linux-sg2042/drivers/input/misc/drv260x.c

678 lines
19 KiB
C

/*
* DRV260X haptics driver family
*
* Author: Dan Murphy <dmurphy@ti.com>
*
* Copyright: (C) 2014 Texas Instruments, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/consumer.h>
#include <dt-bindings/input/ti-drv260x.h>
#define DRV260X_STATUS 0x0
#define DRV260X_MODE 0x1
#define DRV260X_RT_PB_IN 0x2
#define DRV260X_LIB_SEL 0x3
#define DRV260X_WV_SEQ_1 0x4
#define DRV260X_WV_SEQ_2 0x5
#define DRV260X_WV_SEQ_3 0x6
#define DRV260X_WV_SEQ_4 0x7
#define DRV260X_WV_SEQ_5 0x8
#define DRV260X_WV_SEQ_6 0x9
#define DRV260X_WV_SEQ_7 0xa
#define DRV260X_WV_SEQ_8 0xb
#define DRV260X_GO 0xc
#define DRV260X_OVERDRIVE_OFF 0xd
#define DRV260X_SUSTAIN_P_OFF 0xe
#define DRV260X_SUSTAIN_N_OFF 0xf
#define DRV260X_BRAKE_OFF 0x10
#define DRV260X_A_TO_V_CTRL 0x11
#define DRV260X_A_TO_V_MIN_INPUT 0x12
#define DRV260X_A_TO_V_MAX_INPUT 0x13
#define DRV260X_A_TO_V_MIN_OUT 0x14
#define DRV260X_A_TO_V_MAX_OUT 0x15
#define DRV260X_RATED_VOLT 0x16
#define DRV260X_OD_CLAMP_VOLT 0x17
#define DRV260X_CAL_COMP 0x18
#define DRV260X_CAL_BACK_EMF 0x19
#define DRV260X_FEEDBACK_CTRL 0x1a
#define DRV260X_CTRL1 0x1b
#define DRV260X_CTRL2 0x1c
#define DRV260X_CTRL3 0x1d
#define DRV260X_CTRL4 0x1e
#define DRV260X_CTRL5 0x1f
#define DRV260X_LRA_LOOP_PERIOD 0x20
#define DRV260X_VBAT_MON 0x21
#define DRV260X_LRA_RES_PERIOD 0x22
#define DRV260X_MAX_REG 0x23
#define DRV260X_GO_BIT 0x01
/* Library Selection */
#define DRV260X_LIB_SEL_MASK 0x07
#define DRV260X_LIB_SEL_RAM 0x0
#define DRV260X_LIB_SEL_OD 0x1
#define DRV260X_LIB_SEL_40_60 0x2
#define DRV260X_LIB_SEL_60_80 0x3
#define DRV260X_LIB_SEL_100_140 0x4
#define DRV260X_LIB_SEL_140_PLUS 0x5
#define DRV260X_LIB_SEL_HIZ_MASK 0x10
#define DRV260X_LIB_SEL_HIZ_EN 0x01
#define DRV260X_LIB_SEL_HIZ_DIS 0
/* Mode register */
#define DRV260X_STANDBY (1 << 6)
#define DRV260X_STANDBY_MASK 0x40
#define DRV260X_INTERNAL_TRIGGER 0x00
#define DRV260X_EXT_TRIGGER_EDGE 0x01
#define DRV260X_EXT_TRIGGER_LEVEL 0x02
#define DRV260X_PWM_ANALOG_IN 0x03
#define DRV260X_AUDIOHAPTIC 0x04
#define DRV260X_RT_PLAYBACK 0x05
#define DRV260X_DIAGNOSTICS 0x06
#define DRV260X_AUTO_CAL 0x07
/* Audio to Haptics Control */
#define DRV260X_AUDIO_HAPTICS_PEAK_10MS (0 << 2)
#define DRV260X_AUDIO_HAPTICS_PEAK_20MS (1 << 2)
#define DRV260X_AUDIO_HAPTICS_PEAK_30MS (2 << 2)
#define DRV260X_AUDIO_HAPTICS_PEAK_40MS (3 << 2)
#define DRV260X_AUDIO_HAPTICS_FILTER_100HZ 0x00
#define DRV260X_AUDIO_HAPTICS_FILTER_125HZ 0x01
#define DRV260X_AUDIO_HAPTICS_FILTER_150HZ 0x02
#define DRV260X_AUDIO_HAPTICS_FILTER_200HZ 0x03
/* Min/Max Input/Output Voltages */
#define DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT 0x19
#define DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT 0x64
#define DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT 0x19
#define DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT 0xFF
/* Feedback register */
#define DRV260X_FB_REG_ERM_MODE 0x7f
#define DRV260X_FB_REG_LRA_MODE (1 << 7)
