRQ_NONE;
process_cmd_doneq(&doneq);
return IRQ_HANDLED;
}
/*
* Asynchronous interrupt information table
*
* NOTE:
* - Order matters here as this array is indexed by bit position.
*
* - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
* as complex and complains due to a lack of parentheses/braces.
*/
#define ASTATUS_FC(_a, _b, _c, _d) \
{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
#define BUILD_SISL_ASTATUS_FC_PORT(_a) \
ASTATUS_FC(_a, LINK_UP, "link up", 0), \
ASTATUS_FC(_a, LINK_DN, "link down", 0), \
ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
static const struct asyc_intr_info ainfo[] = {
BUILD_SISL_ASTATUS_FC_PORT(1),
BUILD_SISL_ASTATUS_FC_PORT(0),
BUILD_SISL_ASTATUS_FC_PORT(3),
BUILD_SISL_ASTATUS_FC_PORT(2)
};
/**
* cxlflash_async_err_irq() - interrupt handler for asynchronous errors
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: Always return IRQ_HANDLED.
*/
static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
{
struct hwq *hwq = (struct hwq *)data;
struct afu *afu = hwq->afu;
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
const struct asyc_intr_info *info;
struct sisl_global_map __iomem *global = &afu->afu_map->global;
__be64 __iomem *fc_port_regs;
u64 reg_unmasked;
u64 reg;
u64 bit;
u8 port;
reg = readq_be(&global->regs.aintr_status);
reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
if (unlikely(reg_unmasked == 0)) {
dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
__func__, reg);
goto out;
}
/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
writeq_be(reg_unmasked, &global->regs.aintr_clear);
/* Check each bit that is on */
for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
WARN_ON_ONCE(1);
continue;
}
info = &ainfo[bit];
if (unlikely(info->status != 1ULL << bit)) {
WARN_ON_ONCE(1);
continue;
}
port = info->port;
fc_port_regs = get_fc_port_regs(cfg, port);
dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
__func__, port, info->desc,
readq_be(&fc_port_regs[FC_STATUS / 8]));
/*
* Do link reset first, some OTHER errors will set FC_ERROR
* again if cleared before or w/o a reset
*/
if (info->action & LINK_RESET) {
dev_err(dev, "%s: FC Port %d: resetting link\n",
__func__, port);
cfg->lr_state = LINK_RESET_REQUIRED;
cfg->lr_port = port;
schedule_work(&cfg->work_q);
}
if (info->action & CLR_FC_ERROR) {
reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
/*
* Since all errors are unmasked, FC_ERROR and FC_ERRCAP
* should be the same and tracing one is sufficient.
*/
dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
__func__, port, reg);
writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
}
if (info->action & SCAN_HOST) {
atomic_inc(&cfg->scan_host_needed);
schedule_work(&cfg->work_q);
}
}
out:
return IRQ_HANDLED;
}
/**
* read_vpd() - obtains the WWPNs from VPD
* @cfg: Internal structure associated with the host.
* @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
*
* Return: 0 on success, -errno on failure
*/
static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
{
struct device *dev = &cfg->dev->dev;
struct pci_dev *pdev = cfg->dev;
int rc = 0;
int ro_start, ro_size, i, j, k;
ssize_t vpd_size;
char vpd_data[CXLFLASH_VPD_LEN];
char tmp_buf[WWPN_BUF_LEN] = { 0 };
const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
cfg->dev_id->driver_data;
const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
/* Get the VPD data from the device */
vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
if (unlikely(vpd_size <= 0)) {
dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
__func__, vpd_size);
rc = -ENODEV;
goto out;
}
/* Get the read only section offset */
ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
PCI_VPD_LRDT_RO_DATA);
if (unlikely(ro_start < 0)) {
dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
rc = -ENODEV;
goto out;
}
/* Get the read only section size, cap when extends beyond read VPD */
ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
j = ro_size;
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
if (unlikely((i + j) > vpd_size)) {
dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
__func__, (i + j), vpd_size);
ro_size = vpd_size - i;
}
/*
* Find the offset of the WWPN tag within the read only
* VPD data and validate the found field (partials are
* no good to us). Convert the ASCII data to an integer
* value. Note that we must copy to a temporary buffer
* because the conversion service requires that the ASCII
* string be terminated.
*
* Allow for WWPN not being found for all devices, setting
* the returned WWPN to zero when not found. Notify with a
* log error for cards that should have had WWPN keywords
* in the VPD - cards requiring WWPN will not have their
* ports programmed and operate in an undefined state.
*/
for (k = 0; k < cfg->num_fc_ports; k++) {
j = ro_size;
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
if (i < 0) {
if (wwpn_vpd_required)
dev_err(dev, "%s: Port %d WWPN not found\n",
__func__, k);
wwpn[k] = 0ULL;
continue;
}
j = pci_vpd_info_field_size(&vpd_data[i]);
i += PCI_VPD_INFO_FLD_HDR_SIZE;
if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
__func__, k);
rc = -ENODEV;
goto out;
}
memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
if (unlikely(rc)) {
dev_err(dev, "%s: WWPN conversion failed for port %d\n",
__func__, k);
rc = -ENODEV;
goto out;
}
dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_pcr() - initialize the provisioning and control registers
* @cfg: Internal structure associated with the host.
*
* Also sets up fast access to the mapped registers and initializes AFU
* command fields that never change.
*/
static void init_pcr(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct sisl_ctrl_map __iomem *ctrl_map;
struct hwq *hwq;
void *cookie;
int i;
for (i = 0; i < MAX_CONTEXT; i++) {
ctrl_map = &afu->afu_map->ctrls[i].ctrl;
/* Disrupt any clients that could be running */
/* e.g. clients that survived a master restart */
writeq_be(0, &ctrl_map->rht_start);
writeq_be(0, &ctrl_map->rht_cnt_id);
writeq_be(0, &ctrl_map->ctx_cap);
}
/* Copy frequently used fields into hwq */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
cookie = hwq->ctx_cookie;
hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
/* Program the Endian Control for the master context */
writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
}
}
/**
* init_global() - initialize AFU global registers
* @cfg: Internal structure associated with the host.
