linux-sg2042/drivers/crypto/ccree/cc_aead.c

2719 lines
77 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2012-2018 ARM Limited or its affiliates. */
#include <linux/kernel.h>
#include <linux/module.h>
#include <crypto/algapi.h>
#include <crypto/internal/aead.h>
#include <crypto/authenc.h>
#include <crypto/des.h>
#include <linux/rtnetlink.h>
#include "cc_driver.h"
#include "cc_buffer_mgr.h"
#include "cc_aead.h"
#include "cc_request_mgr.h"
#include "cc_hash.h"
#include "cc_sram_mgr.h"
#define template_aead template_u.aead
#define MAX_AEAD_SETKEY_SEQ 12
#define MAX_AEAD_PROCESS_SEQ 23
#define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
#define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
#define AES_CCM_RFC4309_NONCE_SIZE 3
#define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
/* Value of each ICV_CMP byte (of 8) in case of success */
#define ICV_VERIF_OK 0x01
struct cc_aead_handle {
cc_sram_addr_t sram_workspace_addr;
struct list_head aead_list;
};
struct cc_hmac_s {
u8 *padded_authkey;
u8 *ipad_opad; /* IPAD, OPAD*/
dma_addr_t padded_authkey_dma_addr;
dma_addr_t ipad_opad_dma_addr;
};
struct cc_xcbc_s {
u8 *xcbc_keys; /* K1,K2,K3 */
dma_addr_t xcbc_keys_dma_addr;
};
struct cc_aead_ctx {
struct cc_drvdata *drvdata;
u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
u8 *enckey;
dma_addr_t enckey_dma_addr;
union {
struct cc_hmac_s hmac;
struct cc_xcbc_s xcbc;
} auth_state;
unsigned int enc_keylen;
unsigned int auth_keylen;
unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
enum drv_cipher_mode cipher_mode;
enum cc_flow_mode flow_mode;
enum drv_hash_mode auth_mode;
};
static inline bool valid_assoclen(struct aead_request *req)
{
return ((req->assoclen == 16) || (req->assoclen == 20));
}
static void cc_aead_exit(struct crypto_aead *tfm)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
crypto_tfm_alg_name(&tfm->base));
/* Unmap enckey buffer */
if (ctx->enckey) {
dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
ctx->enckey_dma_addr);
dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
&ctx->enckey_dma_addr);
ctx->enckey_dma_addr = 0;
ctx->enckey = NULL;
}
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
if (xcbc->xcbc_keys) {
dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
xcbc->xcbc_keys,
xcbc->xcbc_keys_dma_addr);
}
dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
&xcbc->xcbc_keys_dma_addr);
xcbc->xcbc_keys_dma_addr = 0;
xcbc->xcbc_keys = NULL;
} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
if (hmac->ipad_opad) {
dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
hmac->ipad_opad,
hmac->ipad_opad_dma_addr);
dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
&hmac->ipad_opad_dma_addr);
hmac->ipad_opad_dma_addr = 0;
hmac->ipad_opad = NULL;
}
if (hmac->padded_authkey) {
dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
hmac->padded_authkey,
hmac->padded_authkey_dma_addr);
dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
&hmac->padded_authkey_dma_addr);
hmac->padded_authkey_dma_addr = 0;
hmac->padded_authkey = NULL;
}
}
}
static int cc_aead_init(struct crypto_aead *tfm)
{
struct aead_alg *alg = crypto_aead_alg(tfm);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct cc_crypto_alg *cc_alg =
container_of(alg, struct cc_crypto_alg, aead_alg);
struct device *dev = drvdata_to_dev(cc_alg->drvdata);
dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
crypto_tfm_alg_name(&tfm->base));
/* Initialize modes in instance */
ctx->cipher_mode = cc_alg->cipher_mode;
ctx->flow_mode = cc_alg->flow_mode;
ctx->auth_mode = cc_alg->auth_mode;
ctx->drvdata = cc_alg->drvdata;
crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
/* Allocate key buffer, cache line aligned */
ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
&ctx->enckey_dma_addr, GFP_KERNEL);
if (!ctx->enckey) {
dev_err(dev, "Failed allocating key buffer\n");
goto init_failed;
}
dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
ctx->enckey);
/* Set default authlen value */
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
/* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
/* (and temporary for user key - up to 256b) */
xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
&xcbc->xcbc_keys_dma_addr,
GFP_KERNEL);
if (!xcbc->xcbc_keys) {
dev_err(dev, "Failed allocating buffer for XCBC keys\n");
goto init_failed;
}
} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
/* Allocate dma-coherent buffer for IPAD + OPAD */
hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
&hmac->ipad_opad_dma_addr,
GFP_KERNEL);
if (!hmac->ipad_opad) {
dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
goto init_failed;
}
dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
hmac->ipad_opad);
hmac->padded_authkey = dma_alloc_coherent(dev,
MAX_HMAC_BLOCK_SIZE,
pkey_dma,
GFP_KERNEL);
if (!hmac->padded_authkey) {
dev_err(dev, "failed to allocate padded_authkey\n");
goto init_failed;
}
} else {
ctx->auth_state.hmac.ipad_opad = NULL;
ctx->auth_state.hmac.padded_authkey = NULL;
}
return 0;
init_failed:
cc_aead_exit(tfm);
return -ENOMEM;
}
static void cc_aead_complete(struct device *dev, void *cc_req, int err)
{
struct aead_request *areq = (struct aead_request *)cc_req;
struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
cc_unmap_aead_request(dev, areq);
/* Restore ordinary iv pointer */
areq->iv = areq_ctx->backup_iv;
if (err)
goto done;
if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
ctx->authsize) != 0) {
dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
ctx->authsize, ctx->cipher_mode);
/* In case of payload authentication failure, MUST NOT
* revealed the decrypted message --> zero its memory.
*/
cc_zero_sgl(areq->dst, areq_ctx->cryptlen);
err = -EBADMSG;
}
} else { /*ENCRYPT*/
if (areq_ctx->is_icv_fragmented) {
u32 skip = areq->cryptlen + areq_ctx->dst_offset;
cc_copy_sg_portion(dev, areq_ctx->mac_buf,
areq_ctx->dst_sgl, skip,
(skip + ctx->authsize),
CC_SG_FROM_BUF);
}
/* If an IV was generated, copy it back to the user provided
* buffer.