#define DRV260X_BRAKE_FACTOR_MASK 0x1f
#define DRV260X_BRAKE_FACTOR_2X (1 << 0)
#define DRV260X_BRAKE_FACTOR_3X (2 << 4)
#define DRV260X_BRAKE_FACTOR_4X (3 << 4)
#define DRV260X_BRAKE_FACTOR_6X (4 << 4)
#define DRV260X_BRAKE_FACTOR_8X (5 << 4)
#define DRV260X_BRAKE_FACTOR_16 (6 << 4)
#define DRV260X_BRAKE_FACTOR_DIS (7 << 4)
#define DRV260X_LOOP_GAIN_LOW 0xf3
#define DRV260X_LOOP_GAIN_MED (1 << 2)
#define DRV260X_LOOP_GAIN_HIGH (2 << 2)
#define DRV260X_LOOP_GAIN_VERY_HIGH (3 << 2)
#define DRV260X_BEMF_GAIN_0 0xfc
#define DRV260X_BEMF_GAIN_1 (1 << 0)
#define DRV260X_BEMF_GAIN_2 (2 << 0)
#define DRV260X_BEMF_GAIN_3 (3 << 0)
/* Control 1 register */
#define DRV260X_AC_CPLE_EN (1 << 5)
#define DRV260X_STARTUP_BOOST (1 << 7)
/* Control 2 register */
#define DRV260X_IDISS_TIME_45 0
#define DRV260X_IDISS_TIME_75 (1 << 0)
#define DRV260X_IDISS_TIME_150 (1 << 1)
#define DRV260X_IDISS_TIME_225 0x03
#define DRV260X_BLANK_TIME_45 (0 << 2)
#define DRV260X_BLANK_TIME_75 (1 << 2)
#define DRV260X_BLANK_TIME_150 (2 << 2)
#define DRV260X_BLANK_TIME_225 (3 << 2)
#define DRV260X_SAMP_TIME_150 (0 << 4)
#define DRV260X_SAMP_TIME_200 (1 << 4)
#define DRV260X_SAMP_TIME_250 (2 << 4)
#define DRV260X_SAMP_TIME_300 (3 << 4)
#define DRV260X_BRAKE_STABILIZER (1 << 6)
#define DRV260X_UNIDIR_IN (0 << 7)
#define DRV260X_BIDIR_IN (1 << 7)
/* Control 3 Register */
#define DRV260X_LRA_OPEN_LOOP (1 << 0)
#define DRV260X_ANANLOG_IN (1 << 1)
#define DRV260X_LRA_DRV_MODE (1 << 2)
#define DRV260X_RTP_UNSIGNED_DATA (1 << 3)
#define DRV260X_SUPPLY_COMP_DIS (1 << 4)
#define DRV260X_ERM_OPEN_LOOP (1 << 5)
#define DRV260X_NG_THRESH_0 (0 << 6)
#define DRV260X_NG_THRESH_2 (1 << 6)
#define DRV260X_NG_THRESH_4 (2 << 6)
#define DRV260X_NG_THRESH_8 (3 << 6)
/* Control 4 Register */
#define DRV260X_AUTOCAL_TIME_150MS (0 << 4)
#define DRV260X_AUTOCAL_TIME_250MS (1 << 4)
#define DRV260X_AUTOCAL_TIME_500MS (2 << 4)
#define DRV260X_AUTOCAL_TIME_1000MS (3 << 4)
/**
* struct drv260x_data -
* @input_dev - Pointer to the input device
* @client - Pointer to the I2C client
* @regmap - Register map of the device
* @work - Work item used to off load the enable/disable of the vibration
* @enable_gpio - Pointer to the gpio used for enable/disabling
* @regulator - Pointer to the regulator for the IC
* @magnitude - Magnitude of the vibration event
* @mode - The operating mode of the IC (LRA_NO_CAL, ERM or LRA)
* @library - The vibration library to be used
* @rated_voltage - The rated_voltage of the actuator
* @overdriver_voltage - The over drive voltage of the actuator
**/
struct drv260x_data {
struct input_dev *input_dev;
struct i2c_client *client;
struct regmap *regmap;
struct work_struct work;
struct gpio_desc *enable_gpio;
struct regulator *regulator;
u32 magnitude;
u32 mode;
u32 library;
int rated_voltage;
int overdrive_voltage;
};
static const struct reg_default drv260x_reg_defs[] = {
{ DRV260X_STATUS, 0xe0 },
{ DRV260X_MODE, 0x40 },
{ DRV260X_RT_PB_IN, 0x00 },
{ DRV260X_LIB_SEL, 0x00 },
