716 lines
18 KiB
C
716 lines
18 KiB
C
/*
|
|
* linux/mm/mlock.c
|
|
*
|
|
* (C) Copyright 1995 Linus Torvalds
|
|
* (C) Copyright 2002 Christoph Hellwig
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/module.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/hugetlb.h>
|
|
|
|
#include "internal.h"
|
|
|
|
int can_do_mlock(void)
|
|
{
|
|
if (capable(CAP_IPC_LOCK))
|
|
return 1;
|
|
if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(can_do_mlock);
|
|
|
|
#ifdef CONFIG_UNEVICTABLE_LRU
|
|
/*
|
|
* Mlocked pages are marked with PageMlocked() flag for efficient testing
|
|
* in vmscan and, possibly, the fault path; and to support semi-accurate
|
|
* statistics.
|
|
*
|
|
* An mlocked page [PageMlocked(page)] is unevictable. As such, it will
|
|
* be placed on the LRU "unevictable" list, rather than the [in]active lists.
|
|
* The unevictable list is an LRU sibling list to the [in]active lists.
|
|
* PageUnevictable is set to indicate the unevictable state.
|
|
*
|
|
* When lazy mlocking via vmscan, it is important to ensure that the
|
|
* vma's VM_LOCKED status is not concurrently being modified, otherwise we
|
|
* may have mlocked a page that is being munlocked. So lazy mlock must take
|
|
* the mmap_sem for read, and verify that the vma really is locked
|
|
* (see mm/rmap.c).
|
|
*/
|
|
|
|
/*
|
|
* LRU accounting for clear_page_mlock()
|
|
*/
|
|
void __clear_page_mlock(struct page *page)
|
|
{
|
|
VM_BUG_ON(!PageLocked(page));
|
|
|
|
if (!page->mapping) { /* truncated ? */
|
|
return;
|
|
}
|
|
|
|
dec_zone_page_state(page, NR_MLOCK);
|
|
count_vm_event(UNEVICTABLE_PGCLEARED);
|
|
if (!isolate_lru_page(page)) {
|
|
putback_lru_page(page);
|
|
} else {
|
|
/*
|
|
* We lost the race. the page already moved to evictable list.
|
|
*/
|
|
if (PageUnevictable(page))
|
|
count_vm_event(UNEVICTABLE_PGSTRANDED);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark page as mlocked if not already.
|
|
* If page on LRU, isolate and putback to move to unevictable list.
|
|
*/
|
|
void mlock_vma_page(struct page *page)
|
|
{
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
if (!TestSetPageMlocked(page)) {
|
|
inc_zone_page_state(page, NR_MLOCK);
|
|
count_vm_event(UNEVICTABLE_PGMLOCKED);
|
|
if (!isolate_lru_page(page))
|
|
putback_lru_page(page);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* called from munlock()/munmap() path with page supposedly on the LRU.
|
|
*
|
|
* Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
|
|
* [in try_to_munlock()] and then attempt to isolate the page. We must
|
|
* isolate the page to keep others from messing with its unevictable
|
|
* and mlocked state while trying to munlock. However, we pre-clear the
|
|
* mlocked state anyway as we might lose the isolation race and we might
|
|
* not get another chance to clear PageMlocked. If we successfully
|
|
* isolate the page and try_to_munlock() detects other VM_LOCKED vmas
|
|
* mapping the page, it will restore the PageMlocked state, unless the page
|
|
* is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
|
|
* perhaps redundantly.
|
|
* If we lose the isolation race, and the page is mapped by other VM_LOCKED
|
|
* vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
|
|
* either of which will restore the PageMlocked state by calling
|
|
* mlock_vma_page() above, if it can grab the vma's mmap sem.
|
|
*/
|
|
static void munlock_vma_page(struct page *page)
|
|
{
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
if (TestClearPageMlocked(page)) {
|
|
dec_zone_page_state(page, NR_MLOCK);
|
|
if (!isolate_lru_page(page)) {
|
|
int ret = try_to_munlock(page);
|
|
/*
|
|
* did try_to_unlock() succeed or punt?