*/
if (areq_ctx->backup_giv) {
if (ctx->cipher_mode == DRV_CIPHER_CTR)
memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
CTR_RFC3686_NONCE_SIZE,
CTR_RFC3686_IV_SIZE);
else if (ctx->cipher_mode == DRV_CIPHER_CCM)
memcpy(areq_ctx->backup_giv, areq_ctx->ctr_iv +
CCM_BLOCK_IV_OFFSET, CCM_BLOCK_IV_SIZE);
}
}
done:
aead_request_complete(areq, err);
}
static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
struct cc_aead_ctx *ctx)
{
/* Load the AES key */
hw_desc_init(&desc[0]);
/* We are using for the source/user key the same buffer
* as for the output keys, * because after this key loading it
* is not needed anymore
*/
set_din_type(&desc[0], DMA_DLLI,
ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
NS_BIT);
set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_key_size_aes(&desc[0], ctx->auth_keylen);
set_flow_mode(&desc[0], S_DIN_to_AES);
set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
hw_desc_init(&desc[1]);
set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[1], DIN_AES_DOUT);
set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
AES_KEYSIZE_128, NS_BIT, 0);
hw_desc_init(&desc[2]);
set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[2], DIN_AES_DOUT);
set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
+ AES_KEYSIZE_128),
AES_KEYSIZE_128, NS_BIT, 0);
hw_desc_init(&desc[3]);
set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[3], DIN_AES_DOUT);
set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
+ 2 * AES_KEYSIZE_128),
AES_KEYSIZE_128, NS_BIT, 0);
return 4;
}
static int hmac_setkey(struct cc_hw_desc *desc, struct cc_aead_ctx *ctx)
{
unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
unsigned int digest_ofs = 0;
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
unsigned int idx = 0;
int i;
/* calc derived HMAC key */
for (i = 0; i < 2; i++) {
/* Load hash initial state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_din_sram(&desc[idx],
cc_larval_digest_addr(ctx->drvdata,
ctx->auth_mode),
digest_size);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Prepare ipad key */
hw_desc_init(&desc[idx]);
set_xor_val(&desc[idx], hmac_pad_const[i]);
set_cipher_mode(&desc[idx], hash_mode);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
idx++;
/* Perform HASH update */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
hmac->padded_authkey_dma_addr,
SHA256_BLOCK_SIZE, NS_BIT);
set_cipher_mode(&desc[idx], hash_mode);
set_xor_active(&desc[idx]);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
/* Get the digset */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_dout_dlli(&desc[idx],
(hmac->ipad_opad_dma_addr + digest_ofs),
digest_size, NS_BIT, 0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
idx++;
digest_ofs += digest_size;
}
return idx;
}
static int validate_keys_sizes(struct cc_aead_ctx *ctx)
{
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "enc_keylen=%u authkeylen=%u\n",
ctx->enc_keylen, ctx->auth_keylen);
switch (ctx->auth_mode) {
case DRV_HASH_SHA1:
case DRV_HASH_SHA256:
break;
case DRV_HASH_XCBC_MAC:
if (ctx->auth_keylen != AES_KEYSIZE_128 &&
ctx->auth_keylen != AES_KEYSIZE_192 &&
ctx->auth_keylen != AES_KEYSIZE_256)
return -ENOTSUPP;
break;
case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
if (ctx->auth_keylen > 0)
return -EINVAL;
break;
default:
dev_err(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
return -EINVAL;
}
/* Check cipher key size */
if (ctx->flow_mode == S_DIN_to_DES) {
if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
dev_err(dev, "Invalid cipher(3DES) key size: %u\n",
ctx->enc_keylen);
return -EINVAL;
}
} else { /* Default assumed to be AES ciphers */
if (ctx->enc_keylen != AES_KEYSIZE_128 &&
ctx->enc_keylen != AES_KEYSIZE_192 &&
ctx->enc_keylen != AES_KEYSIZE_256) {
dev_err(dev, "Invalid cipher(AES) key size: %u\n",
ctx->enc_keylen);
return -EINVAL;
}
}
return 0; /* All tests of keys sizes passed */
}
/* This function prepers the user key so it can pass to the hmac processing
* (copy to intenral buffer or hash in case of key longer than block
*/
static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
dma_addr_t key_dma_addr = 0;
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
u32 larval_addr = cc_larval_digest_addr(ctx->drvdata, ctx->auth_mode);
struct cc_crypto_req cc_req = {};
unsigned int blocksize;
unsigned int digestsize;
unsigned int hashmode;
unsigned int idx = 0;
int rc = 0;
struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
dma_addr_t padded_authkey_dma_addr =
ctx->auth_state.hmac.padded_authkey_dma_addr;
switch (ctx->auth_mode) { /* auth_key required and >0 */
case DRV_HASH_SHA1:
blocksize = SHA1_BLOCK_SIZE;
digestsize = SHA1_DIGEST_SIZE;
hashmode = DRV_HASH_HW_SHA1;
break;
case DRV_HASH_SHA256:
default:
blocksize = SHA256_BLOCK_SIZE;
digestsize = SHA256_DIGEST_SIZE;
hashmode = DRV_HASH_HW_SHA256;
}
if (keylen != 0) {
key_dma_addr = dma_map_single(dev, (void *)key, keylen,
DMA_TO_DEVICE);
if (dma_mapping_error(dev, key_dma_addr)) {
dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
key, keylen);
return -ENOMEM;
}
if (keylen > blocksize) {
/* Load hash initial state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hashmode);
set_din_sram(&desc[idx], larval_addr, digestsize);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load the hash current length*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hashmode);
set_din_const(&desc[idx], 0, ctx->drvdata->hash_len_sz);
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
key_dma_addr, keylen, NS_BIT);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
/* Get hashed key */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hashmode);
set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
digestsize, NS_BIT, 0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
set_cipher_config0(&desc[idx],
HASH_DIGEST_RESULT_LITTLE_ENDIAN);
idx++;
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0, (blocksize - digestsize));
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
digestsize), (blocksize - digestsize),
NS_BIT, 0);
idx++;
} else {
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
keylen, NS_BIT);
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
keylen, NS_BIT, 0);
idx++;
if ((blocksize - keylen) != 0) {
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0,
(blocksize - keylen));
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx],
(padded_authkey_dma_addr +
keylen),
(blocksize - keylen), NS_BIT, 0);
idx++;
}
}
} else {
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0, (blocksize - keylen));
set_flow_mode(&desc[idx], BYPASS);
set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
blocksize, NS_BIT, 0);
idx++;
}
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
if (rc)
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
if (key_dma_addr)
dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
return rc;
}
static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct rtattr *rta = (struct rtattr *)key;
struct cc_crypto_req cc_req = {};
struct crypto_authenc_key_param *param;
struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
int rc = -EINVAL;
unsigned int seq_len = 0;
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
/* STAT_PHASE_0: Init and sanity checks */
if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
if (!RTA_OK(rta, keylen))
goto badkey;
if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
goto badkey;
if (RTA_PAYLOAD(rta) < sizeof(*param))
goto badkey;
param = RTA_DATA(rta);
ctx->enc_keylen = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < ctx->enc_keylen)
goto badkey;
ctx->auth_keylen = keylen - ctx->enc_keylen;
if (ctx->cipher_mode == DRV_CIPHER_CTR) {
/* the nonce is stored in bytes at end of key */
if (ctx->enc_keylen <
(AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
goto badkey;
/* Copy nonce from last 4 bytes in CTR key to
* first 4 bytes in CTR IV
*/
memcpy(ctx->ctr_nonce, key + ctx->auth_keylen +
ctx->enc_keylen - CTR_RFC3686_NONCE_SIZE,
CTR_RFC3686_NONCE_SIZE);
/* Set CTR key size */
ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
}
} else { /* non-authenc - has just one key */
ctx->enc_keylen = keylen;
ctx->auth_keylen = 0;
}
rc = validate_keys_sizes(ctx);
if (rc)
goto badkey;
/* STAT_PHASE_1: Copy key to ctx */
/* Get key material */
memcpy(ctx->enckey, key + ctx->auth_keylen, ctx->enc_keylen);
if (ctx->enc_keylen == 24)
memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
memcpy(ctx->auth_state.xcbc.xcbc_keys, key, ctx->auth_keylen);
} else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
rc = cc_get_plain_hmac_key(tfm, key, ctx->auth_keylen);
if (rc)
goto badkey;
}
/* STAT_PHASE_2: Create sequence */
switch (ctx->auth_mode) {
case DRV_HASH_SHA1:
case DRV_HASH_SHA256:
seq_len = hmac_setkey(desc, ctx);
break;
case DRV_HASH_XCBC_MAC:
seq_len = xcbc_setkey(desc, ctx);
break;
case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
break; /* No auth. key setup */
default:
dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
rc = -ENOTSUPP;
goto badkey;
}
/* STAT_PHASE_3: Submit sequence to HW */
if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
if (rc) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
goto setkey_error;
}
}
/* Update STAT_PHASE_3 */
return rc;
badkey:
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
setkey_error:
return rc;
}
static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
if (keylen < 3)
return -EINVAL;
keylen -= 3;
memcpy(ctx->ctr_nonce, key + keylen, 3);
return cc_aead_setkey(tfm, key, keylen);
}
static int cc_aead_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
struct device *dev = drvdata_to_dev(ctx->drvdata);
/* Unsupported auth. sizes */
if (authsize == 0 ||
authsize > crypto_aead_maxauthsize(authenc)) {
return -ENOTSUPP;
}
ctx->authsize = authsize;
dev_dbg(dev, "authlen=%d\n", ctx->authsize);
return 0;
}
static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
return cc_aead_setauthsize(authenc, authsize);
}
static int cc_ccm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 6:
case 8:
case 10:
case 12:
case 14:
case 16:
break;
default:
return -EINVAL;
}
return cc_aead_setauthsize(authenc, authsize);
}
static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
struct cc_hw_desc desc[], unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
unsigned int idx = *seq_size;
struct device *dev = drvdata_to_dev(ctx->drvdata);
switch (assoc_dma_type) {
case CC_DMA_BUF_DLLI:
dev_dbg(dev, "ASSOC buffer type DLLI\n");
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
areq->assoclen, NS_BIT);
set_flow_mode(&desc[idx], flow_mode);
if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
areq_ctx->cryptlen > 0)
set_din_not_last_indication(&desc[idx]);
break;
case CC_DMA_BUF_MLLI:
dev_dbg(dev, "ASSOC buffer type MLLI\n");
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
areq_ctx->assoc.mlli_nents, NS_BIT);
set_flow_mode(&desc[idx], flow_mode);
if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
areq_ctx->cryptlen > 0)
set_din_not_last_indication(&desc[idx]);
break;
case CC_DMA_BUF_NULL:
default:
dev_err(dev, "Invalid ASSOC buffer type\n");
}
*seq_size = (++idx);
}
static void cc_proc_authen_desc(struct aead_request *areq,
unsigned int flow_mode,
struct cc_hw_desc desc[],
unsigned int *seq_size, int direct)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
unsigned int idx = *seq_size;
struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
switch (data_dma_type) {
case CC_DMA_BUF_DLLI:
{
struct scatterlist *cipher =
(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
areq_ctx->dst_sgl : areq_ctx->src_sgl;
unsigned int offset =
(direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
areq_ctx->dst_offset : areq_ctx->src_offset;
dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
(sg_dma_address(cipher) + offset),
areq_ctx->cryptlen, NS_BIT);
set_flow_mode(&desc[idx], flow_mode);
break;
}
case CC_DMA_BUF_MLLI:
{
/* DOUBLE-PASS flow (as default)
* assoc. + iv + data -compact in one table
* if assoclen is ZERO only IV perform
*/
cc_sram_addr_t mlli_addr = areq_ctx->assoc.sram_addr;
u32 mlli_nents = areq_ctx->assoc.mlli_nents;
if (areq_ctx->is_single_pass) {
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
mlli_addr = areq_ctx->dst.sram_addr;
mlli_nents = areq_ctx->dst.mlli_nents;
} else {
mlli_addr = areq_ctx->src.sram_addr;
mlli_nents = areq_ctx->src.mlli_nents;
}
}
dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
NS_BIT);
set_flow_mode(&desc[idx], flow_mode);
break;
}
case CC_DMA_BUF_NULL:
default:
dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
}
*seq_size = (++idx);
}
static void cc_proc_cipher_desc(struct aead_request *areq,
unsigned int flow_mode,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
unsigned int idx = *seq_size;
struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
if (areq_ctx->cryptlen == 0)
return; /*null processing*/
switch (data_dma_type) {
case CC_DMA_BUF_DLLI:
dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
(sg_dma_address(areq_ctx->src_sgl) +
areq_ctx->src_offset), areq_ctx->cryptlen,
NS_BIT);
set_dout_dlli(&desc[idx],
(sg_dma_address(areq_ctx->dst_sgl) +
areq_ctx->dst_offset),
areq_ctx->cryptlen, NS_BIT, 0);
set_flow_mode(&desc[idx], flow_mode);
break;
case CC_DMA_BUF_MLLI:
dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
areq_ctx->src.mlli_nents, NS_BIT);
set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
areq_ctx->dst.mlli_nents, NS_BIT, 0);
set_flow_mode(&desc[idx], flow_mode);
break;
case CC_DMA_BUF_NULL:
default:
dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
}
*seq_size = (++idx);
}
