1794 lines
46 KiB
C
1794 lines
46 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Universal Host Controller Interface driver for USB.
|
|
*
|
|
* Maintainer: Alan Stern <stern@rowland.harvard.edu>
|
|
*
|
|
* (C) Copyright 1999 Linus Torvalds
|
|
* (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com
|
|
* (C) Copyright 1999 Randy Dunlap
|
|
* (C) Copyright 1999 Georg Acher, acher@in.tum.de
|
|
* (C) Copyright 1999 Deti Fliegl, deti@fliegl.de
|
|
* (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch
|
|
* (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at
|
|
* (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface
|
|
* support from usb-ohci.c by Adam Richter, adam@yggdrasil.com).
|
|
* (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c)
|
|
* (C) Copyright 2004-2007 Alan Stern, stern@rowland.harvard.edu
|
|
*/
|
|
|
|
|
|
/*
|
|
* Technically, updating td->status here is a race, but it's not really a
|
|
* problem. The worst that can happen is that we set the IOC bit again
|
|
* generating a spurious interrupt. We could fix this by creating another
|
|
* QH and leaving the IOC bit always set, but then we would have to play
|
|
* games with the FSBR code to make sure we get the correct order in all
|
|
* the cases. I don't think it's worth the effort
|
|
*/
|
|
static void uhci_set_next_interrupt(struct uhci_hcd *uhci)
|
|
{
|
|
if (uhci->is_stopped)
|
|
mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies);
|
|
uhci->term_td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
|
|
}
|
|
|
|
static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci)
|
|
{
|
|
uhci->term_td->status &= ~cpu_to_hc32(uhci, TD_CTRL_IOC);
|
|
}
|
|
|
|
|
|
/*
|
|
* Full-Speed Bandwidth Reclamation (FSBR).
|
|
* We turn on FSBR whenever a queue that wants it is advancing,
|
|
* and leave it on for a short time thereafter.
|
|
*/
|
|
static void uhci_fsbr_on(struct uhci_hcd *uhci)
|
|
{
|
|
struct uhci_qh *lqh;
|
|
|
|
/* The terminating skeleton QH always points back to the first
|
|
* FSBR QH. Make the last async QH point to the terminating
|
|
* skeleton QH. */
|
|
uhci->fsbr_is_on = 1;
|
|
lqh = list_entry(uhci->skel_async_qh->node.prev,
|
|
struct uhci_qh, node);
|
|
lqh->link = LINK_TO_QH(uhci, uhci->skel_term_qh);
|
|
}
|
|
|
|
static void uhci_fsbr_off(struct uhci_hcd *uhci)
|
|
{
|
|
struct uhci_qh *lqh;
|
|
|
|
/* Remove the link from the last async QH to the terminating
|
|
* skeleton QH. */
|
|
uhci->fsbr_is_on = 0;
|
|
lqh = list_entry(uhci->skel_async_qh->node.prev,
|
|
struct uhci_qh, node);
|
|
lqh->link = UHCI_PTR_TERM(uhci);
|
|
}
|
|
|
|
static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb)
|
|
{
|
|
struct urb_priv *urbp = urb->hcpriv;
|
|
|
|
urbp->fsbr = 1;
|
|
}
|
|
|
|
static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp)
|
|
{
|
|
if (urbp->fsbr) {
|
|
uhci->fsbr_is_wanted = 1;
|
|
if (!uhci->fsbr_is_on)
|
|
uhci_fsbr_on(uhci);
|
|
else if (uhci->fsbr_expiring) {
|
|
uhci->fsbr_expiring = 0;
|
|
del_timer(&uhci->fsbr_timer);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void uhci_fsbr_timeout(struct timer_list *t)
|
|
{
|
|
struct uhci_hcd *uhci = from_timer(uhci, t, fsbr_timer);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&uhci->lock, flags);
|
|
if (uhci->fsbr_expiring) {
|
|
uhci->fsbr_expiring = 0;
|
|
uhci_fsbr_off(uhci);
|
|
}
|
|
spin_unlock_irqrestore(&uhci->lock, flags);
|
|
}
|
|
|
|
|
|
static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci)
|
|
{
|
|
dma_addr_t dma_handle;
|
|
struct uhci_td *td;
|
|
|
|
