linux-sg2042/arch/openrisc
Laurent Dufour 2ae416b142 mm: new mm hook framework
CRIU is recreating the process memory layout by remapping the checkpointee
memory area on top of the current process (criu).  This includes remapping
the vDSO to the place it has at checkpoint time.

However some architectures like powerpc are keeping a reference to the
vDSO base address to build the signal return stack frame by calling the
vDSO sigreturn service.  So once the vDSO has been moved, this reference
is no more valid and the signal frame built later are not usable.

This patch serie is introducing a new mm hook framework, and a new
arch_remap hook which is called when mremap is done and the mm lock still
hold.  The next patch is adding the vDSO remap and unmap tracking to the
powerpc architecture.

This patch (of 3):

This patch introduces a new set of header file to manage mm hooks:
- per architecture empty header file (arch/x/include/asm/mm-arch-hooks.h)
- a generic header (include/linux/mm-arch-hooks.h)

The architecture which need to overwrite a hook as to redefine it in its
header file, while architecture which doesn't need have nothing to do.

The default hooks are defined in the generic header and are used in the
case the architecture is not defining it.

In a next step, mm hooks defined in include/asm-generic/mm_hooks.h should
be moved here.

Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:41 -07:00
..
boot/dts openrisc: use new common dtc rule 2012-12-03 17:17:48 -06:00
configs openrisc: Refresh or1ksim_defconfig for v3.12 2013-11-15 10:37:32 +01:00
include mm: new mm hook framework 2015-06-24 17:49:41 -07:00
kernel Merge branch 'akpm' (patches from Andrew) 2015-04-15 16:39:15 -07:00
lib ARCH: drivers remove __dev* attributes. 2013-01-03 15:57:13 -08:00
mm vm: add VM_FAULT_SIGSEGV handling support 2015-01-29 10:51:32 -08:00
Kconfig openrisc: Convert handle_IRQ to use __handle_domain_irq 2014-09-03 13:10:19 +00:00
Makefile openrisc: Makefile: append "-D__linux__" to KBUILD_CFLAGS 2013-11-05 16:14:47 +01:00
README.openrisc OpenRISC: Miscellaneous 2011-07-22 18:46:41 +02:00
TODO.openrisc OpenRISC: Miscellaneous 2011-07-22 18:46:41 +02:00

README.openrisc

OpenRISC Linux
==============

This is a port of Linux to the OpenRISC class of microprocessors; the initial
target architecture, specifically, is the 32-bit OpenRISC 1000 family (or1k).

For information about OpenRISC processors and ongoing development:

	website		http://openrisc.net

For more information about Linux on OpenRISC, please contact South Pole AB.

	email:		info@southpole.se

	website:	http://southpole.se
			http://southpoleconsulting.com

---------------------------------------------------------------------

Build instructions for OpenRISC toolchain and Linux
===================================================

In order to build and run Linux for OpenRISC, you'll need at least a basic
toolchain and, perhaps, the architectural simulator.  Steps to get these bits
in place are outlined here.

1)  The toolchain can be obtained from openrisc.net.  Instructions for building
a toolchain can be found at:

http://openrisc.net/toolchain-build.html

2) or1ksim (optional)

or1ksim is the architectural simulator which will allow you to actually run
your OpenRISC Linux kernel if you don't have an OpenRISC processor at hand.

	git clone git://openrisc.net/jonas/or1ksim-svn

	cd or1ksim
	./configure --prefix=$OPENRISC_PREFIX
	make
	make install

3)  Linux kernel

Build the kernel as usual

	make ARCH=openrisc defconfig
	make ARCH=openrisc

4)  Run in architectural simulator

Grab the or1ksim platform configuration file (from the or1ksim source) and
together with your freshly built vmlinux, run your kernel with the following
incantation:

	sim -f arch/openrisc/or1ksim.cfg vmlinux

---------------------------------------------------------------------

Terminology
===========

In the code, the following particles are used on symbols to limit the scope
to more or less specific processor implementations:

openrisc: the OpenRISC class of processors
or1k:     the OpenRISC 1000 family of processors
or1200:   the OpenRISC 1200 processor

---------------------------------------------------------------------

History
========

18. 11. 2003	Matjaz Breskvar (phoenix@bsemi.com)
	initial port of linux to OpenRISC/or32 architecture.
        all the core stuff is implemented and seams usable.

08. 12. 2003	Matjaz Breskvar (phoenix@bsemi.com)
	complete change of TLB miss handling.
	rewrite of exceptions handling.
	fully functional sash-3.6 in default initrd.
	a much improved version with changes all around.

10. 04. 2004	Matjaz Breskvar (phoenix@bsemi.com)
	alot of bugfixes all over.
	ethernet support, functional http and telnet servers.
	running many standard linux apps.

26. 06. 2004	Matjaz Breskvar (phoenix@bsemi.com)
	port to 2.6.x

30. 11. 2004	Matjaz Breskvar (phoenix@bsemi.com)
	lots of bugfixes and enhancments.
	added opencores framebuffer driver.

09. 10. 2010    Jonas Bonn (jonas@southpole.se)
	major rewrite to bring up to par with upstream Linux 2.6.36