static void cc_proc_digest_desc(struct aead_request *req,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
unsigned int idx = *seq_size;
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
int direct = req_ctx->gen_ctx.op_type;
/* Get final ICV result */
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
hw_desc_init(&desc[idx]);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
set_aes_not_hash_mode(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
} else {
set_cipher_config0(&desc[idx],
HASH_DIGEST_RESULT_LITTLE_ENDIAN);
set_cipher_mode(&desc[idx], hash_mode);
}
} else { /*Decrypt*/
/* Get ICV out from hardware */
hw_desc_init(&desc[idx]);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
ctx->authsize, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_cipher_config0(&desc[idx],
HASH_DIGEST_RESULT_LITTLE_ENDIAN);
set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_aes_not_hash_mode(&desc[idx]);
} else {
set_cipher_mode(&desc[idx], hash_mode);
}
}
*seq_size = (++idx);
}
static void cc_set_cipher_desc(struct aead_request *req,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
unsigned int hw_iv_size = req_ctx->hw_iv_size;
unsigned int idx = *seq_size;
int direct = req_ctx->gen_ctx.op_type;
/* Setup cipher state */
hw_desc_init(&desc[idx]);
set_cipher_config0(&desc[idx], direct);
set_flow_mode(&desc[idx], ctx->flow_mode);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
hw_iv_size, NS_BIT);
if (ctx->cipher_mode == DRV_CIPHER_CTR)
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
else
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
set_cipher_mode(&desc[idx], ctx->cipher_mode);
idx++;
/* Setup enc. key */
hw_desc_init(&desc[idx]);
set_cipher_config0(&desc[idx], direct);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_flow_mode(&desc[idx], ctx->flow_mode);
if (ctx->flow_mode == S_DIN_to_AES) {
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
ctx->enc_keylen), NS_BIT);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
} else {
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
ctx->enc_keylen, NS_BIT);
set_key_size_des(&desc[idx], ctx->enc_keylen);
}
set_cipher_mode(&desc[idx], ctx->cipher_mode);
idx++;
*seq_size = idx;
}
static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size, unsigned int data_flow_mode)
{
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
int direct = req_ctx->gen_ctx.op_type;
unsigned int idx = *seq_size;
if (req_ctx->cryptlen == 0)
return; /*null processing*/
cc_set_cipher_desc(req, desc, &idx);
cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
/* We must wait for DMA to write all cipher */
hw_desc_init(&desc[idx]);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_no_dma(&desc[idx], 0, 0, 1);
idx++;
}
*seq_size = idx;
}
static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
unsigned int idx = *seq_size;
/* Loading hash ipad xor key state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_din_type(&desc[idx], DMA_DLLI,
ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
NS_BIT);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load init. digest len (64 bytes) */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
ctx->drvdata->hash_len_sz);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
*seq_size = idx;
}
static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
unsigned int idx = *seq_size;
/* Loading MAC state */
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
idx++;
/* Setup XCBC MAC K1 */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
ctx->auth_state.xcbc.xcbc_keys_dma_addr,
AES_KEYSIZE_128, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
idx++;
/* Setup XCBC MAC K2 */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
(ctx->auth_state.xcbc.xcbc_keys_dma_addr +
AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
idx++;
/* Setup XCBC MAC K3 */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
(ctx->auth_state.xcbc.xcbc_keys_dma_addr +
2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
idx++;
*seq_size = idx;
}
static void cc_proc_header_desc(struct aead_request *req,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
unsigned int idx = *seq_size;
/* Hash associated data */
if (req->assoclen > 0)
cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
/* Hash IV */
*seq_size = idx;
}
static void cc_proc_scheme_desc(struct aead_request *req,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
unsigned int idx = *seq_size;
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
ctx->drvdata->hash_len_sz);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
set_cipher_do(&desc[idx], DO_PAD);
idx++;
/* Get final ICV result */
hw_desc_init(&desc[idx]);
set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
digest_size);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
set_cipher_mode(&desc[idx], hash_mode);
idx++;
/* Loading hash opad xor key state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_din_type(&desc[idx], DMA_DLLI,
(ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
digest_size, NS_BIT);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
/* Load init. digest len (64 bytes) */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], hash_mode);
set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
ctx->drvdata->hash_len_sz);
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Perform HASH update */
hw_desc_init(&desc[idx]);
set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
digest_size);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
*seq_size = idx;
}
static void cc_mlli_to_sram(struct aead_request *req,
struct cc_hw_desc desc[], unsigned int *seq_size)
{
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
if (req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
!req_ctx->is_single_pass) {
dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
(unsigned int)ctx->drvdata->mlli_sram_addr,
req_ctx->mlli_params.mlli_len);
/* Copy MLLI table host-to-sram */
hw_desc_init(&desc[*seq_size]);
set_din_type(&desc[*seq_size], DMA_DLLI,
req_ctx->mlli_params.mlli_dma_addr,
req_ctx->mlli_params.mlli_len, NS_BIT);
set_dout_sram(&desc[*seq_size],
ctx->drvdata->mlli_sram_addr,
req_ctx->mlli_params.mlli_len);
set_flow_mode(&desc[*seq_size], BYPASS);
(*seq_size)++;
}
}
static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
enum cc_flow_mode setup_flow_mode,
bool is_single_pass)
{
enum cc_flow_mode data_flow_mode;
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
if (setup_flow_mode == S_DIN_to_AES)
data_flow_mode = is_single_pass ?
AES_to_HASH_and_DOUT : DIN_AES_DOUT;
else
data_flow_mode = is_single_pass ?
DES_to_HASH_and_DOUT : DIN_DES_DOUT;
} else { /* Decrypt */
if (setup_flow_mode == S_DIN_to_AES)
data_flow_mode = is_single_pass ?
AES_and_HASH : DIN_AES_DOUT;
else
data_flow_mode = is_single_pass ?
