linux-sg2042/fs/gfs2/log.c

1053 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
* Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/gfs2_ondisk.h>
#include <linux/crc32.h>
#include <linux/crc32c.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include <linux/list_sort.h>
#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "glock.h"
#include "log.h"
#include "lops.h"
#include "meta_io.h"
#include "util.h"
#include "dir.h"
#include "trace_gfs2.h"
/**
* gfs2_struct2blk - compute stuff
* @sdp: the filesystem
* @nstruct: the number of structures
* @ssize: the size of the structures
*
* Compute the number of log descriptor blocks needed to hold a certain number
* of structures of a certain size.
*
* Returns: the number of blocks needed (minimum is always 1)
*/
unsigned int gfs2_struct2blk(struct gfs2_sbd *sdp, unsigned int nstruct,
unsigned int ssize)
{
unsigned int blks;
unsigned int first, second;
blks = 1;
first = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_log_descriptor)) / ssize;
if (nstruct > first) {
second = (sdp->sd_sb.sb_bsize -
sizeof(struct gfs2_meta_header)) / ssize;
blks += DIV_ROUND_UP(nstruct - first, second);
}
return blks;
}
/**
* gfs2_remove_from_ail - Remove an entry from the ail lists, updating counters
* @mapping: The associated mapping (maybe NULL)
* @bd: The gfs2_bufdata to remove
*
* The ail lock _must_ be held when calling this function
*
*/
static void gfs2_remove_from_ail(struct gfs2_bufdata *bd)
{
bd->bd_tr = NULL;
list_del_init(&bd->bd_ail_st_list);
list_del_init(&bd->bd_ail_gl_list);
atomic_dec(&bd->bd_gl->gl_ail_count);
brelse(bd->bd_bh);
}
/**
* gfs2_ail1_start_one - Start I/O on a part of the AIL
* @sdp: the filesystem
* @wbc: The writeback control structure
* @ai: The ail structure
*
*/
static int gfs2_ail1_start_one(struct gfs2_sbd *sdp,
struct writeback_control *wbc,
struct gfs2_trans *tr,
bool *withdraw)
__releases(&sdp->sd_ail_lock)
__acquires(&sdp->sd_ail_lock)
{
struct gfs2_glock *gl = NULL;
struct address_space *mapping;
struct gfs2_bufdata *bd, *s;
struct buffer_head *bh;
list_for_each_entry_safe_reverse(bd, s, &tr->tr_ail1_list, bd_ail_st_list) {
bh = bd->bd_bh;
gfs2_assert(sdp, bd->bd_tr == tr);
if (!buffer_busy(bh)) {
if (!buffer_uptodate(bh) &&
!test_and_set_bit(SDF_AIL1_IO_ERROR,
&sdp->sd_flags)) {
gfs2_io_error_bh(sdp, bh);
*withdraw = true;
}
list_move(&bd->bd_ail_st_list, &tr->tr_ail2_list);
continue;
}
if (!buffer_dirty(bh))
continue;
if (gl == bd->bd_gl)
continue;
gl = bd->bd_gl;
list_move(&bd->bd_ail_st_list, &tr->tr_ail1_list);
mapping = bh->b_page->mapping;
if (!mapping)
continue;
spin_unlock(&sdp->sd_ail_lock);
generic_writepages(mapping, wbc);
spin_lock(&sdp->sd_ail_lock);
if (wbc->nr_to_write <= 0)
break;
return 1;
}
return 0;
}
/**
* gfs2_ail1_flush - start writeback of some ail1 entries
* @sdp: The super block
* @wbc: The writeback control structure
*
* Writes back some ail1 entries, according to the limits in the
* writeback control structure
*/
void gfs2_ail1_flush(struct gfs2_sbd *sdp, struct writeback_control *wbc)
{
struct list_head *head = &sdp->sd_ail1_list;
struct gfs2_trans *tr;
struct blk_plug plug;
bool withdraw = false;
trace_gfs2_ail_flush(sdp, wbc, 1);
blk_start_plug(&plug);
spin_lock(&sdp->sd_ail_lock);
restart:
list_for_each_entry_reverse(tr, head, tr_list) {
if (wbc->nr_to_write <= 0)
break;
if (gfs2_ail1_start_one(sdp, wbc, tr, &withdraw))
goto restart;
}
spin_unlock(&sdp->sd_ail_lock);
blk_finish_plug(&plug);
if (withdraw)
gfs2_lm_withdraw(sdp, NULL);
trace_gfs2_ail_flush(sdp, wbc, 0);
}
/**
* gfs2_ail1_start - start writeback of all ail1 entries
* @sdp: The superblock
*/
static void gfs2_ail1_start(struct gfs2_sbd *sdp)
{
struct writeback_control wbc = {
.sync_mode = WB_SYNC_NONE,
.nr_to_write = LONG_MAX,