*/
static int init_global(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
struct sisl_host_map __iomem *hmap;
__be64 __iomem *fc_port_regs;
u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
int i = 0, num_ports = 0;
int rc = 0;
int j;
void *ctx;
u64 reg;
rc = read_vpd(cfg, &wwpn[0]);
if (rc) {
dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
goto out;
}
/* Set up RRQ and SQ in HWQ for master issued cmds */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
hmap = hwq->host_map;
writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
hwq->hrrq_online = true;
if (afu_is_sq_cmd_mode(afu)) {
writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
}
}
/* AFU configuration */
reg = readq_be(&afu->afu_map->global.regs.afu_config);
reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
/* enable all auto retry options and control endianness */
/* leave others at default: */
/* CTX_CAP write protected, mbox_r does not clear on read and */
/* checker on if dual afu */
writeq_be(reg, &afu->afu_map->global.regs.afu_config);
/* Global port select: select either port */
if (afu->internal_lun) {
/* Only use port 0 */
writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
num_ports = 0;
} else {
writeq_be(PORT_MASK(cfg->num_fc_ports),
&afu->afu_map->global.regs.afu_port_sel);
num_ports = cfg->num_fc_ports;
}
for (i = 0; i < num_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
/* Unmask all errors (but they are still masked at AFU) */
writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
/* Clear CRC error cnt & set a threshold */
(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
/* Set WWPNs. If already programmed, wwpn[i] is 0 */
if (wwpn[i] != 0)
afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
/* Programming WWPN back to back causes additional
* offline/online transitions and a PLOGI
*/
msleep(100);
}
if (afu_is_ocxl_lisn(afu)) {
/* Set up the LISN effective address for each master */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
ctx = hwq->ctx_cookie;
for (j = 0; j < hwq->num_irqs; j++) {
reg = cfg->ops->get_irq_objhndl(ctx, j);
writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
}
reg = hwq->ctx_hndl;
writeq_be(SISL_LISN_PASID(reg, reg),
&hwq->ctrl_map->lisn_pasid[0]);
writeq_be(SISL_LISN_PASID(0UL, reg),
&hwq->ctrl_map->lisn_pasid[1]);
}
}
/* Set up master's own CTX_CAP to allow real mode, host translation */
/* tables, afu cmds and read/write GSCSI cmds. */
/* First, unlock ctx_cap write by reading mbox */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
(void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
&hwq->ctrl_map->ctx_cap);
}
/*
* Determine write-same unmap support for host by evaluating the unmap
* sector support bit of the context control register associated with
* the primary hardware queue. Note that while this status is reflected
* in a context register, the outcome can be assumed to be host-wide.
*/
hwq = get_hwq(afu, PRIMARY_HWQ);
reg = readq_be(&hwq->host_map->ctx_ctrl);
if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
cfg->ws_unmap = true;
/* Initialize heartbeat */
afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
out:
return rc;
}
/**
* start_afu() - initializes and starts the AFU
* @cfg: Internal structure associated with the host.
*/
static int start_afu(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
int rc = 0;
int i;
init_pcr(cfg);
/* Initialize each HWQ */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
/* After an AFU reset, RRQ entries are stale, clear them */
memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
/* Initialize RRQ pointers */
hwq->hrrq_start = &hwq->rrq_entry[0];
hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
hwq->hrrq_curr = hwq->hrrq_start;
hwq->toggle = 1;
/* Initialize spin locks */
spin_lock_init(&hwq->hrrq_slock);
spin_lock_init(&hwq->hsq_slock);
/* Initialize SQ */
if (afu_is_sq_cmd_mode(afu)) {
memset(&hwq->sq, 0, sizeof(hwq->sq));
hwq->hsq_start = &hwq->sq[0];
hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
hwq->hsq_curr = hwq->hsq_start;
atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
}
/* Initialize IRQ poll */
if (afu_is_irqpoll_enabled(afu))
irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
cxlflash_irqpoll);
}
rc = init_global(cfg);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_intr() - setup interrupt handlers for the master context
* @cfg: Internal structure associated with the host.
* @hwq: Hardware queue to initialize.
*
* Return: 0 on success, -errno on failure
*/
static enum undo_level init_intr(struct cxlflash_cfg *cfg,
struct hwq *hwq)
{
struct device *dev = &cfg->dev->dev;
void *ctx = hwq->ctx_cookie;
int rc = 0;
enum undo_level level = UNDO_NOOP;
bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
int num_irqs = hwq->num_irqs;
rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
if (unlikely(rc)) {
dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
__func__, rc);
level = UNDO_NOOP;
goto out;
}
rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
"SISL_MSI_SYNC_ERROR");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
level = FREE_IRQ;
goto out;
}
rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
"SISL_MSI_RRQ_UPDATED");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
level = UNMAP_ONE;
goto out;
}
/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
if (!is_primary_hwq)
goto out;
rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
"SISL_MSI_ASYNC_ERROR");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
level = UNMAP_TWO;
goto out;
}
out:
return level;
}
/**
* init_mc() - create and register as the master context
* @cfg: Internal structure associated with the host.
* index: HWQ Index of the master context.
*
* Return: 0 on success, -errno on failure
*/
static int init_mc(struct cxlflash_cfg *cfg, u32 index)
{
void *ctx;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(cfg->afu, index);
int rc = 0;
int num_irqs;
enum undo_level level;
hwq->afu = cfg->afu;
hwq->index = index;
INIT_LIST_HEAD(&hwq->pending_cmds);
if (index == PRIMARY_HWQ) {
ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
num_irqs = 3;
} else {
ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
num_irqs = 2;
}
if (IS_ERR_OR_NULL(ctx)) {
rc = -ENOMEM;
goto err1;
}
WARN_ON(hwq->ctx_cookie);
hwq->ctx_cookie = ctx;
hwq->num_irqs = num_irqs;
/* Set it up as a master with the CXL */
cfg->ops->set_master(ctx);
/* Reset AFU when initializing primary context */
if (index == PRIMARY_HWQ) {
rc = cfg->ops->afu_reset(ctx);
if (unlikely(rc)) {
dev_err(dev, "%s: AFU reset failed rc=%d\n",
__func__, rc);
goto err1;
}
}
level = init_intr(cfg, hwq);
if (unlikely(level)) {
dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
goto err2;
}
/* Finally, activate the context by starting it */
rc = cfg->ops->start_context(hwq->ctx_cookie);
if (unlikely(rc)) {
dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
level = UNMAP_THREE;
goto err2;
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
err2:
term_intr(cfg, level, index);
if (index != PRIMARY_HWQ)
cfg->ops->release_context(ctx);
err1:
hwq->ctx_cookie = NULL;
goto out;
}
/**
* get_num_afu_ports() - determines and configures the number of AFU ports
* @cfg: Internal structure associated with the host.
*
* This routine determines the number of AFU ports by converting the global
* port selection mask. The converted value is only valid following an AFU
* reset (explicit or power-on). This routine must be invoked shortly after
* mapping as other routines are dependent on the number of ports during the
* initialization sequence.