DES_and_HASH : DIN_DES_DOUT;
}
return data_flow_mode;
}
static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
int direct = req_ctx->gen_ctx.op_type;
unsigned int data_flow_mode =
cc_get_data_flow(direct, ctx->flow_mode,
req_ctx->is_single_pass);
if (req_ctx->is_single_pass) {
/**
* Single-pass flow
*/
cc_set_hmac_desc(req, desc, seq_size);
cc_set_cipher_desc(req, desc, seq_size);
cc_proc_header_desc(req, desc, seq_size);
cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
cc_proc_scheme_desc(req, desc, seq_size);
cc_proc_digest_desc(req, desc, seq_size);
return;
}
/**
* Double-pass flow
* Fallback for unsupported single-pass modes,
* i.e. using assoc. data of non-word-multiple
*/
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
/* encrypt first.. */
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
/* authenc after..*/
cc_set_hmac_desc(req, desc, seq_size);
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
cc_proc_scheme_desc(req, desc, seq_size);
cc_proc_digest_desc(req, desc, seq_size);
} else { /*DECRYPT*/
/* authenc first..*/
cc_set_hmac_desc(req, desc, seq_size);
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
cc_proc_scheme_desc(req, desc, seq_size);
/* decrypt after.. */
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
/* read the digest result with setting the completion bit
* must be after the cipher operation
*/
cc_proc_digest_desc(req, desc, seq_size);
}
}
static void
cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
int direct = req_ctx->gen_ctx.op_type;
unsigned int data_flow_mode =
cc_get_data_flow(direct, ctx->flow_mode,
req_ctx->is_single_pass);
if (req_ctx->is_single_pass) {
/**
* Single-pass flow
*/
cc_set_xcbc_desc(req, desc, seq_size);
cc_set_cipher_desc(req, desc, seq_size);
cc_proc_header_desc(req, desc, seq_size);
cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
cc_proc_digest_desc(req, desc, seq_size);
return;
}
/**
* Double-pass flow
* Fallback for unsupported single-pass modes,
* i.e. using assoc. data of non-word-multiple
*/
if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
/* encrypt first.. */
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
/* authenc after.. */
cc_set_xcbc_desc(req, desc, seq_size);
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
cc_proc_digest_desc(req, desc, seq_size);
} else { /*DECRYPT*/
/* authenc first.. */
cc_set_xcbc_desc(req, desc, seq_size);
cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
/* decrypt after..*/
cc_proc_cipher(req, desc, seq_size, data_flow_mode);
/* read the digest result with setting the completion bit
* must be after the cipher operation
*/
cc_proc_digest_desc(req, desc, seq_size);
}
}
static int validate_data_size(struct cc_aead_ctx *ctx,
enum drv_crypto_direction direct,
struct aead_request *req)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
struct device *dev = drvdata_to_dev(ctx->drvdata);
unsigned int assoclen = req->assoclen;
unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
(req->cryptlen - ctx->authsize) : req->cryptlen;
if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
req->cryptlen < ctx->authsize)
goto data_size_err;
areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
switch (ctx->flow_mode) {
case S_DIN_to_AES:
if (ctx->cipher_mode == DRV_CIPHER_CBC &&
!IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
goto data_size_err;
if (ctx->cipher_mode == DRV_CIPHER_CCM)
break;
if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
if (areq_ctx->plaintext_authenticate_only)
areq_ctx->is_single_pass = false;
break;
}
if (!IS_ALIGNED(assoclen, sizeof(u32)))
areq_ctx->is_single_pass = false;
if (ctx->cipher_mode == DRV_CIPHER_CTR &&
!IS_ALIGNED(cipherlen, sizeof(u32)))
areq_ctx->is_single_pass = false;
break;
case S_DIN_to_DES:
if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
goto data_size_err;
if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
areq_ctx->is_single_pass = false;
break;
default:
dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
goto data_size_err;
}
return 0;
data_size_err:
return -EINVAL;
}
static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
{
unsigned int len = 0;
if (header_size == 0)
return 0;
if (header_size < ((1UL << 16) - (1UL << 8))) {
len = 2;
pa0_buff[0] = (header_size >> 8) & 0xFF;
pa0_buff[1] = header_size & 0xFF;
} else {
len = 6;
pa0_buff[0] = 0xFF;
pa0_buff[1] = 0xFE;
pa0_buff[2] = (header_size >> 24) & 0xFF;
pa0_buff[3] = (header_size >> 16) & 0xFF;
pa0_buff[4] = (header_size >> 8) & 0xFF;
pa0_buff[5] = header_size & 0xFF;
}
return len;
}
static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
{
__be32 data;
memset(block, 0, csize);
block += csize;
if (csize >= 4)
csize = 4;
else if (msglen > (1 << (8 * csize)))
return -EOVERFLOW;
data = cpu_to_be32(msglen);
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
return 0;
}
static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
unsigned int idx = *seq_size;
unsigned int cipher_flow_mode;
dma_addr_t mac_result;
if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
cipher_flow_mode = AES_to_HASH_and_DOUT;
mac_result = req_ctx->mac_buf_dma_addr;
} else { /* Encrypt */
cipher_flow_mode = AES_and_HASH;
mac_result = req_ctx->icv_dma_addr;
}
/* load key */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
ctx->enc_keylen), NS_BIT);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* load ctr state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_din_type(&desc[idx], DMA_DLLI,
req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* load MAC key */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
ctx->enc_keylen), NS_BIT);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
idx++;
/* load MAC state */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
AES_BLOCK_SIZE, NS_BIT);
set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
idx++;
/* process assoc data */
if (req->assoclen > 0) {
cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
} else {
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI,
sg_dma_address(&req_ctx->ccm_adata_sg),
AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
}
/* process the cipher */
if (req_ctx->cryptlen)
cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
/* Read temporal MAC */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
NS_BIT, 0);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_aes_not_hash_mode(&desc[idx]);
idx++;
/* load AES-CTR state (for last MAC calculation)*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
AES_BLOCK_SIZE, NS_BIT);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
hw_desc_init(&desc[idx]);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_no_dma(&desc[idx], 0, 0, 1);
idx++;
/* encrypt the "T" value and store MAC in mac_state */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
ctx->authsize, NS_BIT);
set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
idx++;
*seq_size = idx;
return 0;
}
static int config_ccm_adata(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
//unsigned int size_of_a = 0, rem_a_size = 0;
unsigned int lp = req->iv[0];
/* Note: The code assume that req->iv[0] already contains the value
* of L' of RFC3610
*/
unsigned int l = lp + 1; /* This is L' of RFC 3610. */
unsigned int m = ctx->authsize; /* This is M' of RFC 3610. */
u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
DRV_CRYPTO_DIRECTION_ENCRYPT) ?
req->cryptlen :
(req->cryptlen - ctx->authsize);
int rc;
memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
/* taken from crypto/ccm.c */
/* 2 <= L <= 8, so 1 <= L' <= 7. */
if (l < 2 || l > 8) {
dev_err(dev, "illegal iv value %X\n", req->iv[0]);
return -EINVAL;
}
memcpy(b0, req->iv, AES_BLOCK_SIZE);
/* format control info per RFC 3610 and
* NIST Special Publication 800-38C
*/
*b0 |= (8 * ((m - 2) / 2));
if (req->assoclen > 0)
*b0 |= 64; /* Enable bit 6 if Adata exists. */
rc = set_msg_len(b0 + 16 - l, cryptlen, l); /* Write L'. */
if (rc) {
dev_err(dev, "message len overflow detected");
return rc;
}
/* END of "taken from crypto/ccm.c" */
/* l(a) - size of associated data. */
req_ctx->ccm_hdr_size = format_ccm_a0(a0, req->assoclen);
memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
req->iv[15] = 1;
memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
ctr_count_0[15] = 0;
return 0;
}
static void cc_proc_rfc4309_ccm(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
/* L' */
memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
/* For RFC 4309, always use 4 bytes for message length
* (at most 2^32-1 bytes).
*/
areq_ctx->ctr_iv[0] = 3;
/* In RFC 4309 there is an 11-bytes nonce+IV part,
* that we build here.