.range_start = 0,
.range_end = LLONG_MAX,
};
return gfs2_ail1_flush(sdp, &wbc);
}
/**
* gfs2_ail1_empty_one - Check whether or not a trans in the AIL has been synced
* @sdp: the filesystem
* @ai: the AIL entry
*
*/
static void gfs2_ail1_empty_one(struct gfs2_sbd *sdp, struct gfs2_trans *tr,
bool *withdraw)
{
struct gfs2_bufdata *bd, *s;
struct buffer_head *bh;
list_for_each_entry_safe_reverse(bd, s, &tr->tr_ail1_list,
bd_ail_st_list) {
bh = bd->bd_bh;
gfs2_assert(sdp, bd->bd_tr == tr);
if (buffer_busy(bh))
continue;
if (!buffer_uptodate(bh) &&
!test_and_set_bit(SDF_AIL1_IO_ERROR, &sdp->sd_flags)) {
gfs2_io_error_bh(sdp, bh);
*withdraw = true;
}
list_move(&bd->bd_ail_st_list, &tr->tr_ail2_list);
}
}
/**
* gfs2_ail1_empty - Try to empty the ail1 lists
* @sdp: The superblock
*
* Tries to empty the ail1 lists, starting with the oldest first
*/
static int gfs2_ail1_empty(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr, *s;
int oldest_tr = 1;
int ret;
bool withdraw = false;
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_safe_reverse(tr, s, &sdp->sd_ail1_list, tr_list) {
gfs2_ail1_empty_one(sdp, tr, &withdraw);
if (list_empty(&tr->tr_ail1_list) && oldest_tr)
list_move(&tr->tr_list, &sdp->sd_ail2_list);
else
oldest_tr = 0;
}
ret = list_empty(&sdp->sd_ail1_list);
spin_unlock(&sdp->sd_ail_lock);
if (withdraw)
gfs2_lm_withdraw(sdp, "fatal: I/O error(s)\n");
return ret;
}
static void gfs2_ail1_wait(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr;
struct gfs2_bufdata *bd;
struct buffer_head *bh;
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_reverse(tr, &sdp->sd_ail1_list, tr_list) {
list_for_each_entry(bd, &tr->tr_ail1_list, bd_ail_st_list) {
bh = bd->bd_bh;
if (!buffer_locked(bh))
continue;
get_bh(bh);
spin_unlock(&sdp->sd_ail_lock);
wait_on_buffer(bh);
brelse(bh);
return;
}
}
spin_unlock(&sdp->sd_ail_lock);
}
/**
* gfs2_ail2_empty_one - Check whether or not a trans in the AIL has been synced
* @sdp: the filesystem
* @ai: the AIL entry
*
*/
static void gfs2_ail2_empty_one(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
struct list_head *head = &tr->tr_ail2_list;
struct gfs2_bufdata *bd;
while (!list_empty(head)) {
bd = list_entry(head->prev, struct gfs2_bufdata,
bd_ail_st_list);
gfs2_assert(sdp, bd->bd_tr == tr);
gfs2_remove_from_ail(bd);
}
}
static void ail2_empty(struct gfs2_sbd *sdp, unsigned int new_tail)
{
struct gfs2_trans *tr, *safe;
unsigned int old_tail = sdp->sd_log_tail;
int wrap = (new_tail < old_tail);
int a, b, rm;
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_safe(tr, safe, &sdp->sd_ail2_list, tr_list) {
a = (old_tail <= tr->tr_first);
b = (tr->tr_first < new_tail);
rm = (wrap) ? (a || b) : (a && b);
if (!rm)
continue;
gfs2_ail2_empty_one(sdp, tr);
list_del(&tr->tr_list);
gfs2_assert_warn(sdp, list_empty(&tr->tr_ail1_list));
gfs2_assert_warn(sdp, list_empty(&tr->tr_ail2_list));
kfree(tr);
}
spin_unlock(&sdp->sd_ail_lock);
}
/**
* gfs2_log_release - Release a given number of log blocks
* @sdp: The GFS2 superblock
* @blks: The number of blocks
*
*/
void gfs2_log_release(struct gfs2_sbd *sdp, unsigned int blks)
{
atomic_add(blks, &sdp->sd_log_blks_free);
trace_gfs2_log_blocks(sdp, blks);
gfs2_assert_withdraw(sdp, atomic_read(&sdp->sd_log_blks_free) <=
sdp->sd_jdesc->jd_blocks);
up_read(&sdp->sd_log_flush_lock);
}
/**
* gfs2_log_reserve - Make a log reservation
* @sdp: The GFS2 superblock
* @blks: The number of blocks to reserve
*
* Note that we never give out the last few blocks of the journal. Thats
* due to the fact that there is a small number of header blocks
* associated with each log flush. The exact number can't be known until
* flush time, so we ensure that we have just enough free blocks at all
* times to avoid running out during a log flush.