*
* To support legacy AFUs that might not have reflected an initial global
* port mask (value read is 0), default to the number of ports originally
* supported by the cxlflash driver (2) before hardware with other port
* offerings was introduced.
*/
static void get_num_afu_ports(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
u64 port_mask;
int num_fc_ports = LEGACY_FC_PORTS;
port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
if (port_mask != 0ULL)
num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
__func__, port_mask, num_fc_ports);
cfg->num_fc_ports = num_fc_ports;
cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
}
/**
* init_afu() - setup as master context and start AFU
* @cfg: Internal structure associated with the host.
*
* This routine is a higher level of control for configuring the
* AFU on probe and reset paths.
*
* Return: 0 on success, -errno on failure
*/
static int init_afu(struct cxlflash_cfg *cfg)
{
u64 reg;
int rc = 0;
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
int i;
cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
mutex_init(&afu->sync_active);
afu->num_hwqs = afu->desired_hwqs;
for (i = 0; i < afu->num_hwqs; i++) {
rc = init_mc(cfg, i);
if (rc) {
dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
__func__, rc, i);
goto err1;
}
}
/* Map the entire MMIO space of the AFU using the first context */
hwq = get_hwq(afu, PRIMARY_HWQ);
afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
if (!afu->afu_map) {
dev_err(dev, "%s: psa_map failed\n", __func__);
rc = -ENOMEM;
goto err1;
}
/* No byte reverse on reading afu_version or string will be backwards */
reg = readq(&afu->afu_map->global.regs.afu_version);
memcpy(afu->version, &reg, sizeof(reg));
afu->interface_version =
readq_be(&afu->afu_map->global.regs.interface_version);
if ((afu->interface_version + 1) == 0) {
dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
"interface version %016llx\n", afu->version,
afu->interface_version);
rc = -EINVAL;
goto err1;
}
if (afu_is_sq_cmd_mode(afu)) {
afu->send_cmd = send_cmd_sq;
afu->context_reset = context_reset_sq;
} else {
afu->send_cmd = send_cmd_ioarrin;
afu->context_reset = context_reset_ioarrin;
}
dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
afu->version, afu->interface_version);
get_num_afu_ports(cfg);
rc = start_afu(cfg);
if (rc) {
dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
goto err1;
}
afu_err_intr_init(cfg->afu);
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
hwq->room = readq_be(&hwq->host_map->cmd_room);
}
/* Restore the LUN mappings */
cxlflash_restore_luntable(cfg);
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
err1:
for (i = afu->num_hwqs - 1; i >= 0; i--) {
term_intr(cfg, UNMAP_THREE, i);
term_mc(cfg, i);
}
goto out;
}
/**
* afu_reset() - resets the AFU
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int afu_reset(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
int rc = 0;
/* Stop the context before the reset. Since the context is
* no longer available restart it after the reset is complete
*/
term_afu(cfg);
rc = init_afu(cfg);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* drain_ioctls() - wait until all currently executing ioctls have completed
* @cfg: Internal structure associated with the host.
*
* Obtain write access to read/write semaphore that wraps ioctl
* handling to 'drain' ioctls currently executing.
*/
static void drain_ioctls(struct cxlflash_cfg *cfg)
{
down_write(&cfg->ioctl_rwsem);
up_write(&cfg->ioctl_rwsem);
}
/**
* cxlflash_async_reset_host() - asynchronous host reset handler
* @data: Private data provided while scheduling reset.
* @cookie: Cookie that can be used for checkpointing.
*/
static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
{
struct cxlflash_cfg *cfg = data;
struct device *dev = &cfg->dev->dev;
int rc = 0;
if (cfg->state != STATE_RESET) {
dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
__func__, cfg->state);
goto out;
}
drain_ioctls(cfg);
cxlflash_mark_contexts_error(cfg);
rc = afu_reset(cfg);
if (rc)
cfg->state = STATE_FAILTERM;
else
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
out:
scsi_unblock_requests(cfg->host);
}
/**
* cxlflash_schedule_async_reset() - schedule an asynchronous host reset
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
if (cfg->state != STATE_NORMAL) {
dev_dbg(dev, "%s: Not performing reset state=%d\n",
__func__, cfg->state);
return;
}
cfg->state = STATE_RESET;
scsi_block_requests(cfg->host);
cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
cfg);
}
/**
* send_afu_cmd() - builds and sends an internal AFU command
* @afu: AFU associated with the host.
* @rcb: Pre-populated IOARCB describing command to send.
*
* The AFU can only take one internal AFU command at a time. This limitation is
* enforced by using a mutex to provide exclusive access to the AFU during the
* operation. This design point requires calling threads to not be on interrupt
* context due to the possibility of sleeping during concurrent AFU operations.
*
* The command status is optionally passed back to the caller when the caller
* populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
*
* Return:
* 0 on success, -errno on failure
*/
static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct afu_cmd *cmd = NULL;
struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
ulong lock_flags;
char *buf = NULL;
int rc = 0;
int nretry = 0;
if (cfg->state != STATE_NORMAL) {
dev_dbg(dev, "%s: Sync not required state=%u\n",
__func__, cfg->state);
return 0;
}
mutex_lock(&afu->sync_active);
atomic_inc(&afu->cmds_active);
buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
if (unlikely(!buf)) {
dev_err(dev, "%s: no memory for command\n", __func__);
rc = -ENOMEM;
goto out;
}
cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
retry:
memset(cmd, 0, sizeof(*cmd));
memcpy(&cmd->rcb, rcb, sizeof(*rcb));
INIT_LIST_HEAD(&cmd->queue);
init_completion(&cmd->cevent);
cmd->parent = afu;
cmd->hwq_index = hwq->index;
cmd->rcb.ctx_id = hwq->ctx_hndl;
dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
rc = afu->send_cmd(afu, cmd);
if (unlikely(rc)) {
rc = -ENOBUFS;
goto out;
}
rc = wait_resp(afu, cmd);
switch (rc) {
case -ETIMEDOUT:
rc = afu->context_reset(hwq);
if (rc) {
/* Delete the command from pending_cmds list */
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
list_del(&cmd->list);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
cxlflash_schedule_async_reset(cfg);
break;
}
/* fall through to retry */
case -EAGAIN:
if (++nretry < 2)
goto retry;
/* fall through to exit */
default:
break;
}
if (rcb->ioasa)
*rcb->ioasa = cmd->sa;
out:
atomic_dec(&afu->cmds_active);
mutex_unlock(&afu->sync_active);
kfree(buf);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_afu_sync() - builds and sends an AFU sync command
* @afu: AFU associated with the host.