*/
memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
CCM_BLOCK_NONCE_SIZE);
memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
CCM_BLOCK_IV_SIZE);
req->iv = areq_ctx->ctr_iv;
req->assoclen -= CCM_BLOCK_IV_SIZE;
}
static void cc_set_ghash_desc(struct aead_request *req,
struct cc_hw_desc desc[], unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
unsigned int idx = *seq_size;
/* load key to AES*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
ctx->enc_keylen, NS_BIT);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* process one zero block to generate hkey */
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
NS_BIT, 0);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
idx++;
/* Memory Barrier */
hw_desc_init(&desc[idx]);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_no_dma(&desc[idx], 0, 0, 1);
idx++;
/* Load GHASH subkey */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
AES_BLOCK_SIZE, NS_BIT);
set_dout_no_dma(&desc[idx], 0, 0, 1);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Configure Hash Engine to work with GHASH.
* Since it was not possible to extend HASH submodes to add GHASH,
* The following command is necessary in order to
* select GHASH (according to HW designers)
*/
hw_desc_init(&desc[idx]);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_no_dma(&desc[idx], 0, 0, 1);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
idx++;
/* Load GHASH initial STATE (which is 0). (for any hash there is an
* initial state)
*/
hw_desc_init(&desc[idx]);
set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
set_dout_no_dma(&desc[idx], 0, 0, 1);
set_flow_mode(&desc[idx], S_DIN_to_HASH);
set_aes_not_hash_mode(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
idx++;
*seq_size = idx;
}
static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
unsigned int idx = *seq_size;
/* load key to AES*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
ctx->enc_keylen, NS_BIT);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
/* load AES/CTR initial CTR value inc by 2*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_din_type(&desc[idx], DMA_DLLI,
req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
NS_BIT);
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
}
*seq_size = idx;
}
static void cc_proc_gcm_result(struct aead_request *req,
struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
dma_addr_t mac_result;
unsigned int idx = *seq_size;
if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
mac_result = req_ctx->mac_buf_dma_addr;
} else { /* Encrypt */
mac_result = req_ctx->icv_dma_addr;
}
/* process(ghash) gcm_block_len */
hw_desc_init(&desc[idx]);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
AES_BLOCK_SIZE, NS_BIT);
set_flow_mode(&desc[idx], DIN_HASH);
idx++;
/* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
NS_BIT, 0);
set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
set_flow_mode(&desc[idx], S_HASH_to_DOUT);
set_aes_not_hash_mode(&desc[idx]);
idx++;
/* load AES/CTR initial CTR value inc by 1*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
set_key_size_aes(&desc[idx], ctx->enc_keylen);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
AES_BLOCK_SIZE, NS_BIT);
set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
set_flow_mode(&desc[idx], S_DIN_to_AES);
idx++;
/* Memory Barrier */
hw_desc_init(&desc[idx]);
set_din_no_dma(&desc[idx], 0, 0xfffff0);
set_dout_no_dma(&desc[idx], 0, 0, 1);
idx++;
/* process GCTR on stored GHASH and store MAC in mac_state*/
hw_desc_init(&desc[idx]);
set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
AES_BLOCK_SIZE, NS_BIT);
set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
set_queue_last_ind(ctx->drvdata, &desc[idx]);
set_flow_mode(&desc[idx], DIN_AES_DOUT);
idx++;
*seq_size = idx;
}
static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
unsigned int *seq_size)
{
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
unsigned int cipher_flow_mode;
if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
cipher_flow_mode = AES_and_HASH;
} else { /* Encrypt */
cipher_flow_mode = AES_to_HASH_and_DOUT;
}
//in RFC4543 no data to encrypt. just copy data from src to dest.
if (req_ctx->plaintext_authenticate_only) {
cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
cc_set_ghash_desc(req, desc, seq_size);
/* process(ghash) assoc data */
cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
cc_set_gctr_desc(req, desc, seq_size);
cc_proc_gcm_result(req, desc, seq_size);
return 0;
}
// for gcm and rfc4106.
cc_set_ghash_desc(req, desc, seq_size);
/* process(ghash) assoc data */
if (req->assoclen > 0)
cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
cc_set_gctr_desc(req, desc, seq_size);
/* process(gctr+ghash) */
if (req_ctx->cryptlen)
cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
cc_proc_gcm_result(req, desc, seq_size);
return 0;
}
static int config_gcm_context(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *req_ctx = aead_request_ctx(req);
struct device *dev = drvdata_to_dev(ctx->drvdata);
unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
DRV_CRYPTO_DIRECTION_ENCRYPT) ?
req->cryptlen :
(req->cryptlen - ctx->authsize);
__be32 counter = cpu_to_be32(2);
dev_dbg(dev, "%s() cryptlen = %d, req->assoclen = %d ctx->authsize = %d\n",
__func__, cryptlen, req->assoclen, ctx->authsize);
memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
memcpy(req->iv + 12, &counter, 4);
memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
counter = cpu_to_be32(1);
memcpy(req->iv + 12, &counter, 4);
memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
if (!req_ctx->plaintext_authenticate_only) {
__be64 temp64;
temp64 = cpu_to_be64(req->assoclen * 8);
memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
temp64 = cpu_to_be64(cryptlen * 8);
memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
} else {
/* rfc4543=> all data(AAD,IV,Plain) are considered additional
* data that is nothing is encrypted.