{ DRV260X_WV_SEQ_1, 0x01 },
{ DRV260X_WV_SEQ_2, 0x00 },
{ DRV260X_WV_SEQ_3, 0x00 },
{ DRV260X_WV_SEQ_4, 0x00 },
{ DRV260X_WV_SEQ_5, 0x00 },
{ DRV260X_WV_SEQ_6, 0x00 },
{ DRV260X_WV_SEQ_7, 0x00 },
{ DRV260X_WV_SEQ_8, 0x00 },
{ DRV260X_GO, 0x00 },
{ DRV260X_OVERDRIVE_OFF, 0x00 },
{ DRV260X_SUSTAIN_P_OFF, 0x00 },
{ DRV260X_SUSTAIN_N_OFF, 0x00 },
{ DRV260X_BRAKE_OFF, 0x00 },
{ DRV260X_A_TO_V_CTRL, 0x05 },
{ DRV260X_A_TO_V_MIN_INPUT, 0x19 },
{ DRV260X_A_TO_V_MAX_INPUT, 0xff },
{ DRV260X_A_TO_V_MIN_OUT, 0x19 },
{ DRV260X_A_TO_V_MAX_OUT, 0xff },
{ DRV260X_RATED_VOLT, 0x3e },
{ DRV260X_OD_CLAMP_VOLT, 0x8c },
{ DRV260X_CAL_COMP, 0x0c },
{ DRV260X_CAL_BACK_EMF, 0x6c },
{ DRV260X_FEEDBACK_CTRL, 0x36 },
{ DRV260X_CTRL1, 0x93 },
{ DRV260X_CTRL2, 0xfa },
{ DRV260X_CTRL3, 0xa0 },
{ DRV260X_CTRL4, 0x20 },
{ DRV260X_CTRL5, 0x80 },
{ DRV260X_LRA_LOOP_PERIOD, 0x33 },
{ DRV260X_VBAT_MON, 0x00 },
{ DRV260X_LRA_RES_PERIOD, 0x00 },
};
#define DRV260X_DEF_RATED_VOLT 0x90
#define DRV260X_DEF_OD_CLAMP_VOLT 0x90
/**
* Rated and Overdriver Voltages:
* Calculated using the formula r = v * 255 / 5.6
* where r is what will be written to the register
* and v is the rated or overdriver voltage of the actuator
**/
static int drv260x_calculate_voltage(unsigned int voltage)
{
return (voltage * 255 / 5600);
}
static void drv260x_worker(struct work_struct *work)
{
struct drv260x_data *haptics = container_of(work, struct drv260x_data, work);
int error;
gpiod_set_value(haptics->enable_gpio, 1);
/* Data sheet says to wait 250us before trying to communicate */
udelay(250);
error = regmap_write(haptics->regmap,
DRV260X_MODE, DRV260X_RT_PLAYBACK);
if (error) {
dev_err(&haptics->client->dev,
"Failed to write set mode: %d\n", error);
} else {
error = regmap_write(haptics->regmap,
DRV260X_RT_PB_IN, haptics->magnitude);
if (error)
dev_err(&haptics->client->dev,
"Failed to set magnitude: %d\n", error);
}
}
static int drv260x_haptics_play(struct input_dev *input, void *data,
struct ff_effect *effect)
{
struct drv260x_data *haptics = input_get_drvdata(input);
haptics->mode = DRV260X_LRA_NO_CAL_MODE;
if (effect->u.rumble.strong_magnitude > 0)
haptics->magnitude = effect->u.rumble.strong_magnitude;
else if (effect->u.rumble.weak_magnitude > 0)
haptics->magnitude = effect->u.rumble.weak_magnitude;
else
haptics->magnitude = 0;
schedule_work(&haptics->work);
return 0;
}
static void drv260x_close(struct input_dev *input)
{
struct drv260x_data *haptics = input_get_drvdata(input);
int error;
cancel_work_sync(&haptics->work);
error = regmap_write(haptics->regmap, DRV260X_MODE, DRV260X_STANDBY);
if (error)
dev_err(&haptics->client->dev,
"Failed to enter standby mode: %d\n", error);
gpiod_set_value(haptics->enable_gpio, 0);
}
static const struct reg_sequence drv260x_lra_cal_regs[] = {
{ DRV260X_MODE, DRV260X_AUTO_CAL },
{ DRV260X_CTRL3, DRV260X_NG_THRESH_2 },
{ DRV260X_FEEDBACK_CTRL, DRV260X_FB_REG_LRA_MODE |
DRV260X_BRAKE_FACTOR_4X | DRV260X_LOOP_GAIN_HIGH },
};