|
|
*/
|
|
if (ret == SWAP_SUCCESS || ret == SWAP_AGAIN)
|
|
count_vm_event(UNEVICTABLE_PGMUNLOCKED);
|
|
|
|
putback_lru_page(page);
|
|
} else {
|
|
/*
|
|
* We lost the race. let try_to_unmap() deal
|
|
* with it. At least we get the page state and
|
|
* mlock stats right. However, page is still on
|
|
* the noreclaim list. We'll fix that up when
|
|
* the page is eventually freed or we scan the
|
|
* noreclaim list.
|
|
*/
|
|
if (PageUnevictable(page))
|
|
count_vm_event(UNEVICTABLE_PGSTRANDED);
|
|
else
|
|
count_vm_event(UNEVICTABLE_PGMUNLOCKED);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __mlock_vma_pages_range() - mlock/munlock a range of pages in the vma.
|
|
* @vma: target vma
|
|
* @start: start address
|
|
* @end: end address
|
|
* @mlock: 0 indicate munlock, otherwise mlock.
|
|
*
|
|
* If @mlock == 0, unlock an mlocked range;
|
|
* else mlock the range of pages. This takes care of making the pages present ,
|
|
* too.
|
|
*
|
|
* return 0 on success, negative error code on error.
|
|
*
|
|
* vma->vm_mm->mmap_sem must be held for at least read.
|
|
*/
|
|
static long __mlock_vma_pages_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
int mlock)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long addr = start;
|
|
struct page *pages[16]; /* 16 gives a reasonable batch */
|
|
int nr_pages = (end - start) / PAGE_SIZE;
|
|
int ret = 0;
|
|
int gup_flags = 0;
|
|
|
|
VM_BUG_ON(start & ~PAGE_MASK);
|
|
VM_BUG_ON(end & ~PAGE_MASK);
|
|
VM_BUG_ON(start < vma->vm_start);
|
|
VM_BUG_ON(end > vma->vm_end);
|
|
VM_BUG_ON((!rwsem_is_locked(&mm->mmap_sem)) &&
|
|
(atomic_read(&mm->mm_users) != 0));
|
|
|
|
/*
|
|
* mlock: don't page populate if vma has PROT_NONE permission.
|
|
* munlock: always do munlock although the vma has PROT_NONE
|
|
* permission, or SIGKILL is pending.
|
|
*/
|
|
if (!mlock)
|
|
gup_flags |= GUP_FLAGS_IGNORE_VMA_PERMISSIONS |
|
|
GUP_FLAGS_IGNORE_SIGKILL;
|
|
|
|
if (vma->vm_flags & VM_WRITE)
|
|
gup_flags |= GUP_FLAGS_WRITE;
|
|
|
|
while (nr_pages > 0) {
|
|
int i;
|
|
|
|
cond_resched();
|
|
|
|
/*
|
|
* get_user_pages makes pages present if we are
|
|
* setting mlock. and this extra reference count will
|
|
* disable migration of this page. However, page may
|
|
* still be truncated out from under us.
|
|
*/
|
|
ret = __get_user_pages(current, mm, addr,
|
|
min_t(int, nr_pages, ARRAY_SIZE(pages)),
|
|
gup_flags, pages, NULL);
|
|
/*
|
|
* This can happen for, e.g., VM_NONLINEAR regions before
|
|
* a page has been allocated and mapped at a given offset,
|
|
* or for addresses that map beyond end of a file.
|
|
* We'll mlock the the pages if/when they get faulted in.
|
|
*/
|
|
if (ret < 0)
|
|
break;
|
|
if (ret == 0) {
|
|
/*
|
|
* We know the vma is there, so the only time
|
|
* we cannot get a single page should be an
|
|
* error (ret < 0) case.