td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle);
|
|
if (!td)
|
|
return NULL;
|
|
|
|
td->dma_handle = dma_handle;
|
|
td->frame = -1;
|
|
|
|
INIT_LIST_HEAD(&td->list);
|
|
INIT_LIST_HEAD(&td->fl_list);
|
|
|
|
return td;
|
|
}
|
|
|
|
static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td)
|
|
{
|
|
if (!list_empty(&td->list))
|
|
dev_WARN(uhci_dev(uhci), "td %p still in list!\n", td);
|
|
if (!list_empty(&td->fl_list))
|
|
dev_WARN(uhci_dev(uhci), "td %p still in fl_list!\n", td);
|
|
|
|
dma_pool_free(uhci->td_pool, td, td->dma_handle);
|
|
}
|
|
|
|
static inline void uhci_fill_td(struct uhci_hcd *uhci, struct uhci_td *td,
|
|
u32 status, u32 token, u32 buffer)
|
|
{
|
|
td->status = cpu_to_hc32(uhci, status);
|
|
td->token = cpu_to_hc32(uhci, token);
|
|
td->buffer = cpu_to_hc32(uhci, buffer);
|
|
}
|
|
|
|
static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp)
|
|
{
|
|
list_add_tail(&td->list, &urbp->td_list);
|
|
}
|
|
|
|
static void uhci_remove_td_from_urbp(struct uhci_td *td)
|
|
{
|
|
list_del_init(&td->list);
|
|
}
|
|
|
|
/*
|
|
* We insert Isochronous URBs directly into the frame list at the beginning
|
|
*/
|
|
static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci,
|
|
struct uhci_td *td, unsigned framenum)
|
|
{
|
|
framenum &= (UHCI_NUMFRAMES - 1);
|
|
|
|
td->frame = framenum;
|
|
|
|
/* Is there a TD already mapped there? */
|
|
if (uhci->frame_cpu[framenum]) {
|
|
struct uhci_td *ftd, *ltd;
|
|
|
|
ftd = uhci->frame_cpu[framenum];
|
|
ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
|
|
|
|
list_add_tail(&td->fl_list, &ftd->fl_list);
|
|
|
|
td->link = ltd->link;
|
|
wmb();
|
|
ltd->link = LINK_TO_TD(uhci, td);
|
|
} else {
|
|
td->link = uhci->frame[framenum];
|
|
wmb();
|
|
uhci->frame[framenum] = LINK_TO_TD(uhci, td);
|
|
uhci->frame_cpu[framenum] = td;
|
|
}
|
|
}
|
|
|
|
static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci,
|
|
struct uhci_td *td)
|
|
{
|
|
/* If it's not inserted, don't remove it */
|
|
if (td->frame == -1) {
|
|
WARN_ON(!list_empty(&td->fl_list));
|
|
return;
|
|
}
|
|
|
|
if (uhci->frame_cpu[td->frame] == td) {
|
|
if (list_empty(&td->fl_list)) {
|
|
uhci->frame[td->frame] = td->link;
|
|
uhci->frame_cpu[td->frame] = NULL;
|
|
} else {
|
|
struct uhci_td *ntd;
|
|
|
|
ntd = list_entry(td->fl_list.next,
|
|
struct uhci_td,
|
|
fl_list);
|
|
uhci->frame[td->frame] = LINK_TO_TD(uhci, ntd);
|
|
uhci->frame_cpu[td->frame] = ntd;
|
|
}
|
|
} else {
|
|
struct uhci_td *ptd;
|
|
|
|
ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list);
|
|
ptd->link = td->link;
|
|
}
|
|
|
|
list_del_init(&td->fl_list);
|
|
td->frame = -1;
|
|
}
|
|
|
|
static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci,
|
|
unsigned int framenum)
|
|
{
|
|
struct uhci_td *ftd, *ltd;
|
|
|
|
framenum &= (UHCI_NUMFRAMES - 1);
|
|
|
|
ftd = uhci->frame_cpu[framenum];
|
|
if (ftd) {
|
|
ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list);
|
|
uhci->frame[framenum] = ltd->link;
|
|
uhci->frame_cpu[framenum] = NULL;
|
|
|
|
while (!list_empty(&ftd->fl_list))
|
|
list_del_init(ftd->fl_list.prev);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove all the TDs for an Isochronous URB from the frame list
|
|
*/
|
|
static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb)
|
|
{
|
|
struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
|
|
struct uhci_td *td;
|
|
|
|
list_for_each_entry(td, &urbp->td_list, list)
|
|
uhci_remove_td_from_frame_list(uhci, td);
|
|
}
|
|
|
|
static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci,
|
|
struct usb_device *udev, struct usb_host_endpoint *hep)