*
* We no longer flush the log here, instead we wake up logd to do that
* for us. To avoid the thundering herd and to ensure that we deal fairly
* with queued waiters, we use an exclusive wait. This means that when we
* get woken with enough journal space to get our reservation, we need to
* wake the next waiter on the list.
*
* Returns: errno
*/
int gfs2_log_reserve(struct gfs2_sbd *sdp, unsigned int blks)
{
int ret = 0;
unsigned reserved_blks = 7 * (4096 / sdp->sd_vfs->s_blocksize);
unsigned wanted = blks + reserved_blks;
DEFINE_WAIT(wait);
int did_wait = 0;
unsigned int free_blocks;
if (gfs2_assert_warn(sdp, blks) ||
gfs2_assert_warn(sdp, blks <= sdp->sd_jdesc->jd_blocks))
return -EINVAL;
atomic_add(blks, &sdp->sd_log_blks_needed);
retry:
free_blocks = atomic_read(&sdp->sd_log_blks_free);
if (unlikely(free_blocks <= wanted)) {
do {
prepare_to_wait_exclusive(&sdp->sd_log_waitq, &wait,
TASK_UNINTERRUPTIBLE);
wake_up(&sdp->sd_logd_waitq);
did_wait = 1;
if (atomic_read(&sdp->sd_log_blks_free) <= wanted)
io_schedule();
free_blocks = atomic_read(&sdp->sd_log_blks_free);
} while(free_blocks <= wanted);
finish_wait(&sdp->sd_log_waitq, &wait);
}
atomic_inc(&sdp->sd_reserving_log);
if (atomic_cmpxchg(&sdp->sd_log_blks_free, free_blocks,
free_blocks - blks) != free_blocks) {
if (atomic_dec_and_test(&sdp->sd_reserving_log))
wake_up(&sdp->sd_reserving_log_wait);
goto retry;
}
atomic_sub(blks, &sdp->sd_log_blks_needed);
trace_gfs2_log_blocks(sdp, -blks);
/*
* If we waited, then so might others, wake them up _after_ we get
* our share of the log.
*/
if (unlikely(did_wait))
wake_up(&sdp->sd_log_waitq);
down_read(&sdp->sd_log_flush_lock);
if (unlikely(!test_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags))) {
gfs2_log_release(sdp, blks);
ret = -EROFS;
}
if (atomic_dec_and_test(&sdp->sd_reserving_log))
wake_up(&sdp->sd_reserving_log_wait);
return ret;
}
/**
* log_distance - Compute distance between two journal blocks
* @sdp: The GFS2 superblock
* @newer: The most recent journal block of the pair
* @older: The older journal block of the pair
*
* Compute the distance (in the journal direction) between two
* blocks in the journal
*
* Returns: the distance in blocks
*/
static inline unsigned int log_distance(struct gfs2_sbd *sdp, unsigned int newer,
unsigned int older)
{
int dist;
dist = newer - older;
if (dist < 0)
dist += sdp->sd_jdesc->jd_blocks;
return dist;
}
/**
* calc_reserved - Calculate the number of blocks to reserve when
* refunding a transaction's unused buffers.
* @sdp: The GFS2 superblock
*
* This is complex. We need to reserve room for all our currently used
* metadata buffers (e.g. normal file I/O rewriting file time stamps) and
* all our journaled data buffers for journaled files (e.g. files in the
* meta_fs like rindex, or files for which chattr +j was done.)
* If we don't reserve enough space, gfs2_log_refund and gfs2_log_flush
* will count it as free space (sd_log_blks_free) and corruption will follow.
*
* We can have metadata bufs and jdata bufs in the same journal. So each
* type gets its own log header, for which we need to reserve a block.
* In fact, each type has the potential for needing more than one header
* in cases where we have more buffers than will fit on a journal page.
* Metadata journal entries take up half the space of journaled buffer entries.
* Thus, metadata entries have buf_limit (502) and journaled buffers have
* databuf_limit (251) before they cause a wrap around.
*
* Also, we need to reserve blocks for revoke journal entries and one for an
* overall header for the lot.