|
|
*/
|
|
WARN_ON(1);
|
|
break;
|
|
}
|
|
|
|
lru_add_drain(); /* push cached pages to LRU */
|
|
|
|
for (i = 0; i < ret; i++) {
|
|
struct page *page = pages[i];
|
|
|
|
lock_page(page);
|
|
/*
|
|
* Because we lock page here and migration is blocked
|
|
* by the elevated reference, we need only check for
|
|
* page truncation (file-cache only).
|
|
*/
|
|
if (page->mapping) {
|
|
if (mlock)
|
|
mlock_vma_page(page);
|
|
else
|
|
munlock_vma_page(page);
|
|
}
|
|
unlock_page(page);
|
|
put_page(page); /* ref from get_user_pages() */
|
|
|
|
/*
|
|
* here we assume that get_user_pages() has given us
|
|
* a list of virtually contiguous pages.
|
|
*/
|
|
addr += PAGE_SIZE; /* for next get_user_pages() */
|
|
nr_pages--;
|
|
}
|
|
ret = 0;
|
|
}
|
|
|
|
return ret; /* count entire vma as locked_vm */
|
|
}
|
|
|
|
/*
|
|
* convert get_user_pages() return value to posix mlock() error
|
|
*/
|
|
static int __mlock_posix_error_return(long retval)
|
|
{
|
|
if (retval == -EFAULT)
|
|
retval = -ENOMEM;
|
|
else if (retval == -ENOMEM)
|
|
retval = -EAGAIN;
|
|
return retval;
|
|
}
|
|
|
|
#else /* CONFIG_UNEVICTABLE_LRU */
|
|
|
|
/*
|
|
* Just make pages present if VM_LOCKED. No-op if unlocking.
|
|
*/
|
|
static long __mlock_vma_pages_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end,
|
|
int mlock)
|
|
{
|
|
if (mlock && (vma->vm_flags & VM_LOCKED))
|
|
return make_pages_present(start, end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int __mlock_posix_error_return(long retval)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_UNEVICTABLE_LRU */
|
|
|
|
/**
|
|
* mlock_vma_pages_range() - mlock pages in specified vma range.
|
|
* @vma - the vma containing the specfied address range
|
|
* @start - starting address in @vma to mlock
|
|
* @end - end address [+1] in @vma to mlock
|
|
*
|
|
* For mmap()/mremap()/expansion of mlocked vma.
|
|
*
|
|
* return 0 on success for "normal" vmas.
|
|
*
|
|
* return number of pages [> 0] to be removed from locked_vm on success
|
|
* of "special" vmas.
|
|
*
|
|
* return negative error if vma spanning @start-@range disappears while
|
|
* mmap semaphore is dropped. Unlikely?
|
|
*/
|
|
long mlock_vma_pages_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
int nr_pages = (end - start) / PAGE_SIZE;
|
|
BUG_ON(!(vma->vm_flags & VM_LOCKED));
|
|
|
|
/*
|
|
* filter unlockable vmas
|
|
*/
|
|
if (vma->vm_flags & (VM_IO | VM_PFNMAP))
|
|
goto no_mlock;
|
|
|
|
if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
|
|
is_vm_hugetlb_page(vma) ||
|
|
vma == get_gate_vma(current))) {
|
|
long error;
|
|
downgrade_write(&mm->mmap_sem);
|
|
|
|
error = __mlock_vma_pages_range(vma, start, end, 1);
|
|
|
|
up_read(&mm->mmap_sem);
|
|
/* vma can change or disappear */
|
|
down_write(&mm->mmap_sem);
|
|
vma = find_vma(mm, start);
|
|
/* non-NULL vma must contain @start, but need to check @end */
|
|
if (!vma || end > vma->vm_end)
|
|
return -ENOMEM;
|
|
|
|
return 0; /* hide other errors from mmap(), et al */
|
|
}
|
|
|
|
/*
|
|
* User mapped kernel pages or huge pages:
|
|
* make these pages present to populate the ptes, but
|
|
* fall thru' to reset VM_LOCKED--no need to unlock, and
|
|
* return nr_pages so these don't get counted against task's
|
|
* locked limit. huge pages are already counted against
|
|
* locked vm limit.