static const struct reg_sequence drv260x_lra_init_regs[] = {
{ DRV260X_MODE, DRV260X_RT_PLAYBACK },
{ DRV260X_A_TO_V_CTRL, DRV260X_AUDIO_HAPTICS_PEAK_20MS |
DRV260X_AUDIO_HAPTICS_FILTER_125HZ },
{ DRV260X_A_TO_V_MIN_INPUT, DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT },
{ DRV260X_A_TO_V_MAX_INPUT, DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT },
{ DRV260X_A_TO_V_MIN_OUT, DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT },
{ DRV260X_A_TO_V_MAX_OUT, DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT },
{ DRV260X_FEEDBACK_CTRL, DRV260X_FB_REG_LRA_MODE |
DRV260X_BRAKE_FACTOR_2X | DRV260X_LOOP_GAIN_MED |
DRV260X_BEMF_GAIN_3 },
{ DRV260X_CTRL1, DRV260X_STARTUP_BOOST },
{ DRV260X_CTRL2, DRV260X_SAMP_TIME_250 },
{ DRV260X_CTRL3, DRV260X_NG_THRESH_2 | DRV260X_ANANLOG_IN },
{ DRV260X_CTRL4, DRV260X_AUTOCAL_TIME_500MS },
};
static const struct reg_sequence drv260x_erm_cal_regs[] = {
{ DRV260X_MODE, DRV260X_AUTO_CAL },
{ DRV260X_A_TO_V_MIN_INPUT, DRV260X_AUDIO_HAPTICS_MIN_IN_VOLT },
{ DRV260X_A_TO_V_MAX_INPUT, DRV260X_AUDIO_HAPTICS_MAX_IN_VOLT },
{ DRV260X_A_TO_V_MIN_OUT, DRV260X_AUDIO_HAPTICS_MIN_OUT_VOLT },
{ DRV260X_A_TO_V_MAX_OUT, DRV260X_AUDIO_HAPTICS_MAX_OUT_VOLT },
{ DRV260X_FEEDBACK_CTRL, DRV260X_BRAKE_FACTOR_3X |
DRV260X_LOOP_GAIN_MED | DRV260X_BEMF_GAIN_2 },
{ DRV260X_CTRL1, DRV260X_STARTUP_BOOST },
{ DRV260X_CTRL2, DRV260X_SAMP_TIME_250 | DRV260X_BLANK_TIME_75 |
DRV260X_IDISS_TIME_75 },
{ DRV260X_CTRL3, DRV260X_NG_THRESH_2 | DRV260X_ERM_OPEN_LOOP },
{ DRV260X_CTRL4, DRV260X_AUTOCAL_TIME_500MS },
};
static int drv260x_init(struct drv260x_data *haptics)
{
int error;
unsigned int cal_buf;
error = regmap_write(haptics->regmap,
DRV260X_RATED_VOLT, haptics->rated_voltage);
if (error) {
dev_err(&haptics->client->dev,
"Failed to write DRV260X_RATED_VOLT register: %d\n",
error);
return error;
}
error = regmap_write(haptics->regmap,
DRV260X_OD_CLAMP_VOLT, haptics->overdrive_voltage);
if (error) {
dev_err(&haptics->client->dev,
"Failed to write DRV260X_OD_CLAMP_VOLT register: %d\n",
error);
return error;
}
switch (haptics->mode) {
case DRV260X_LRA_MODE:
error = regmap_register_patch(haptics->regmap,
drv260x_lra_cal_regs,
ARRAY_SIZE(drv260x_lra_cal_regs));
if (error) {
dev_err(&haptics->client->dev,
"Failed to write LRA calibration registers: %d\n",
error);
return error;
}
break;
case DRV260X_ERM_MODE:
error = regmap_register_patch(haptics->regmap,
drv260x_erm_cal_regs,
ARRAY_SIZE(drv260x_erm_cal_regs));
if (error) {
dev_err(&haptics->client->dev,
"Failed to write ERM calibration registers: %d\n",
error);
return error;
}
error = regmap_update_bits(haptics->regmap, DRV260X_LIB_SEL,
DRV260X_LIB_SEL_MASK,
haptics->library);
if (error) {
dev_err(&haptics->client->dev,
"Failed to write DRV260X_LIB_SEL register: %d\n",
error);
return error;
}
break;
default:
error = regmap_register_patch(haptics->regmap,
drv260x_lra_init_regs,
ARRAY_SIZE(drv260x_lra_init_regs));
if (error) {
dev_err(&haptics->client->dev,
"Failed to write LRA init registers: %d\n",