* @ctx: Identifies context requesting sync.
* @res: Identifies resource requesting sync.
* @mode: Type of sync to issue (lightweight, heavyweight, global).
*
* AFU sync operations are only necessary and allowed when the device is
* operating normally. When not operating normally, sync requests can occur as
* part of cleaning up resources associated with an adapter prior to removal.
* In this scenario, these requests are simply ignored (safe due to the AFU
* going away).
*
* Return:
* 0 on success, -errno on failure
*/
int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb rcb = { 0 };
dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
__func__, afu, ctx, res, mode);
rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
rcb.msi = SISL_MSI_RRQ_UPDATED;
rcb.timeout = MC_AFU_SYNC_TIMEOUT;
rcb.cdb[0] = SISL_AFU_CMD_SYNC;
rcb.cdb[1] = mode;
put_unaligned_be16(ctx, &rcb.cdb[2]);
put_unaligned_be32(res, &rcb.cdb[4]);
return send_afu_cmd(afu, &rcb);
}
/**
* cxlflash_eh_abort_handler() - abort a SCSI command
* @scp: SCSI command to abort.
*
* CXL Flash devices do not support a single command abort. Reset the context
* as per SISLite specification. Flush any pending commands in the hardware
* queue before the reset.
*
* Return: SUCCESS/FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
{
int rc = FAILED;
struct Scsi_Host *host = scp->device->host;
struct cxlflash_cfg *cfg = shost_priv(host);
struct afu_cmd *cmd = sc_to_afuc(scp);
struct device *dev = &cfg->dev->dev;
struct afu *afu = cfg->afu;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
scp->device->channel, scp->device->id, scp->device->lun,
get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
/* When the state is not normal, another reset/reload is in progress.
* Return failed and the mid-layer will invoke host reset handler.
*/
if (cfg->state != STATE_NORMAL) {
dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
__func__, cfg->state);
goto out;
}
rc = afu->context_reset(hwq);
if (unlikely(rc))
goto out;
rc = SUCCESS;
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_eh_device_reset_handler() - reset a single LUN
* @scp: SCSI command to send.
*
* Return:
* SUCCESS as defined in scsi/scsi.h
* FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
{
int rc = SUCCESS;
struct scsi_device *sdev = scp->device;
struct Scsi_Host *host = sdev->host;
struct cxlflash_cfg *cfg = shost_priv(host);
struct device *dev = &cfg->dev->dev;
int rcr = 0;
dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
host->host_no, sdev->channel, sdev->id, sdev->lun);
retry:
switch (cfg->state) {
case STATE_NORMAL:
rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
if (unlikely(rcr))
rc = FAILED;
break;
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
goto retry;
default:
rc = FAILED;
break;
}
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_eh_host_reset_handler() - reset the host adapter
* @scp: SCSI command from stack identifying host.
*
* Following a reset, the state is evaluated again in case an EEH occurred
* during the reset. In such a scenario, the host reset will either yield
* until the EEH recovery is complete or return success or failure based
* upon the current device state.
*
* Return:
* SUCCESS as defined in scsi/scsi.h
* FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
{
int rc = SUCCESS;
int rcr = 0;
struct Scsi_Host *host = scp->device->host;
struct cxlflash_cfg *cfg = shost_priv(host);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
switch (cfg->state) {
case STATE_NORMAL:
cfg->state = STATE_RESET;
drain_ioctls(cfg);
cxlflash_mark_contexts_error(cfg);
rcr = afu_reset(cfg);
if (rcr) {
rc = FAILED;
cfg->state = STATE_FAILTERM;
} else
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
ssleep(1);
/* fall through */
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
if (cfg->state == STATE_NORMAL)
break;
/* fall through */
default:
rc = FAILED;
break;
}
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_change_queue_depth() - change the queue depth for the device
* @sdev: SCSI device destined for queue depth change.
* @qdepth: Requested queue depth value to set.
*
* The requested queue depth is capped to the maximum supported value.
*
* Return: The actual queue depth set.
*/
static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
scsi_change_queue_depth(sdev, qdepth);
return sdev->queue_depth;
}
/**
* cxlflash_show_port_status() - queries and presents the current port status
* @port: Desired port for status reporting.
* @cfg: Internal structure associated with the host.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf or -EINVAL.
*/
static ssize_t cxlflash_show_port_status(u32 port,
struct cxlflash_cfg *cfg,
char *buf)
{
struct device *dev = &cfg->dev->dev;
char *disp_status;
u64 status;
__be64 __iomem *fc_port_regs;
WARN_ON(port >= MAX_FC_PORTS);
if (port >= cfg->num_fc_ports) {
dev_info(dev, "%s: Port %d not supported on this card.\n",
__func__, port);
return -EINVAL;
}
fc_port_regs = get_fc_port_regs(cfg, port);
status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
status &= FC_MTIP_STATUS_MASK;
if (status == FC_MTIP_STATUS_ONLINE)
disp_status = "online";
else if (status == FC_MTIP_STATUS_OFFLINE)
disp_status = "offline";
else
disp_status = "unknown";
return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
}
/**
* port0_show() - queries and presents the current status of port 0
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port0_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(0, cfg, buf);
}
/**
* port1_show() - queries and presents the current status of port 1
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port1_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(1, cfg, buf);
}
/**
* port2_show() - queries and presents the current status of port 2
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port2_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(2, cfg, buf);
}
/**
* port3_show() - queries and presents the current status of port 3
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port3_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(3, cfg, buf);
}
/**
* lun_mode_show() - presents the current LUN mode of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the LUN mode.
* @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t lun_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
}
/**
* lun_mode_store() - sets the LUN mode of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the LUN mode.
* @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
* @count: Length of data resizing in @buf.
*
* The CXL Flash AFU supports a dummy LUN mode where the external
* links and storage are not required. Space on the FPGA is used
* to create 1 or 2 small LUNs which are presented to the system
* as if they were a normal storage device. This feature is useful
* during development and also provides manufacturing with a way
* to test the AFU without an actual device.
*
* 0 = external LUN[s] (default)
* 1 = internal LUN (1 x 64K, 512B blocks, id 0)
* 2 = internal LUN (1 x 64K, 4K blocks, id 0)
* 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
* 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t lun_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = shost_priv(shost);
struct afu *afu = cfg->afu;
int rc;
u32 lun_mode;
rc = kstrtouint(buf, 10, &lun_mode);
if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
afu->internal_lun = lun_mode;
/*
* When configured for internal LUN, there is only one channel,
* channel number 0, else there will be one less than the number
* of fc ports for this card.