|
|
*/
|
|
make_pages_present(start, end);
|
|
|
|
no_mlock:
|
|
vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
|
|
return nr_pages; /* error or pages NOT mlocked */
|
|
}
|
|
|
|
|
|
/*
|
|
* munlock_vma_pages_range() - munlock all pages in the vma range.'
|
|
* @vma - vma containing range to be munlock()ed.
|
|
* @start - start address in @vma of the range
|
|
* @end - end of range in @vma.
|
|
*
|
|
* For mremap(), munmap() and exit().
|
|
*
|
|
* Called with @vma VM_LOCKED.
|
|
*
|
|
* Returns with VM_LOCKED cleared. Callers must be prepared to
|
|
* deal with this.
|
|
*
|
|
* We don't save and restore VM_LOCKED here because pages are
|
|
* still on lru. In unmap path, pages might be scanned by reclaim
|
|
* and re-mlocked by try_to_{munlock|unmap} before we unmap and
|
|
* free them. This will result in freeing mlocked pages.
|
|
*/
|
|
void munlock_vma_pages_range(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
vma->vm_flags &= ~VM_LOCKED;
|
|
__mlock_vma_pages_range(vma, start, end, 0);
|
|
}
|
|
|
|
/*
|
|
* mlock_fixup - handle mlock[all]/munlock[all] requests.
|
|
*
|
|
* Filters out "special" vmas -- VM_LOCKED never gets set for these, and
|
|
* munlock is a no-op. However, for some special vmas, we go ahead and
|
|
* populate the ptes via make_pages_present().
|
|
*
|
|
* For vmas that pass the filters, merge/split as appropriate.
|
|
*/
|
|
static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
|
|
unsigned long start, unsigned long end, unsigned int newflags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgoff_t pgoff;
|
|
int nr_pages;
|
|
int ret = 0;
|
|
int lock = newflags & VM_LOCKED;
|
|
|
|
if (newflags == vma->vm_flags ||
|
|
(vma->vm_flags & (VM_IO | VM_PFNMAP)))
|
|
goto out; /* don't set VM_LOCKED, don't count */
|
|
|
|
if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
|
|
is_vm_hugetlb_page(vma) ||
|
|
vma == get_gate_vma(current)) {
|
|
if (lock)
|
|
make_pages_present(start, end);
|
|
goto out; /* don't set VM_LOCKED, don't count */
|
|
}
|
|
|
|
pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
|
|
*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
|
|
vma->vm_file, pgoff, vma_policy(vma));
|
|
if (*prev) {
|
|
vma = *prev;
|
|
goto success;
|
|
}
|
|
|
|
if (start != vma->vm_start) {
|
|
ret = split_vma(mm, vma, start, 1);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (end != vma->vm_end) {
|
|
ret = split_vma(mm, vma, end, 0);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
success:
|
|
/*
|
|
* Keep track of amount of locked VM.
|
|
*/
|
|
nr_pages = (end - start) >> PAGE_SHIFT;
|
|
if (!lock)
|
|
nr_pages = -nr_pages;
|
|
mm->locked_vm += nr_pages;
|
|
|
|
/*
|
|
* vm_flags is protected by the mmap_sem held in write mode.
|
|
* It's okay if try_to_unmap_one unmaps a page just after we
|
|
* set VM_LOCKED, __mlock_vma_pages_range will bring it back.
|
|
*/
|
|
vma->vm_flags = newflags;
|
|
|
|
if (lock) {
|
|
/*
|
|
* mmap_sem is currently held for write. Downgrade the write
|
|
* lock to a read lock so that other faults, mmap scans, ...
|
|
* while we fault in all pages.