*
* Returns: the number of blocks reserved
*/
static unsigned int calc_reserved(struct gfs2_sbd *sdp)
{
unsigned int reserved = 0;
unsigned int mbuf;
unsigned int dbuf;
struct gfs2_trans *tr = sdp->sd_log_tr;
if (tr) {
mbuf = tr->tr_num_buf_new - tr->tr_num_buf_rm;
dbuf = tr->tr_num_databuf_new - tr->tr_num_databuf_rm;
reserved = mbuf + dbuf;
/* Account for header blocks */
reserved += DIV_ROUND_UP(mbuf, buf_limit(sdp));
reserved += DIV_ROUND_UP(dbuf, databuf_limit(sdp));
}
if (sdp->sd_log_commited_revoke > 0)
reserved += gfs2_struct2blk(sdp, sdp->sd_log_commited_revoke,
sizeof(u64));
/* One for the overall header */
if (reserved)
reserved++;
return reserved;
}
static unsigned int current_tail(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr;
unsigned int tail;
spin_lock(&sdp->sd_ail_lock);
if (list_empty(&sdp->sd_ail1_list)) {
tail = sdp->sd_log_head;
} else {
tr = list_entry(sdp->sd_ail1_list.prev, struct gfs2_trans,
tr_list);
tail = tr->tr_first;
}
spin_unlock(&sdp->sd_ail_lock);
return tail;
}
static void log_pull_tail(struct gfs2_sbd *sdp, unsigned int new_tail)
{
unsigned int dist = log_distance(sdp, new_tail, sdp->sd_log_tail);
ail2_empty(sdp, new_tail);
atomic_add(dist, &sdp->sd_log_blks_free);
trace_gfs2_log_blocks(sdp, dist);
gfs2_assert_withdraw(sdp, atomic_read(&sdp->sd_log_blks_free) <=
sdp->sd_jdesc->jd_blocks);
sdp->sd_log_tail = new_tail;
}
static void log_flush_wait(struct gfs2_sbd *sdp)
{
DEFINE_WAIT(wait);
if (atomic_read(&sdp->sd_log_in_flight)) {
do {
prepare_to_wait(&sdp->sd_log_flush_wait, &wait,
TASK_UNINTERRUPTIBLE);
if (atomic_read(&sdp->sd_log_in_flight))
io_schedule();
} while(atomic_read(&sdp->sd_log_in_flight));
finish_wait(&sdp->sd_log_flush_wait, &wait);
}
}
static int ip_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct gfs2_inode *ipa, *ipb;
ipa = list_entry(a, struct gfs2_inode, i_ordered);
ipb = list_entry(b, struct gfs2_inode, i_ordered);
if (ipa->i_no_addr < ipb->i_no_addr)
return -1;
if (ipa->i_no_addr > ipb->i_no_addr)
return 1;
return 0;
}
static void gfs2_ordered_write(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip;
LIST_HEAD(written);
spin_lock(&sdp->sd_ordered_lock);
list_sort(NULL, &sdp->sd_log_ordered, &ip_cmp);
while (!list_empty(&sdp->sd_log_ordered)) {
ip = list_entry(sdp->sd_log_ordered.next, struct gfs2_inode, i_ordered);
if (ip->i_inode.i_mapping->nrpages == 0) {
test_and_clear_bit(GIF_ORDERED, &ip->i_flags);
list_del(&ip->i_ordered);
continue;
}
list_move(&ip->i_ordered, &written);
spin_unlock(&sdp->sd_ordered_lock);
filemap_fdatawrite(ip->i_inode.i_mapping);
spin_lock(&sdp->sd_ordered_lock);
}
list_splice(&written, &sdp->sd_log_ordered);
spin_unlock(&sdp->sd_ordered_lock);
}
static void gfs2_ordered_wait(struct gfs2_sbd *sdp)
{
struct gfs2_inode *ip;
spin_lock(&sdp->sd_ordered_lock);
while (!list_empty(&sdp->sd_log_ordered)) {
ip = list_entry(sdp->sd_log_ordered.next, struct gfs2_inode, i_ordered);
list_del(&ip->i_ordered);
WARN_ON(!test_and_clear_bit(GIF_ORDERED, &ip->i_flags));
if (ip->i_inode.i_mapping->nrpages == 0)
continue;
spin_unlock(&sdp->sd_ordered_lock);
filemap_fdatawait(ip->i_inode.i_mapping);
spin_lock(&sdp->sd_ordered_lock);
}
spin_unlock(&sdp->sd_ordered_lock);
}
void gfs2_ordered_del_inode(struct gfs2_inode *ip)
{
struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