*/
if (afu->internal_lun)
shost->max_channel = 0;
else
shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
afu_reset(cfg);
scsi_scan_host(cfg->host);
}
return count;
}
/**
* ioctl_version_show() - presents the current ioctl version of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the ioctl version.
* @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t ioctl_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t bytes = 0;
bytes = scnprintf(buf, PAGE_SIZE,
"disk: %u\n", DK_CXLFLASH_VERSION_0);
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
"host: %u\n", HT_CXLFLASH_VERSION_0);
return bytes;
}
/**
* cxlflash_show_port_lun_table() - queries and presents the port LUN table
* @port: Desired port for status reporting.
* @cfg: Internal structure associated with the host.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf or -EINVAL.
*/
static ssize_t cxlflash_show_port_lun_table(u32 port,
struct cxlflash_cfg *cfg,
char *buf)
{
struct device *dev = &cfg->dev->dev;
__be64 __iomem *fc_port_luns;
int i;
ssize_t bytes = 0;
WARN_ON(port >= MAX_FC_PORTS);
if (port >= cfg->num_fc_ports) {
dev_info(dev, "%s: Port %d not supported on this card.\n",
__func__, port);
return -EINVAL;
}
fc_port_luns = get_fc_port_luns(cfg, port);
for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
"%03d: %016llx\n",
i, readq_be(&fc_port_luns[i]));
return bytes;
}
/**
* port0_lun_table_show() - presents the current LUN table of port 0
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port0_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(0, cfg, buf);
}
/**
* port1_lun_table_show() - presents the current LUN table of port 1
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port1_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(1, cfg, buf);
}
/**
* port2_lun_table_show() - presents the current LUN table of port 2
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port2_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(2, cfg, buf);
}
/**
* port3_lun_table_show() - presents the current LUN table of port 3
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port3_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(3, cfg, buf);
}
/**
* irqpoll_weight_show() - presents the current IRQ poll weight for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the IRQ poll weight.
* @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
* weight in ASCII.
*
* An IRQ poll weight of 0 indicates polling is disabled.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t irqpoll_weight_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
}
/**
* irqpoll_weight_store() - sets the current IRQ poll weight for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the IRQ poll weight.
* @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
* weight in ASCII.
* @count: Length of data resizing in @buf.
*
* An IRQ poll weight of 0 indicates polling is disabled.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t irqpoll_weight_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct device *cfgdev = &cfg->dev->dev;
struct afu *afu = cfg->afu;
struct hwq *hwq;
u32 weight;
int rc, i;
rc = kstrtouint(buf, 10, &weight);
if (rc)
return -EINVAL;
if (weight > 256) {
dev_info(cfgdev,
"Invalid IRQ poll weight. It must be 256 or less.\n");
return -EINVAL;
}
if (weight == afu->irqpoll_weight) {
dev_info(cfgdev,
"Current IRQ poll weight has the same weight.\n");
return -EINVAL;
}
if (afu_is_irqpoll_enabled(afu)) {
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
irq_poll_disable(&hwq->irqpoll);
}
}
afu->irqpoll_weight = weight;
if (weight > 0) {
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
}
}
return count;
}
/**
* num_hwqs_show() - presents the number of hardware queues for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the number of hardware queues.
* @buf: Buffer of length PAGE_SIZE to report back the number of hardware
* queues in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t num_hwqs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
}
/**
* num_hwqs_store() - sets the number of hardware queues for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the number of hardware queues.
* @buf: Buffer of length PAGE_SIZE containing the number of hardware
* queues in ASCII.
* @count: Length of data resizing in @buf.
*
* n > 0: num_hwqs = n
* n = 0: num_hwqs = num_online_cpus()
* n < 0: num_online_cpus() / abs(n)
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t num_hwqs_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
int rc;
int nhwqs, num_hwqs;
rc = kstrtoint(buf, 10, &nhwqs);
if (rc)
return -EINVAL;
if (nhwqs >= 1)
num_hwqs = nhwqs;
else if (nhwqs == 0)
num_hwqs = num_online_cpus();
else
num_hwqs = num_online_cpus() / abs(nhwqs);
afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
WARN_ON_ONCE(afu->desired_hwqs == 0);
retry:
switch (cfg->state) {
case STATE_NORMAL:
cfg->state = STATE_RESET;
drain_ioctls(cfg);
cxlflash_mark_contexts_error(cfg);
rc = afu_reset(cfg);
if (rc)
cfg->state = STATE_FAILTERM;
else
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
break;
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
if (cfg->state == STATE_NORMAL)
goto retry;
default:
/* Ideally should not happen */
dev_err(dev, "%s: Device is not ready, state=%d\n",
__func__, cfg->state);
break;
}
return count;
}
static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
/**
* hwq_mode_show() - presents the HWQ steering mode for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the HWQ steering mode.
* @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
* as a character string.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t hwq_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
}
/**
* hwq_mode_store() - sets the HWQ steering mode for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the HWQ steering mode.
* @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
* as a character string.
* @count: Length of data resizing in @buf.
*
* rr = Round-Robin
* tag = Block MQ Tagging
* cpu = CPU Affinity
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t hwq_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = shost_priv(shost);
struct device *cfgdev = &cfg->dev->dev;
struct afu *afu = cfg->afu;
int i;
u32 mode = MAX_HWQ_MODE;
for (i = 0; i < MAX_HWQ_MODE; i++) {
if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
mode = i;
break;
}
}
if (mode >= MAX_HWQ_MODE) {
dev_info(cfgdev, "Invalid HWQ steering mode.\n");
return -EINVAL;
}
if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
"HWQ steering mode.\n");
return -EINVAL;
}
afu->hwq_mode = mode;
return count;
}
/**
* mode_show() - presents the current mode of the device
* @dev: Generic device associated with the device.
* @attr: Device attribute representing the device mode.