|
|
*/
|
|
downgrade_write(&mm->mmap_sem);
|
|
|
|
ret = __mlock_vma_pages_range(vma, start, end, 1);
|
|
|
|
/*
|
|
* Need to reacquire mmap sem in write mode, as our callers
|
|
* expect this. We have no support for atomically upgrading
|
|
* a sem to write, so we need to check for ranges while sem
|
|
* is unlocked.
|
|
*/
|
|
up_read(&mm->mmap_sem);
|
|
/* vma can change or disappear */
|
|
down_write(&mm->mmap_sem);
|
|
*prev = find_vma(mm, start);
|
|
/* non-NULL *prev must contain @start, but need to check @end */
|
|
if (!(*prev) || end > (*prev)->vm_end)
|
|
ret = -ENOMEM;
|
|
else if (ret > 0) {
|
|
mm->locked_vm -= ret;
|
|
ret = 0;
|
|
} else
|
|
ret = __mlock_posix_error_return(ret); /* translate if needed */
|
|
} else {
|
|
/*
|
|
* TODO: for unlocking, pages will already be resident, so
|
|
* we don't need to wait for allocations/reclaim/pagein, ...
|
|
* However, unlocking a very large region can still take a
|
|
* while. Should we downgrade the semaphore for both lock
|
|
* AND unlock ?
|
|
*/
|
|
__mlock_vma_pages_range(vma, start, end, 0);
|
|
}
|
|
|
|
out:
|
|
*prev = vma;
|
|
return ret;
|
|
}
|
|
|
|
static int do_mlock(unsigned long start, size_t len, int on)
|
|
{
|
|
unsigned long nstart, end, tmp;
|
|
struct vm_area_struct * vma, * prev;
|
|
int error;
|
|
|
|
len = PAGE_ALIGN(len);
|
|
end = start + len;
|
|
if (end < start)
|
|
return -EINVAL;
|
|
if (end == start)
|
|
return 0;
|
|
vma = find_vma_prev(current->mm, start, &prev);
|
|
if (!vma || vma->vm_start > start)
|
|
return -ENOMEM;
|
|
|
|
if (start > vma->vm_start)
|
|
prev = vma;
|
|
|
|
for (nstart = start ; ; ) {
|
|
unsigned int newflags;
|
|
|
|
/* Here we know that vma->vm_start <= nstart < vma->vm_end. */
|
|
|
|
newflags = vma->vm_flags | VM_LOCKED;
|
|
if (!on)
|
|
newflags &= ~VM_LOCKED;
|
|
|
|
tmp = vma->vm_end;
|
|
if (tmp > end)
|
|
tmp = end;
|
|
error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
|
|
if (error)
|
|
break;
|
|
nstart = tmp;
|
|
if (nstart < prev->vm_end)
|
|
nstart = prev->vm_end;
|
|
if (nstart >= end)
|
|
break;
|
|
|
|
vma = prev->vm_next;
|
|
if (!vma || vma->vm_start != nstart) {
|
|
error = -ENOMEM;
|
|
break;
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
|
|
{
|
|
unsigned long locked;
|
|
unsigned long lock_limit;
|
|
int error = -ENOMEM;
|
|
|
|
if (!can_do_mlock())
|
|
return -EPERM;
|
|
|
|
lru_add_drain_all(); /* flush pagevec */
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
|
|
start &= PAGE_MASK;
|
|
|
|
locked = len >> PAGE_SHIFT;
|
|
locked += current->mm->locked_vm;
|
|
|
|
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
|
|
lock_limit >>= PAGE_SHIFT;
|
|
|
|
/* check against resource limits */
|
|
if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
|
|
error = do_mlock(start, len, 1);
|
|
up_write(¤t->mm->mmap_sem);
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
|
|
{
|
|
int ret;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
|
|
start &= PAGE_MASK;
|
|
ret = do_mlock(start, len, 0);
|
|
up_write(¤t->mm->mmap_sem);
|
|
return ret;
|
|
}
|
|
|
|
static int do_mlockall(int flags)
|
|
{
|
|
struct vm_area_struct * vma, * prev = NULL;
|
|
unsigned int def_flags = 0;
|
|
|
|