spin_lock(&sdp->sd_ordered_lock);
if (test_and_clear_bit(GIF_ORDERED, &ip->i_flags))
list_del(&ip->i_ordered);
spin_unlock(&sdp->sd_ordered_lock);
}
void gfs2_add_revoke(struct gfs2_sbd *sdp, struct gfs2_bufdata *bd)
{
struct buffer_head *bh = bd->bd_bh;
struct gfs2_glock *gl = bd->bd_gl;
bh->b_private = NULL;
bd->bd_blkno = bh->b_blocknr;
gfs2_remove_from_ail(bd); /* drops ref on bh */
bd->bd_bh = NULL;
sdp->sd_log_num_revoke++;
if (atomic_inc_return(&gl->gl_revokes) == 1)
gfs2_glock_hold(gl);
set_bit(GLF_LFLUSH, &gl->gl_flags);
list_add(&bd->bd_list, &sdp->sd_log_revokes);
}
void gfs2_write_revokes(struct gfs2_sbd *sdp)
{
struct gfs2_trans *tr;
struct gfs2_bufdata *bd, *tmp;
int have_revokes = 0;
int max_revokes = (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_log_descriptor)) / sizeof(u64);
gfs2_ail1_empty(sdp);
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_reverse(tr, &sdp->sd_ail1_list, tr_list) {
list_for_each_entry(bd, &tr->tr_ail2_list, bd_ail_st_list) {
if (list_empty(&bd->bd_list)) {
have_revokes = 1;
goto done;
}
}
}
done:
spin_unlock(&sdp->sd_ail_lock);
if (have_revokes == 0)
return;
while (sdp->sd_log_num_revoke > max_revokes)
max_revokes += (sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header)) / sizeof(u64);
max_revokes -= sdp->sd_log_num_revoke;
if (!sdp->sd_log_num_revoke) {
atomic_dec(&sdp->sd_log_blks_free);
/* If no blocks have been reserved, we need to also
* reserve a block for the header */
if (!sdp->sd_log_blks_reserved)
atomic_dec(&sdp->sd_log_blks_free);
}
gfs2_log_lock(sdp);
spin_lock(&sdp->sd_ail_lock);
list_for_each_entry_reverse(tr, &sdp->sd_ail1_list, tr_list) {
list_for_each_entry_safe(bd, tmp, &tr->tr_ail2_list, bd_ail_st_list) {
if (max_revokes == 0)
goto out_of_blocks;
if (!list_empty(&bd->bd_list))
continue;
gfs2_add_revoke(sdp, bd);
max_revokes--;
}
}
out_of_blocks:
spin_unlock(&sdp->sd_ail_lock);
gfs2_log_unlock(sdp);
if (!sdp->sd_log_num_revoke) {
atomic_inc(&sdp->sd_log_blks_free);
if (!sdp->sd_log_blks_reserved)
atomic_inc(&sdp->sd_log_blks_free);
}
}
/**
* gfs2_write_log_header - Write a journal log header buffer at lblock
* @sdp: The GFS2 superblock
* @jd: journal descriptor of the journal to which we are writing
* @seq: sequence number
* @tail: tail of the log
* @lblock: value for lh_blkno (block number relative to start of journal)
* @flags: log header flags GFS2_LOG_HEAD_*
* @op_flags: flags to pass to the bio
*
* Returns: the initialized log buffer descriptor
*/
void gfs2_write_log_header(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd,
u64 seq, u32 tail, u32 lblock, u32 flags,
int op_flags)
{
struct gfs2_log_header *lh;
u32 hash, crc;
struct page *page = mempool_alloc(gfs2_page_pool, GFP_NOIO);
struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
struct timespec64 tv;
struct super_block *sb = sdp->sd_vfs;
u64 dblock;
lh = page_address(page);
clear_page(lh);
lh->lh_header.mh_magic = cpu_to_be32(GFS2_MAGIC);
lh->lh_header.mh_type = cpu_to_be32(GFS2_METATYPE_LH);
lh->lh_header.__pad0 = cpu_to_be64(0);
lh->lh_header.mh_format = cpu_to_be32(GFS2_FORMAT_LH);
lh->lh_header.mh_jid = cpu_to_be32(sdp->sd_jdesc->jd_jid);
lh->lh_sequence = cpu_to_be64(seq);
lh->lh_flags = cpu_to_be32(flags);
lh->lh_tail = cpu_to_be32(tail);
lh->lh_blkno = cpu_to_be32(lblock);