* @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
return scnprintf(buf, PAGE_SIZE, "%s\n",
sdev->hostdata ? "superpipe" : "legacy");
}
/*
* Host attributes
*/
static DEVICE_ATTR_RO(port0);
static DEVICE_ATTR_RO(port1);
static DEVICE_ATTR_RO(port2);
static DEVICE_ATTR_RO(port3);
static DEVICE_ATTR_RW(lun_mode);
static DEVICE_ATTR_RO(ioctl_version);
static DEVICE_ATTR_RO(port0_lun_table);
static DEVICE_ATTR_RO(port1_lun_table);
static DEVICE_ATTR_RO(port2_lun_table);
static DEVICE_ATTR_RO(port3_lun_table);
static DEVICE_ATTR_RW(irqpoll_weight);
static DEVICE_ATTR_RW(num_hwqs);
static DEVICE_ATTR_RW(hwq_mode);
static struct device_attribute *cxlflash_host_attrs[] = {
&dev_attr_port0,
&dev_attr_port1,
&dev_attr_port2,
&dev_attr_port3,
&dev_attr_lun_mode,
&dev_attr_ioctl_version,
&dev_attr_port0_lun_table,
&dev_attr_port1_lun_table,
&dev_attr_port2_lun_table,
&dev_attr_port3_lun_table,
&dev_attr_irqpoll_weight,
&dev_attr_num_hwqs,
&dev_attr_hwq_mode,
NULL
};
/*
* Device attributes
*/
static DEVICE_ATTR_RO(mode);
static struct device_attribute *cxlflash_dev_attrs[] = {
&dev_attr_mode,
NULL
};
/*
* Host template
*/
static struct scsi_host_template driver_template = {
.module = THIS_MODULE,
.name = CXLFLASH_ADAPTER_NAME,
.info = cxlflash_driver_info,
.ioctl = cxlflash_ioctl,
.proc_name = CXLFLASH_NAME,
.queuecommand = cxlflash_queuecommand,
.eh_abort_handler = cxlflash_eh_abort_handler,
.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
.change_queue_depth = cxlflash_change_queue_depth,
.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
.can_queue = CXLFLASH_MAX_CMDS,
.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
.this_id = -1,
.sg_tablesize = 1, /* No scatter gather support */
.max_sectors = CXLFLASH_MAX_SECTORS,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = cxlflash_host_attrs,
.sdev_attrs = cxlflash_dev_attrs,
};
/*
* Device dependent values
*/
static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
CXLFLASH_WWPN_VPD_REQUIRED };
static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
CXLFLASH_NOTIFY_SHUTDOWN };
static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
(CXLFLASH_NOTIFY_SHUTDOWN |
CXLFLASH_OCXL_DEV) };
/*
* PCI device binding table
*/
static struct pci_device_id cxlflash_pci_table[] = {
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
{}
};
MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
/**
* cxlflash_worker_thread() - work thread handler for the AFU
* @work: Work structure contained within cxlflash associated with host.
*
* Handles the following events:
* - Link reset which cannot be performed on interrupt context due to
* blocking up to a few seconds
* - Rescan the host
*/
static void cxlflash_worker_thread(struct work_struct *work)
{
struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
work_q);
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
__be64 __iomem *fc_port_regs;
int port;
ulong lock_flags;
/* Avoid MMIO if the device has failed */
if (cfg->state != STATE_NORMAL)
return;
spin_lock_irqsave(cfg->host->host_lock, lock_flags);
if (cfg->lr_state == LINK_RESET_REQUIRED) {
port = cfg->lr_port;
if (port < 0)
dev_err(dev, "%s: invalid port index %d\n",
__func__, port);
else {
spin_unlock_irqrestore(cfg->host->host_lock,
lock_flags);
/* The reset can block... */
fc_port_regs = get_fc_port_regs(cfg, port);
afu_link_reset(afu, port, fc_port_regs);
spin_lock_irqsave(cfg->host->host_lock, lock_flags);
}
cfg->lr_state = LINK_RESET_COMPLETE;
}
spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
scsi_scan_host(cfg->host);
}
/**
* cxlflash_chr_open() - character device open handler
* @inode: Device inode associated with this character device.
* @file: File pointer for this device.
*
* Only users with admin privileges are allowed to open the character device.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_chr_open(struct inode *inode, struct file *file)
{
struct cxlflash_cfg *cfg;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
file->private_data = cfg;
return 0;
}
/**
* decode_hioctl() - translates encoded host ioctl to easily identifiable string
* @cmd: The host ioctl command to decode.
*
* Return: A string identifying the decoded host ioctl.
*/
static char *decode_hioctl(int cmd)
{
switch (cmd) {
case HT_CXLFLASH_LUN_PROVISION:
return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
}
return "UNKNOWN";
}
/**
* cxlflash_lun_provision() - host LUN provisioning handler
* @cfg: Internal structure associated with the host.
* @arg: Kernel copy of userspace ioctl data structure.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
struct ht_cxlflash_lun_provision *lunprov)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb rcb;
struct sisl_ioasa asa;
__be64 __iomem *fc_port_regs;
u16 port = lunprov->port;
u16 scmd = lunprov->hdr.subcmd;
u16 type;
u64 reg;
u64 size;
u64 lun_id;
int rc = 0;
if (!afu_is_lun_provision(afu)) {
rc = -ENOTSUPP;
goto out;
}
if (port >= cfg->num_fc_ports) {
rc = -EINVAL;
goto out;
}
switch (scmd) {
case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
type = SISL_AFU_LUN_PROVISION_CREATE;
size = lunprov->size;
lun_id = 0;
break;
case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
type = SISL_AFU_LUN_PROVISION_DELETE;
size = 0;
lun_id = lunprov->lun_id;
break;
case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
fc_port_regs = get_fc_port_regs(cfg, port);
reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
lunprov->max_num_luns = reg;
reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
lunprov->cur_num_luns = reg;
reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
lunprov->max_cap_port = reg;
reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
lunprov->cur_cap_port = reg;
goto out;
default:
rc = -EINVAL;
goto out;
}
memset(&rcb, 0, sizeof(rcb));
memset(&asa, 0, sizeof(asa));
rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
rcb.lun_id = lun_id;
rcb.msi = SISL_MSI_RRQ_UPDATED;
rcb.timeout = MC_LUN_PROV_TIMEOUT;
rcb.ioasa = &asa;
rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
rcb.cdb[1] = type;
rcb.cdb[2] = port;
put_unaligned_be64(size, &rcb.cdb[8]);
rc = send_afu_cmd(afu, &rcb);
if (rc) {
dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
__func__, rc, asa.ioasc, asa.afu_extra);
goto out;
}
if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_afu_debug() - host AFU debug handler
* @cfg: Internal structure associated with the host.
* @arg: Kernel copy of userspace ioctl data structure.