if (flags & MCL_FUTURE)
|
|
def_flags = VM_LOCKED;
|
|
current->mm->def_flags = def_flags;
|
|
if (flags == MCL_FUTURE)
|
|
goto out;
|
|
|
|
for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
|
|
unsigned int newflags;
|
|
|
|
newflags = vma->vm_flags | VM_LOCKED;
|
|
if (!(flags & MCL_CURRENT))
|
|
newflags &= ~VM_LOCKED;
|
|
|
|
/* Ignore errors */
|
|
mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
|
|
}
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
asmlinkage long sys_mlockall(int flags)
|
|
{
|
|
unsigned long lock_limit;
|
|
int ret = -EINVAL;
|
|
|
|
if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
|
|
goto out;
|
|
|
|
ret = -EPERM;
|
|
if (!can_do_mlock())
|
|
goto out;
|
|
|
|
lru_add_drain_all(); /* flush pagevec */
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
|
|
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
|
|
lock_limit >>= PAGE_SHIFT;
|
|
|
|
ret = -ENOMEM;
|
|
if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
|
|
capable(CAP_IPC_LOCK))
|
|
ret = do_mlockall(flags);
|
|
up_write(¤t->mm->mmap_sem);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
asmlinkage long sys_munlockall(void)
|
|
{
|
|
int ret;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
ret = do_mlockall(0);
|
|
up_write(¤t->mm->mmap_sem);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
|
|
* shm segments) get accounted against the user_struct instead.
|
|
*/
|
|
static DEFINE_SPINLOCK(shmlock_user_lock);
|
|
|
|
int user_shm_lock(size_t size, struct user_struct *user)
|
|
{
|
|
unsigned long lock_limit, locked;
|
|
int allowed = 0;
|
|
|
|
locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
|
|
if (lock_limit == RLIM_INFINITY)
|
|
allowed = 1;
|
|
lock_limit >>= PAGE_SHIFT;
|
|
spin_lock(&shmlock_user_lock);
|
|
if (!allowed &&
|
|
locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
|
|
goto out;
|
|
get_uid(user);
|
|
user->locked_shm += locked;
|
|
allowed = 1;
|
|
out:
|
|
spin_unlock(&shmlock_user_lock);
|
|
return allowed;
|
|
}
|
|
|
|
void user_shm_unlock(size_t size, struct user_struct *user)
|
|
{
|
|
spin_lock(&shmlock_user_lock);
|
|
user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
|
|
spin_unlock(&shmlock_user_lock);
|
|
free_uid(user);
|
|
}
|
|
|
|
void *alloc_locked_buffer(size_t size)
|
|
{
|
|
unsigned long rlim, vm, pgsz;
|
|
void *buffer = NULL;
|
|
|
|
pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
|
|
rlim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
|
|
vm = current->mm->total_vm + pgsz;
|
|
if (rlim < vm)
|
|
goto out;
|
|
|
|
rlim = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
|
|
vm = current->mm->locked_vm + pgsz;
|
|
if (rlim < vm)
|
|
goto out;
|
|
|
|
buffer = kzalloc(size, GFP_KERNEL);
|
|
if (!buffer)
|
|
goto out;
|
|
|
|
current->mm->total_vm += pgsz;
|
|
current->mm->locked_vm += pgsz;
|
|
|
|
out:
|
|
up_write(¤t->mm->mmap_sem);
|
|
return buffer;
|
|
}
|
|
|
|
void free_locked_buffer(void *buffer, size_t size)
|
|
{
|
|
unsigned long pgsz = PAGE_ALIGN(size) >> PAGE_SHIFT;
|
|
|
|
down_write(¤t->mm->mmap_sem);
|
|
|
|
current->mm->total_vm -= pgsz;
|
|
current->mm->locked_vm -= pgsz;
|
|
|
|
up_write(¤t->mm->mmap_sem);
|
|
|
|
kfree(buffer);
|
|
}
|