hash = ~crc32(~0, lh, LH_V1_SIZE);
lh->lh_hash = cpu_to_be32(hash);
ktime_get_coarse_real_ts64(&tv);
lh->lh_nsec = cpu_to_be32(tv.tv_nsec);
lh->lh_sec = cpu_to_be64(tv.tv_sec);
if (!list_empty(&jd->extent_list))
dblock = gfs2_log_bmap(sdp);
else {
int ret = gfs2_lblk_to_dblk(jd->jd_inode, lblock, &dblock);
if (gfs2_assert_withdraw(sdp, ret == 0))
return;
}
lh->lh_addr = cpu_to_be64(dblock);
lh->lh_jinode = cpu_to_be64(GFS2_I(jd->jd_inode)->i_no_addr);
/* We may only write local statfs, quota, etc., when writing to our
own journal. The values are left 0 when recovering a journal
different from our own. */
if (!(flags & GFS2_LOG_HEAD_RECOVERY)) {
lh->lh_statfs_addr =
cpu_to_be64(GFS2_I(sdp->sd_sc_inode)->i_no_addr);
lh->lh_quota_addr =
cpu_to_be64(GFS2_I(sdp->sd_qc_inode)->i_no_addr);
spin_lock(&sdp->sd_statfs_spin);
lh->lh_local_total = cpu_to_be64(l_sc->sc_total);
lh->lh_local_free = cpu_to_be64(l_sc->sc_free);
lh->lh_local_dinodes = cpu_to_be64(l_sc->sc_dinodes);
spin_unlock(&sdp->sd_statfs_spin);
}
BUILD_BUG_ON(offsetof(struct gfs2_log_header, lh_crc) != LH_V1_SIZE);
crc = crc32c(~0, (void *)lh + LH_V1_SIZE + 4,
sb->s_blocksize - LH_V1_SIZE - 4);
lh->lh_crc = cpu_to_be32(crc);
gfs2_log_write(sdp, page, sb->s_blocksize, 0, dblock);
gfs2_log_submit_bio(&sdp->sd_log_bio, REQ_OP_WRITE | op_flags);
log_flush_wait(sdp);
}
/**
* log_write_header - Get and initialize a journal header buffer
* @sdp: The GFS2 superblock
* @flags: The log header flags, including log header origin
*
* Returns: the initialized log buffer descriptor
*/
static void log_write_header(struct gfs2_sbd *sdp, u32 flags)
{
unsigned int tail;
int op_flags = REQ_PREFLUSH | REQ_FUA | REQ_META | REQ_SYNC;
enum gfs2_freeze_state state = atomic_read(&sdp->sd_freeze_state);
gfs2_assert_withdraw(sdp, (state != SFS_FROZEN));
tail = current_tail(sdp);
if (test_bit(SDF_NOBARRIERS, &sdp->sd_flags)) {
gfs2_ordered_wait(sdp);
log_flush_wait(sdp);
op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
}
sdp->sd_log_idle = (tail == sdp->sd_log_flush_head);
gfs2_write_log_header(sdp, sdp->sd_jdesc, sdp->sd_log_sequence++, tail,
sdp->sd_log_flush_head, flags, op_flags);
if (sdp->sd_log_tail != tail)
log_pull_tail(sdp, tail);
}
/**
* gfs2_log_flush - flush incore transaction(s)
* @sdp: the filesystem
* @gl: The glock structure to flush. If NULL, flush the whole incore log
* @flags: The log header flags: GFS2_LOG_HEAD_FLUSH_* and debug flags
*
*/
void gfs2_log_flush(struct gfs2_sbd *sdp, struct gfs2_glock *gl, u32 flags)
{
struct gfs2_trans *tr;
enum gfs2_freeze_state state = atomic_read(&sdp->sd_freeze_state);
down_write(&sdp->sd_log_flush_lock);
/* Log might have been flushed while we waited for the flush lock */
if (gl && !test_bit(GLF_LFLUSH, &gl->gl_flags)) {
up_write(&sdp->sd_log_flush_lock);
return;
}
trace_gfs2_log_flush(sdp, 1, flags);
if (flags & GFS2_LOG_HEAD_FLUSH_SHUTDOWN)
clear_bit(SDF_JOURNAL_LIVE, &sdp->sd_flags);
sdp->sd_log_flush_head = sdp->sd_log_head;
tr = sdp->sd_log_tr;
if (tr) {
sdp->sd_log_tr = NULL;
INIT_LIST_HEAD(&tr->tr_ail1_list);
INIT_LIST_HEAD(&tr->tr_ail2_list);
tr->tr_first = sdp->sd_log_flush_head;
if (unlikely (state == SFS_FROZEN))
gfs2_assert_withdraw(sdp, !tr->tr_num_buf_new && !tr->tr_num_databuf_new);
}
if (unlikely(state == SFS_FROZEN))