*
* For debug requests requiring a data buffer, always provide an aligned
* (cache line) buffer to the AFU to appease any alignment requirements.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
struct ht_cxlflash_afu_debug *afu_dbg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb rcb;
struct sisl_ioasa asa;
char *buf = NULL;
char *kbuf = NULL;
void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
u32 ulen = afu_dbg->data_len;
bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
int rc = 0;
if (!afu_is_afu_debug(afu)) {
rc = -ENOTSUPP;
goto out;
}
if (ulen) {
req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
rc = -EINVAL;
goto out;
}
buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
if (unlikely(!buf)) {
rc = -ENOMEM;
goto out;
}
kbuf = PTR_ALIGN(buf, cache_line_size());
if (is_write) {
req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
if (copy_from_user(kbuf, ubuf, ulen)) {
rc = -EFAULT;
goto out;
}
}
}
memset(&rcb, 0, sizeof(rcb));
memset(&asa, 0, sizeof(asa));
rcb.req_flags = req_flags;
rcb.msi = SISL_MSI_RRQ_UPDATED;
rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
rcb.ioasa = &asa;
if (ulen) {
rcb.data_len = ulen;
rcb.data_ea = (uintptr_t)kbuf;
}
rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
rc = send_afu_cmd(afu, &rcb);
if (rc) {
dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
__func__, rc, asa.ioasc, asa.afu_extra);
goto out;
}
if (ulen && !is_write) {
if (copy_to_user(ubuf, kbuf, ulen))
rc = -EFAULT;
}
out:
kfree(buf);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_chr_ioctl() - character device IOCTL handler
* @file: File pointer for this device.
* @cmd: IOCTL command.
* @arg: Userspace ioctl data structure.
*
* A read/write semaphore is used to implement a 'drain' of currently
* running ioctls. The read semaphore is taken at the beginning of each
* ioctl thread and released upon concluding execution. Additionally the
* semaphore should be released and then reacquired in any ioctl execution
* path which will wait for an event to occur that is outside the scope of
* the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
* a thread simply needs to acquire the write semaphore.
*
* Return: 0 on success, -errno on failure
*/
static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
typedef int (*hioctl) (struct cxlflash_cfg *, void *);
struct cxlflash_cfg *cfg = file->private_data;
struct device *dev = &cfg->dev->dev;
char buf[sizeof(union cxlflash_ht_ioctls)];
void __user *uarg = (void __user *)arg;
struct ht_cxlflash_hdr *hdr;
size_t size = 0;
bool known_ioctl = false;
int idx = 0;
int rc = 0;
hioctl do_ioctl = NULL;
static const struct {
size_t size;
hioctl ioctl;
} ioctl_tbl[] = { /* NOTE: order matters here */
{ sizeof(struct ht_cxlflash_lun_provision),
(hioctl)cxlflash_lun_provision },
{ sizeof(struct ht_cxlflash_afu_debug),
(hioctl)cxlflash_afu_debug },
};
/* Hold read semaphore so we can drain if needed */
down_read(&cfg->ioctl_rwsem);
dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
__func__, cmd, idx, sizeof(ioctl_tbl));
switch (cmd) {
case HT_CXLFLASH_LUN_PROVISION:
case HT_CXLFLASH_AFU_DEBUG:
known_ioctl = true;
idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
size = ioctl_tbl[idx].size;
do_ioctl = ioctl_tbl[idx].ioctl;
if (likely(do_ioctl))
break;
/* fall through */
default:
rc = -EINVAL;
goto out;
}
if (unlikely(copy_from_user(&buf, uarg, size))) {
dev_err(dev, "%s: copy_from_user() fail "
"size=%lu cmd=%d (%s) uarg=%p\n",
__func__, size, cmd, decode_hioctl(cmd), uarg);
rc = -EFAULT;
goto out;
}
hdr = (struct ht_cxlflash_hdr *)&buf;
if (hdr->version != HT_CXLFLASH_VERSION_0) {
dev_dbg(dev, "%s: Version %u not supported for %s\n",
__func__, hdr->version, decode_hioctl(cmd));
rc = -EINVAL;
goto out;
}
if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
rc = -EINVAL;
goto out;
}
rc = do_ioctl(cfg, (void *)&buf);
if (likely(!rc))
if (unlikely(copy_to_user(uarg, &buf, size))) {
dev_err(dev, "%s: copy_to_user() fail "
"size=%lu cmd=%d (%s) uarg=%p\n",
__func__, size, cmd, decode_hioctl(cmd), uarg);
rc = -EFAULT;
}
/* fall through to exit */
out:
up_read(&cfg->ioctl_rwsem);
if (unlikely(rc && known_ioctl))
dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
__func__, decode_hioctl(cmd), cmd, rc);
else
dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
__func__, decode_hioctl(cmd), cmd, rc);
return rc;
}
/*
* Character device file operations
*/
static const struct file_operations cxlflash_chr_fops = {
.owner = THIS_MODULE,
.open = cxlflash_chr_open,
.unlocked_ioctl = cxlflash_chr_ioctl,
.compat_ioctl = cxlflash_chr_ioctl,
};
/**
* init_chrdev() - initialize the character device for the host
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_chrdev(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
struct device *char_dev;
dev_t devno;
int minor;
int rc = 0;
minor = cxlflash_get_minor();
if (unlikely(minor < 0)) {
dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
rc = -ENOSPC;
goto out;
}
devno = MKDEV(cxlflash_major, minor);
cdev_init(&cfg->cdev, &cxlflash_chr_fops);
rc = cdev_add(&cfg->cdev, devno, 1);
if (rc) {
dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
goto err1;
}
char_dev = device_create(cxlflash_class, NULL, devno,
NULL, "cxlflash%d", minor);
if (IS_ERR(char_dev)) {
rc = PTR_ERR(char_dev);
dev_err(dev, "%s: device_create failed rc=%d\n",
__func__, rc);
goto err2;
}
cfg->chardev = char_dev;
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
err2:
cdev_del(&cfg->cdev);
err1:
cxlflash_put_minor(minor);
goto out;
}
/**
* cxlflash_probe() - PCI entry point to add host
* @pdev: PCI device associated with the host.
* @dev_id: PCI device id associated with device.