error);
return error;
}
error = regmap_update_bits(haptics->regmap, DRV260X_LIB_SEL,
DRV260X_LIB_SEL_MASK,
haptics->library);
if (error) {
dev_err(&haptics->client->dev,
"Failed to write DRV260X_LIB_SEL register: %d\n",
error);
return error;
}
/* No need to set GO bit here */
return 0;
}
error = regmap_write(haptics->regmap, DRV260X_GO, DRV260X_GO_BIT);
if (error) {
dev_err(&haptics->client->dev,
"Failed to write GO register: %d\n",
error);
return error;
}
do {
error = regmap_read(haptics->regmap, DRV260X_GO, &cal_buf);
if (error) {
dev_err(&haptics->client->dev,
"Failed to read GO register: %d\n",
error);
return error;
}
} while (cal_buf == DRV260X_GO_BIT);
return 0;
}
static const struct regmap_config drv260x_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = DRV260X_MAX_REG,
.reg_defaults = drv260x_reg_defs,
.num_reg_defaults = ARRAY_SIZE(drv260x_reg_defs),
.cache_type = REGCACHE_NONE,
};
static int drv260x_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct drv260x_data *haptics;
u32 voltage;
int error;
haptics = devm_kzalloc(dev, sizeof(*haptics), GFP_KERNEL);
if (!haptics)
return -ENOMEM;
error = device_property_read_u32(dev, "mode", &haptics->mode);
if (error) {
dev_err(dev, "Can't fetch 'mode' property: %d\n", error);
return error;
}
if (haptics->mode < DRV260X_LRA_MODE ||
haptics->mode > DRV260X_ERM_MODE) {
dev_err(dev, "Vibrator mode is invalid: %i\n", haptics->mode);
return -EINVAL;
}
error = device_property_read_u32(dev, "library-sel", &haptics->library);
if (error) {
dev_err(dev, "Can't fetch 'library-sel' property: %d\n", error);
return error;
}
if (haptics->library < DRV260X_LIB_EMPTY ||
haptics->library > DRV260X_ERM_LIB_F) {
dev_err(dev,
"Library value is invalid: %i\n", haptics->library);
return -EINVAL;
}
if (haptics->mode == DRV260X_LRA_MODE &&
haptics->library != DRV260X_LIB_EMPTY &&
haptics->library != DRV260X_LIB_LRA) {
dev_err(dev, "LRA Mode with ERM Library mismatch\n");
return -EINVAL;
}
if (haptics->mode == DRV260X_ERM_MODE &&
(haptics->library == DRV260X_LIB_EMPTY ||
haptics->library == DRV260X_LIB_LRA)) {
dev_err(dev, "ERM Mode with LRA Library mismatch\n");
return -EINVAL;
}
error = device_property_read_u32(dev, "vib-rated-mv", &voltage);
haptics->rated_voltage = error ? DRV260X_DEF_RATED_VOLT :
drv260x_calculate_voltage(voltage);
error = device_property_read_u32(dev, "vib-overdrive-mv", &voltage);
haptics->overdrive_voltage = error ? DRV260X_DEF_OD_CLAMP_VOLT :
drv260x_calculate_voltage(voltage);
haptics->regulator = devm_regulator_get(dev, "vbat");
if (IS_ERR(haptics->regulator)) {
error = PTR_ERR(haptics->regulator);
dev_err(dev, "unable to get regulator, error: %d\n", error);
return error;
}
haptics->enable_gpio = devm_gpiod_get_optional(dev, "enable",
GPIOD_OUT_HIGH);
if (IS_ERR(haptics->enable_gpio))
return PTR_ERR(haptics->enable_gpio);
haptics->input_dev = devm_input_allocate_device(dev);
if (!haptics->input_dev) {
dev_err(dev, "Failed to allocate input device\n");
return -ENOMEM;
}