gfs2_assert_withdraw(sdp, !sdp->sd_log_num_revoke);
gfs2_assert_withdraw(sdp,
sdp->sd_log_num_revoke == sdp->sd_log_commited_revoke);
gfs2_ordered_write(sdp);
lops_before_commit(sdp, tr);
gfs2_log_submit_bio(&sdp->sd_log_bio, REQ_OP_WRITE);
if (sdp->sd_log_head != sdp->sd_log_flush_head) {
log_flush_wait(sdp);
log_write_header(sdp, flags);
} else if (sdp->sd_log_tail != current_tail(sdp) && !sdp->sd_log_idle){
atomic_dec(&sdp->sd_log_blks_free); /* Adjust for unreserved buffer */
trace_gfs2_log_blocks(sdp, -1);
log_write_header(sdp, flags);
}
lops_after_commit(sdp, tr);
gfs2_log_lock(sdp);
sdp->sd_log_head = sdp->sd_log_flush_head;
sdp->sd_log_blks_reserved = 0;
sdp->sd_log_commited_revoke = 0;
spin_lock(&sdp->sd_ail_lock);
if (tr && !list_empty(&tr->tr_ail1_list)) {
list_add(&tr->tr_list, &sdp->sd_ail1_list);
tr = NULL;
}
spin_unlock(&sdp->sd_ail_lock);
gfs2_log_unlock(sdp);
if (!(flags & GFS2_LOG_HEAD_FLUSH_NORMAL)) {
if (!sdp->sd_log_idle) {
for (;;) {
gfs2_ail1_start(sdp);
gfs2_ail1_wait(sdp);
if (gfs2_ail1_empty(sdp))
break;
}
atomic_dec(&sdp->sd_log_blks_free); /* Adjust for unreserved buffer */
trace_gfs2_log_blocks(sdp, -1);
log_write_header(sdp, flags);
sdp->sd_log_head = sdp->sd_log_flush_head;
}
if (flags & (GFS2_LOG_HEAD_FLUSH_SHUTDOWN |
GFS2_LOG_HEAD_FLUSH_FREEZE))
gfs2_log_shutdown(sdp);
if (flags & GFS2_LOG_HEAD_FLUSH_FREEZE)
atomic_set(&sdp->sd_freeze_state, SFS_FROZEN);
}
trace_gfs2_log_flush(sdp, 0, flags);
up_write(&sdp->sd_log_flush_lock);
kfree(tr);
}
/**
* gfs2_merge_trans - Merge a new transaction into a cached transaction
* @old: Original transaction to be expanded
* @new: New transaction to be merged
*/
static void gfs2_merge_trans(struct gfs2_trans *old, struct gfs2_trans *new)
{
WARN_ON_ONCE(!test_bit(TR_ATTACHED, &old->tr_flags));
old->tr_num_buf_new += new->tr_num_buf_new;
old->tr_num_databuf_new += new->tr_num_databuf_new;
old->tr_num_buf_rm += new->tr_num_buf_rm;
old->tr_num_databuf_rm += new->tr_num_databuf_rm;
old->tr_num_revoke += new->tr_num_revoke;
old->tr_num_revoke_rm += new->tr_num_revoke_rm;
list_splice_tail_init(&new->tr_databuf, &old->tr_databuf);
list_splice_tail_init(&new->tr_buf, &old->tr_buf);
}
static void log_refund(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
unsigned int reserved;
unsigned int unused;
unsigned int maxres;
gfs2_log_lock(sdp);
if (sdp->sd_log_tr) {
gfs2_merge_trans(sdp->sd_log_tr, tr);
} else if (tr->tr_num_buf_new || tr->tr_num_databuf_new) {
gfs2_assert_withdraw(sdp, test_bit(TR_ALLOCED, &tr->tr_flags));
sdp->sd_log_tr = tr;
set_bit(TR_ATTACHED, &tr->tr_flags);
}
sdp->sd_log_commited_revoke += tr->tr_num_revoke - tr->tr_num_revoke_rm;
reserved = calc_reserved(sdp);
maxres = sdp->sd_log_blks_reserved + tr->tr_reserved;
gfs2_assert_withdraw(sdp, maxres >= reserved);
unused = maxres - reserved;
atomic_add(unused, &sdp->sd_log_blks_free);
trace_gfs2_log_blocks(sdp, unused);
gfs2_assert_withdraw(sdp, atomic_read(&sdp->sd_log_blks_free) <=
sdp->sd_jdesc->jd_blocks);
sdp->sd_log_blks_reserved = reserved;
gfs2_log_unlock(sdp);
}
/**
* gfs2_log_commit - Commit a transaction to the log
* @sdp: the filesystem
* @tr: the transaction
*
* We wake up gfs2_logd if the number of pinned blocks exceed thresh1
* or the total number of used blocks (pinned blocks plus AIL blocks)
* is greater than thresh2.