*/
__be64 temp64;
temp64 = cpu_to_be64((req->assoclen + GCM_BLOCK_RFC4_IV_SIZE +
cryptlen) * 8);
memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
temp64 = 0;
memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
}
return 0;
}
static void cc_proc_rfc4_gcm(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
GCM_BLOCK_RFC4_IV_SIZE);
req->iv = areq_ctx->ctr_iv;
req->assoclen -= GCM_BLOCK_RFC4_IV_SIZE;
}
static int cc_proc_aead(struct aead_request *req,
enum drv_crypto_direction direct)
{
int rc = 0;
int seq_len = 0;
struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct cc_crypto_req cc_req = {};
dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
ctx, req, req->iv, sg_virt(req->src), req->src->offset,
sg_virt(req->dst), req->dst->offset, req->cryptlen);
/* STAT_PHASE_0: Init and sanity checks */
/* Check data length according to mode */
if (validate_data_size(ctx, direct, req)) {
dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
req->cryptlen, req->assoclen);
crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_BLOCK_LEN);
return -EINVAL;
}
/* Setup request structure */
cc_req.user_cb = (void *)cc_aead_complete;
cc_req.user_arg = (void *)req;
/* Setup request context */
areq_ctx->gen_ctx.op_type = direct;
areq_ctx->req_authsize = ctx->authsize;
areq_ctx->cipher_mode = ctx->cipher_mode;
/* STAT_PHASE_1: Map buffers */
if (ctx->cipher_mode == DRV_CIPHER_CTR) {
/* Build CTR IV - Copy nonce from last 4 bytes in
* CTR key to first 4 bytes in CTR IV
*/
memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
CTR_RFC3686_NONCE_SIZE);
if (!areq_ctx->backup_giv) /*User none-generated IV*/
memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE,
req->iv, CTR_RFC3686_IV_SIZE);
/* Initialize counter portion of counter block */
*(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
/* Replace with counter iv */
req->iv = areq_ctx->ctr_iv;
areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
} else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
(ctx->cipher_mode == DRV_CIPHER_GCTR)) {
areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
if (areq_ctx->ctr_iv != req->iv) {
memcpy(areq_ctx->ctr_iv, req->iv,
crypto_aead_ivsize(tfm));
req->iv = areq_ctx->ctr_iv;
}
} else {
areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
}
if (ctx->cipher_mode == DRV_CIPHER_CCM) {
rc = config_ccm_adata(req);
if (rc) {
dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
rc);
goto exit;
}
} else {
areq_ctx->ccm_hdr_size = ccm_header_size_null;
}
if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
rc = config_gcm_context(req);
if (rc) {
dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
rc);
goto exit;
}
}
rc = cc_map_aead_request(ctx->drvdata, req);
if (rc) {
dev_err(dev, "map_request() failed\n");
goto exit;
}
/* do we need to generate IV? */
if (areq_ctx->backup_giv) {
/* set the DMA mapped IV address*/
if (ctx->cipher_mode == DRV_CIPHER_CTR) {
cc_req.ivgen_dma_addr[0] =
areq_ctx->gen_ctx.iv_dma_addr +
CTR_RFC3686_NONCE_SIZE;
cc_req.ivgen_dma_addr_len = 1;
} else if (ctx->cipher_mode == DRV_CIPHER_CCM) {
/* In ccm, the IV needs to exist both inside B0 and
* inside the counter.It is also copied to iv_dma_addr
* for other reasons (like returning it to the user).
* So, using 3 (identical) IV outputs.
*/
cc_req.ivgen_dma_addr[0] =
areq_ctx->gen_ctx.iv_dma_addr +
CCM_BLOCK_IV_OFFSET;
cc_req.ivgen_dma_addr[1] =
sg_dma_address(&areq_ctx->ccm_adata_sg) +
CCM_B0_OFFSET + CCM_BLOCK_IV_OFFSET;
cc_req.ivgen_dma_addr[2] =
sg_dma_address(&areq_ctx->ccm_adata_sg) +
CCM_CTR_COUNT_0_OFFSET + CCM_BLOCK_IV_OFFSET;
cc_req.ivgen_dma_addr_len = 3;
} else {
cc_req.ivgen_dma_addr[0] =
areq_ctx->gen_ctx.iv_dma_addr;
cc_req.ivgen_dma_addr_len = 1;
}
/* set the IV size (8/16 B long)*/
cc_req.ivgen_size = crypto_aead_ivsize(tfm);
}
/* STAT_PHASE_2: Create sequence */
/* Load MLLI tables to SRAM if necessary */
cc_mlli_to_sram(req, desc, &seq_len);
/*TODO: move seq len by reference */
switch (ctx->auth_mode) {
case DRV_HASH_SHA1:
case DRV_HASH_SHA256:
cc_hmac_authenc(req, desc, &seq_len);
break;
case DRV_HASH_XCBC_MAC:
cc_xcbc_authenc(req, desc, &seq_len);
break;
case DRV_HASH_NULL:
if (ctx->cipher_mode == DRV_CIPHER_CCM)
cc_ccm(req, desc, &seq_len);
if (ctx->cipher_mode == DRV_CIPHER_GCTR)
cc_gcm(req, desc, &seq_len);
break;
default:
dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
cc_unmap_aead_request(dev, req);
rc = -ENOTSUPP;
goto exit;
}
/* STAT_PHASE_3: Lock HW and push sequence */
rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
if (rc != -EINPROGRESS && rc != -EBUSY) {
dev_err(dev, "send_request() failed (rc=%d)\n", rc);
cc_unmap_aead_request(dev, req);
}
exit:
return rc;
}
static int cc_aead_encrypt(struct aead_request *req)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc;
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
areq_ctx->is_gcm4543 = false;
areq_ctx->plaintext_authenticate_only = false;
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
return rc;
}
static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
{
/* Very similar to cc_aead_encrypt() above. */
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
int rc = -EINVAL;
if (!valid_assoclen(req)) {
dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
goto out;
}
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
areq_ctx->is_gcm4543 = true;
cc_proc_rfc4309_ccm(req);
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
out:
return rc;
}
static int cc_aead_decrypt(struct aead_request *req)
{
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc;
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
areq_ctx->is_gcm4543 = false;
areq_ctx->plaintext_authenticate_only = false;
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
return rc;
}
static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc = -EINVAL;
if (!valid_assoclen(req)) {
dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
goto out;
}
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
areq_ctx->is_gcm4543 = true;
cc_proc_rfc4309_ccm(req);
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
out:
return rc;
}
static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
if (keylen < 4)
return -EINVAL;
keylen -= 4;
memcpy(ctx->ctr_nonce, key + keylen, 4);
return cc_aead_setkey(tfm, key, keylen);
}
static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
unsigned int keylen)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "%s() keylen %d, key %p\n", __func__, keylen, key);
if (keylen < 4)
return -EINVAL;
keylen -= 4;
memcpy(ctx->ctr_nonce, key + keylen, 4);
return cc_aead_setkey(tfm, key, keylen);
}
static int cc_gcm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
switch (authsize) {
case 4:
case 8:
case 12:
case 13:
case 14:
case 15:
case 16:
break;
default:
return -EINVAL;
}
return cc_aead_setauthsize(authenc, authsize);
}
static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "authsize %d\n", authsize);
switch (authsize) {
case 8:
case 12:
case 16:
break;
default:
return -EINVAL;
}
return cc_aead_setauthsize(authenc, authsize);
}
static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
struct device *dev = drvdata_to_dev(ctx->drvdata);
dev_dbg(dev, "authsize %d\n", authsize);
if (authsize != 16)
return -EINVAL;
return cc_aead_setauthsize(authenc, authsize);
}
static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
{
/* Very similar to cc_aead_encrypt() above. */
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc = -EINVAL;
if (!valid_assoclen(req)) {
dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
goto out;
}
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