haptics->input_dev->name = "drv260x:haptics";
haptics->input_dev->close = drv260x_close;
input_set_drvdata(haptics->input_dev, haptics);
input_set_capability(haptics->input_dev, EV_FF, FF_RUMBLE);
error = input_ff_create_memless(haptics->input_dev, NULL,
drv260x_haptics_play);
if (error) {
dev_err(dev, "input_ff_create() failed: %d\n", error);
return error;
}
INIT_WORK(&haptics->work, drv260x_worker);
haptics->client = client;
i2c_set_clientdata(client, haptics);
haptics->regmap = devm_regmap_init_i2c(client, &drv260x_regmap_config);
if (IS_ERR(haptics->regmap)) {
error = PTR_ERR(haptics->regmap);
dev_err(dev, "Failed to allocate register map: %d\n", error);
return error;
}
error = drv260x_init(haptics);
if (error) {
dev_err(dev, "Device init failed: %d\n", error);
return error;
}
error = input_register_device(haptics->input_dev);
if (error) {
dev_err(dev, "couldn't register input device: %d\n", error);
return error;
}
return 0;
}
static int __maybe_unused drv260x_suspend(struct device *dev)
{
struct drv260x_data *haptics = dev_get_drvdata(dev);
int ret = 0;
mutex_lock(&haptics->input_dev->mutex);
if (haptics->input_dev->users) {
ret = regmap_update_bits(haptics->regmap,
DRV260X_MODE,
DRV260X_STANDBY_MASK,
DRV260X_STANDBY);
if (ret) {
dev_err(dev, "Failed to set standby mode\n");
goto out;
}
gpiod_set_value(haptics->enable_gpio, 0);
ret = regulator_disable(haptics->regulator);
if (ret) {
dev_err(dev, "Failed to disable regulator\n");
regmap_update_bits(haptics->regmap,
DRV260X_MODE,
DRV260X_STANDBY_MASK, 0);
}
}
out:
mutex_unlock(&haptics->input_dev->mutex);
return ret;
}
static int __maybe_unused drv260x_resume(struct device *dev)
{
struct drv260x_data *haptics = dev_get_drvdata(dev);
int ret = 0;
mutex_lock(&haptics->input_dev->mutex);
if (haptics->input_dev->users) {
ret = regulator_enable(haptics->regulator);
if (ret) {
dev_err(dev, "Failed to enable regulator\n");
goto out;
}
ret = regmap_update_bits(haptics->regmap,
DRV260X_MODE,
DRV260X_STANDBY_MASK, 0);
if (ret) {
dev_err(dev, "Failed to unset standby mode\n");
regulator_disable(haptics->regulator);
goto out;
}
gpiod_set_value(haptics->enable_gpio, 1);
}
out:
mutex_unlock(&haptics->input_dev->mutex);
return ret;
}
static SIMPLE_DEV_PM_OPS(drv260x_pm_ops, drv260x_suspend, drv260x_resume);
static const struct i2c_device_id drv260x_id[] = {
{ "drv2605l", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, drv260x_id);
static const struct of_device_id drv260x_of_match[] = {
{ .compatible = "ti,drv2604", },
{ .compatible = "ti,drv2604l", },
{ .compatible = "ti,drv2605", },
{ .compatible = "ti,drv2605l", },
{ }
};
MODULE_DEVICE_TABLE(of, drv260x_of_match);
static struct i2c_driver drv260x_driver = {
.probe = drv260x_probe,
.driver = {
.name = "drv260x-haptics",
.of_match_table = drv260x_of_match,
.pm = &drv260x_pm_ops,
},
.id_table = drv260x_id,
};
module_i2c_driver(drv260x_driver);
MODULE_DESCRIPTION("TI DRV260x haptics driver");
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");