*
* At mount time thresh1 is 1/3rd of journal size, thresh2 is 2/3rd of
* journal size.
*
* Returns: errno
*/
void gfs2_log_commit(struct gfs2_sbd *sdp, struct gfs2_trans *tr)
{
log_refund(sdp, tr);
if (atomic_read(&sdp->sd_log_pinned) > atomic_read(&sdp->sd_log_thresh1) ||
((sdp->sd_jdesc->jd_blocks - atomic_read(&sdp->sd_log_blks_free)) >
atomic_read(&sdp->sd_log_thresh2)))
wake_up(&sdp->sd_logd_waitq);
}
/**
* gfs2_log_shutdown - write a shutdown header into a journal
* @sdp: the filesystem
*
*/
void gfs2_log_shutdown(struct gfs2_sbd *sdp)
{
gfs2_assert_withdraw(sdp, !sdp->sd_log_blks_reserved);
gfs2_assert_withdraw(sdp, !sdp->sd_log_num_revoke);
gfs2_assert_withdraw(sdp, list_empty(&sdp->sd_ail1_list));
sdp->sd_log_flush_head = sdp->sd_log_head;
log_write_header(sdp, GFS2_LOG_HEAD_UNMOUNT | GFS2_LFC_SHUTDOWN);
gfs2_assert_warn(sdp, sdp->sd_log_head == sdp->sd_log_tail);
gfs2_assert_warn(sdp, list_empty(&sdp->sd_ail2_list));
sdp->sd_log_head = sdp->sd_log_flush_head;
sdp->sd_log_tail = sdp->sd_log_head;
}
static inline int gfs2_jrnl_flush_reqd(struct gfs2_sbd *sdp)
{
return (atomic_read(&sdp->sd_log_pinned) +
atomic_read(&sdp->sd_log_blks_needed) >=
atomic_read(&sdp->sd_log_thresh1));
}
static inline int gfs2_ail_flush_reqd(struct gfs2_sbd *sdp)
{
unsigned int used_blocks = sdp->sd_jdesc->jd_blocks - atomic_read(&sdp->sd_log_blks_free);
if (test_and_clear_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags))
return 1;
return used_blocks + atomic_read(&sdp->sd_log_blks_needed) >=
atomic_read(&sdp->sd_log_thresh2);
}
/**
* gfs2_logd - Update log tail as Active Items get flushed to in-place blocks
* @sdp: Pointer to GFS2 superblock
*
* Also, periodically check to make sure that we're using the most recent
* journal index.
*/
int gfs2_logd(void *data)
{
struct gfs2_sbd *sdp = data;
unsigned long t = 1;
DEFINE_WAIT(wait);
bool did_flush;
while (!kthread_should_stop()) {
/* Check for errors writing to the journal */
if (sdp->sd_log_error) {
gfs2_lm_withdraw(sdp,
"GFS2: fsid=%s: error %d: "
"withdrawing the file system to "
"prevent further damage.\n",
sdp->sd_fsname, sdp->sd_log_error);
}
did_flush = false;
if (gfs2_jrnl_flush_reqd(sdp) || t == 0) {
gfs2_ail1_empty(sdp);
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_LOGD_JFLUSH_REQD);
did_flush = true;
}
if (gfs2_ail_flush_reqd(sdp)) {
gfs2_ail1_start(sdp);
gfs2_ail1_wait(sdp);
gfs2_ail1_empty(sdp);
gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
GFS2_LFC_LOGD_AIL_FLUSH_REQD);
did_flush = true;
}
if (!gfs2_ail_flush_reqd(sdp) || did_flush)
wake_up(&sdp->sd_log_waitq);
t = gfs2_tune_get(sdp, gt_logd_secs) * HZ;
try_to_freeze();
do {
prepare_to_wait(&sdp->sd_logd_waitq, &wait,
TASK_INTERRUPTIBLE);
if (!gfs2_ail_flush_reqd(sdp) &&
!gfs2_jrnl_flush_reqd(sdp) &&
!kthread_should_stop())
t = schedule_timeout(t);
} while(t && !gfs2_ail_flush_reqd(sdp) &&
!gfs2_jrnl_flush_reqd(sdp) &&
!kthread_should_stop());
finish_wait(&sdp->sd_logd_waitq, &wait);
}
return 0;
}