areq_ctx->plaintext_authenticate_only = false;
cc_proc_rfc4_gcm(req);
areq_ctx->is_gcm4543 = true;
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
out:
return rc;
}
static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
{
/* Very similar to cc_aead_encrypt() above. */
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc;
//plaintext is not encryped with rfc4543
areq_ctx->plaintext_authenticate_only = true;
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
cc_proc_rfc4_gcm(req);
areq_ctx->is_gcm4543 = true;
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
return rc;
}
static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
{
/* Very similar to cc_aead_decrypt() above. */
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
struct device *dev = drvdata_to_dev(ctx->drvdata);
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc = -EINVAL;
if (!valid_assoclen(req)) {
dev_err(dev, "invalid Assoclen:%u\n", req->assoclen);
goto out;
}
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
areq_ctx->plaintext_authenticate_only = false;
cc_proc_rfc4_gcm(req);
areq_ctx->is_gcm4543 = true;
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
out:
return rc;
}
static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
{
/* Very similar to cc_aead_decrypt() above. */
struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
int rc;
//plaintext is not decryped with rfc4543
areq_ctx->plaintext_authenticate_only = true;
/* No generated IV required */
areq_ctx->backup_iv = req->iv;
areq_ctx->backup_giv = NULL;
cc_proc_rfc4_gcm(req);
areq_ctx->is_gcm4543 = true;
rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
if (rc != -EINPROGRESS && rc != -EBUSY)
req->iv = areq_ctx->backup_iv;
return rc;
}
/* aead alg */
static struct cc_alg_template aead_algs[] = {
{
.name = "authenc(hmac(sha1),cbc(aes))",
.driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_SHA1,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "authenc(hmac(sha1),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
.auth_mode = DRV_HASH_SHA1,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "authenc(hmac(sha256),cbc(aes))",
.driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_SHA256,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "authenc(hmac(sha256),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
.blocksize = DES3_EDE_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_DES,
.auth_mode = DRV_HASH_SHA256,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "authenc(xcbc(aes),cbc(aes))",
.driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
.blocksize = AES_BLOCK_SIZE,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CBC,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_XCBC_MAC,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_SHA1,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_SHA256,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
.driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_aead_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = CTR_RFC3686_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CTR,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_XCBC_MAC,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "ccm(aes)",
.driver_name = "ccm-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_ccm_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CCM,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_NULL,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "rfc4309(ccm(aes))",
.driver_name = "rfc4309-ccm-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_rfc4309_ccm_setkey,
.setauthsize = cc_rfc4309_ccm_setauthsize,
.encrypt = cc_rfc4309_ccm_encrypt,
.decrypt = cc_rfc4309_ccm_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = CCM_BLOCK_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_CCM,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_NULL,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "gcm(aes)",
.driver_name = "gcm-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_aead_setkey,
.setauthsize = cc_gcm_setauthsize,
.encrypt = cc_aead_encrypt,
.decrypt = cc_aead_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = 12,
.maxauthsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_GCTR,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_NULL,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "rfc4106(gcm(aes))",
.driver_name = "rfc4106-gcm-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_rfc4106_gcm_setkey,
.setauthsize = cc_rfc4106_gcm_setauthsize,
.encrypt = cc_rfc4106_gcm_encrypt,
.decrypt = cc_rfc4106_gcm_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_GCTR,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_NULL,
.min_hw_rev = CC_HW_REV_630,
},
{
.name = "rfc4543(gcm(aes))",
.driver_name = "rfc4543-gcm-aes-ccree",
.blocksize = 1,
.type = CRYPTO_ALG_TYPE_AEAD,
.template_aead = {
.setkey = cc_rfc4543_gcm_setkey,
.setauthsize = cc_rfc4543_gcm_setauthsize,
.encrypt = cc_rfc4543_gcm_encrypt,
.decrypt = cc_rfc4543_gcm_decrypt,
.init = cc_aead_init,
.exit = cc_aead_exit,
.ivsize = GCM_BLOCK_RFC4_IV_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
},
.cipher_mode = DRV_CIPHER_GCTR,
.flow_mode = S_DIN_to_AES,
.auth_mode = DRV_HASH_NULL,
.min_hw_rev = CC_HW_REV_630,
},
};
static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
struct device *dev)
{
struct cc_crypto_alg *t_alg;
struct aead_alg *alg;
t_alg = kzalloc(sizeof(*t_alg), GFP_KERNEL);
if (!t_alg)
return ERR_PTR(-ENOMEM);
alg = &tmpl->template_aead;
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
tmpl->driver_name);
alg->base.cra_module = THIS_MODULE;
alg->base.cra_priority = CC_CRA_PRIO;
alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY |
tmpl->type;
alg->init = cc_aead_init;
alg->exit = cc_aead_exit;
t_alg->aead_alg = *alg;
t_alg->cipher_mode = tmpl->cipher_mode;
t_alg->flow_mode = tmpl->flow_mode;
t_alg->auth_mode = tmpl->auth_mode;
return t_alg;
}
int cc_aead_free(struct cc_drvdata *drvdata)
{
struct cc_crypto_alg *t_alg, *n;
struct cc_aead_handle *aead_handle =
(struct cc_aead_handle *)drvdata->aead_handle;
if (aead_handle) {
/* Remove registered algs */
list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list,
entry) {
crypto_unregister_aead(&t_alg->aead_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
kfree(aead_handle);
drvdata->aead_handle = NULL;
}
return 0;
}
int cc_aead_alloc(struct cc_drvdata *drvdata)
{
struct cc_aead_handle *aead_handle;
struct cc_crypto_alg *t_alg;
int rc = -ENOMEM;
int alg;
struct device *dev = drvdata_to_dev(drvdata);
aead_handle = kmalloc(sizeof(*aead_handle), GFP_KERNEL);
if (!aead_handle) {
rc = -ENOMEM;
goto fail0;
}
INIT_LIST_HEAD(&aead_handle->aead_list);
drvdata->aead_handle = aead_handle;
aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
MAX_HMAC_DIGEST_SIZE);
if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
dev_err(dev, "SRAM pool exhausted\n");
rc = -ENOMEM;
goto fail1;
}
/* Linux crypto */
for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
if (aead_algs[alg].min_hw_rev > drvdata->hw_rev)
continue;
t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
if (IS_ERR(t_alg)) {
rc = PTR_ERR(t_alg);
dev_err(dev, "%s alg allocation failed\n",
aead_algs[alg].driver_name);
goto fail1;
}
t_alg->drvdata = drvdata;
rc = crypto_register_aead(&t_alg->aead_alg);
if (rc) {
dev_err(dev, "%s alg registration failed\n",
t_alg->aead_alg.base.cra_driver_name);
goto fail2;
} else {
list_add_tail(&t_alg->entry, &aead_handle->aead_list);
dev_dbg(dev, "Registered %s\n",
t_alg->aead_alg.base.cra_driver_name);
}
}
return 0;
fail2:
kfree(t_alg);
fail1:
cc_aead_free(drvdata);
fail0:
return rc;
}