*
* The device will initially start out in a 'probing' state and
* transition to the 'normal' state at the end of a successful
* probe. Should an EEH event occur during probe, the notification
* thread (error_detected()) will wait until the probe handler
* is nearly complete. At that time, the device will be moved to
* a 'probed' state and the EEH thread woken up to drive the slot
* reset and recovery (device moves to 'normal' state). Meanwhile,
* the probe will be allowed to exit successfully.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_probe(struct pci_dev *pdev,
const struct pci_device_id *dev_id)
{
struct Scsi_Host *host;
struct cxlflash_cfg *cfg = NULL;
struct device *dev = &pdev->dev;
struct dev_dependent_vals *ddv;
int rc = 0;
int k;
dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
__func__, pdev->irq);
ddv = (struct dev_dependent_vals *)dev_id->driver_data;
driver_template.max_sectors = ddv->max_sectors;
host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
if (!host) {
dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
rc = -ENOMEM;
goto out;
}
host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
host->unique_id = host->host_no;
host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
cfg = shost_priv(host);
cfg->host = host;
rc = alloc_mem(cfg);
if (rc) {
dev_err(dev, "%s: alloc_mem failed\n", __func__);
rc = -ENOMEM;
scsi_host_put(cfg->host);
goto out;
}
cfg->init_state = INIT_STATE_NONE;
cfg->dev = pdev;
cfg->cxl_fops = cxlflash_cxl_fops;
cfg->ops = cxlflash_assign_ops(ddv);
WARN_ON_ONCE(!cfg->ops);
/*
* Promoted LUNs move to the top of the LUN table. The rest stay on
* the bottom half. The bottom half grows from the end (index = 255),
* whereas the top half grows from the beginning (index = 0).
*
* Initialize the last LUN index for all possible ports.
*/
cfg->promote_lun_index = 0;
for (k = 0; k < MAX_FC_PORTS; k++)
cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
cfg->dev_id = (struct pci_device_id *)dev_id;
init_waitqueue_head(&cfg->tmf_waitq);
init_waitqueue_head(&cfg->reset_waitq);
INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
cfg->lr_state = LINK_RESET_INVALID;
cfg->lr_port = -1;
spin_lock_init(&cfg->tmf_slock);
mutex_init(&cfg->ctx_tbl_list_mutex);
mutex_init(&cfg->ctx_recovery_mutex);
init_rwsem(&cfg->ioctl_rwsem);
INIT_LIST_HEAD(&cfg->ctx_err_recovery);
INIT_LIST_HEAD(&cfg->lluns);
pci_set_drvdata(pdev, cfg);
rc = init_pci(cfg);
if (rc) {
dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_PCI;
cfg->afu_cookie = cfg->ops->create_afu(pdev);
if (unlikely(!cfg->afu_cookie)) {
dev_err(dev, "%s: create_afu failed\n", __func__);
goto out_remove;
}
rc = init_afu(cfg);
if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_AFU;
rc = init_scsi(cfg);
if (rc) {
dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_SCSI;
rc = init_chrdev(cfg);
if (rc) {
dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_CDEV;
if (wq_has_sleeper(&cfg->reset_waitq)) {
cfg->state = STATE_PROBED;
wake_up_all(&cfg->reset_waitq);
} else
cfg->state = STATE_NORMAL;
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
out_remove:
cxlflash_remove(pdev);
goto out;
}
/**
* cxlflash_pci_error_detected() - called when a PCI error is detected
* @pdev: PCI device struct.
* @state: PCI channel state.
*
* When an EEH occurs during an active reset, wait until the reset is
* complete and then take action based upon the device state.
*
* Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
*/
static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
int rc = 0;
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
switch (state) {
case pci_channel_io_frozen:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
cfg->state != STATE_PROBING);
if (cfg->state == STATE_FAILTERM)
return PCI_ERS_RESULT_DISCONNECT;
cfg->state = STATE_RESET;
scsi_block_requests(cfg->host);
drain_ioctls(cfg);
rc = cxlflash_mark_contexts_error(cfg);
if (unlikely(rc))
dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
__func__, rc);
term_afu(cfg);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
cfg->state = STATE_FAILTERM;
wake_up_all(&cfg->reset_waitq);
scsi_unblock_requests(cfg->host);
return PCI_ERS_RESULT_DISCONNECT;
default:
break;
}
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* cxlflash_pci_slot_reset() - called when PCI slot has been reset
* @pdev: PCI device struct.
*
* This routine is called by the pci error recovery code after the PCI
* slot has been reset, just before we should resume normal operations.
*
* Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
*/
static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
{
int rc = 0;
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
rc = init_afu(cfg);
if (unlikely(rc)) {
dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
/**
* cxlflash_pci_resume() - called when normal operation can resume
* @pdev: PCI device struct
*/
static void cxlflash_pci_resume(struct pci_dev *pdev)
{
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
scsi_unblock_requests(cfg->host);
}
/**
* cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
* @dev: Character device.
* @mode: Mode that can be used to verify access.
*
* Return: Allocated string describing the devtmpfs structure.
*/
static char *cxlflash_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
}
/**
* cxlflash_class_init() - create character device class
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_class_init(void)
{
dev_t devno;
int rc = 0;
rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
if (unlikely(rc)) {
pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
goto out;
}
cxlflash_major = MAJOR(devno);
cxlflash_class = class_create(THIS_MODULE, "cxlflash");
if (IS_ERR(cxlflash_class)) {
rc = PTR_ERR(cxlflash_class);
pr_err("%s: class_create failed rc=%d\n", __func__, rc);
goto err;
}
cxlflash_class->devnode = cxlflash_devnode;
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
err:
unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
goto out;
}
/**
* cxlflash_class_exit() - destroy character device class
*/
static void cxlflash_class_exit(void)
{
dev_t devno = MKDEV(cxlflash_major, 0);
class_destroy(cxlflash_class);
unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
}
static const struct pci_error_handlers cxlflash_err_handler = {
.error_detected = cxlflash_pci_error_detected,
.slot_reset = cxlflash_pci_slot_reset,
.resume = cxlflash_pci_resume,
};
/*
* PCI device structure
*/
static struct pci_driver cxlflash_driver = {
.name = CXLFLASH_NAME,
.id_table = cxlflash_pci_table,
.probe = cxlflash_probe,
.remove = cxlflash_remove,
.shutdown = cxlflash_remove,
.err_handler = &cxlflash_err_handler,
};
/**
* init_cxlflash() - module entry point
*
* Return: 0 on success, -errno on failure
*/
static int __init init_cxlflash(void)
{
int rc;
check_sizes();
cxlflash_list_init();
rc = cxlflash_class_init();
if (unlikely(rc))
goto out;
rc = pci_register_driver(&cxlflash_driver);
if (unlikely(rc))
goto err;
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
err:
cxlflash_class_exit();
goto out;
}
/**
* exit_cxlflash() - module exit point
*/
static void __exit exit_cxlflash(void)
{
cxlflash_term_global_luns();
cxlflash_free_errpage();
pci_unregister_driver(&cxlflash_driver);
cxlflash_class_exit();
}
module_init(init_cxlflash);
module_exit(exit_cxlflash);