|
|
{
|
|
dma_addr_t dma_handle;
|
|
struct uhci_qh *qh;
|
|
|
|
qh = dma_pool_zalloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle);
|
|
if (!qh)
|
|
return NULL;
|
|
|
|
qh->dma_handle = dma_handle;
|
|
|
|
qh->element = UHCI_PTR_TERM(uhci);
|
|
qh->link = UHCI_PTR_TERM(uhci);
|
|
|
|
INIT_LIST_HEAD(&qh->queue);
|
|
INIT_LIST_HEAD(&qh->node);
|
|
|
|
if (udev) { /* Normal QH */
|
|
qh->type = usb_endpoint_type(&hep->desc);
|
|
if (qh->type != USB_ENDPOINT_XFER_ISOC) {
|
|
qh->dummy_td = uhci_alloc_td(uhci);
|
|
if (!qh->dummy_td) {
|
|
dma_pool_free(uhci->qh_pool, qh, dma_handle);
|
|
return NULL;
|
|
}
|
|
}
|
|
qh->state = QH_STATE_IDLE;
|
|
qh->hep = hep;
|
|
qh->udev = udev;
|
|
hep->hcpriv = qh;
|
|
|
|
if (qh->type == USB_ENDPOINT_XFER_INT ||
|
|
qh->type == USB_ENDPOINT_XFER_ISOC)
|
|
qh->load = usb_calc_bus_time(udev->speed,
|
|
usb_endpoint_dir_in(&hep->desc),
|
|
qh->type == USB_ENDPOINT_XFER_ISOC,
|
|
usb_endpoint_maxp(&hep->desc))
|
|
/ 1000 + 1;
|
|
|
|
} else { /* Skeleton QH */
|
|
qh->state = QH_STATE_ACTIVE;
|
|
qh->type = -1;
|
|
}
|
|
return qh;
|
|
}
|
|
|
|
static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
WARN_ON(qh->state != QH_STATE_IDLE && qh->udev);
|
|
if (!list_empty(&qh->queue))
|
|
dev_WARN(uhci_dev(uhci), "qh %p list not empty!\n", qh);
|
|
|
|
list_del(&qh->node);
|
|
if (qh->udev) {
|
|
qh->hep->hcpriv = NULL;
|
|
if (qh->dummy_td)
|
|
uhci_free_td(uhci, qh->dummy_td);
|
|
}
|
|
dma_pool_free(uhci->qh_pool, qh, qh->dma_handle);
|
|
}
|
|
|
|
/*
|
|
* When a queue is stopped and a dequeued URB is given back, adjust
|
|
* the previous TD link (if the URB isn't first on the queue) or
|
|
* save its toggle value (if it is first and is currently executing).
|
|
*
|
|
* Returns 0 if the URB should not yet be given back, 1 otherwise.
|
|
*/
|
|
static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh,
|
|
struct urb *urb)
|
|
{
|
|
struct urb_priv *urbp = urb->hcpriv;
|
|
struct uhci_td *td;
|
|
int ret = 1;
|
|
|
|
/* Isochronous pipes don't use toggles and their TD link pointers
|
|
* get adjusted during uhci_urb_dequeue(). But since their queues
|
|
* cannot truly be stopped, we have to watch out for dequeues
|
|
* occurring after the nominal unlink frame. */
|
|
if (qh->type == USB_ENDPOINT_XFER_ISOC) {
|
|
ret = (uhci->frame_number + uhci->is_stopped !=
|
|
qh->unlink_frame);
|
|
goto done;
|
|
}
|
|
|
|
/* If the URB isn't first on its queue, adjust the link pointer
|
|
* of the last TD in the previous URB. The toggle doesn't need
|
|
* to be saved since this URB can't be executing yet. */
|
|
if (qh->queue.next != &urbp->node) {
|
|
struct urb_priv *purbp;
|
|
struct uhci_td *ptd;
|
|
|
|
purbp = list_entry(urbp->node.prev, struct urb_priv, node);
|
|
WARN_ON(list_empty(&purbp->td_list));
|
|
ptd = list_entry(purbp->td_list.prev, struct uhci_td,
|
|
list);
|
|
td = list_entry(urbp->td_list.prev, struct uhci_td,
|
|
list);
|
|
ptd->link = td->link;
|
|
goto done;
|
|
}
|
|
|
|
/* If the QH element pointer is UHCI_PTR_TERM then then currently
|
|
* executing URB has already been unlinked, so this one isn't it. */
|
|
if (qh_element(qh) == UHCI_PTR_TERM(uhci))
|
|
goto done;
|
|
qh->element = UHCI_PTR_TERM(uhci);
|
|
|
|
/* Control pipes don't have to worry about toggles */
|
|
if (qh->type == USB_ENDPOINT_XFER_CONTROL)
|
|
goto done;
|
|
|
|
/* Save the next toggle value */
|
|
WARN_ON(list_empty(&urbp->td_list));
|
|
td = list_entry(urbp->td_list.next, struct uhci_td, list);
|
|
qh->needs_fixup = 1;
|
|
qh->initial_toggle = uhci_toggle(td_token(uhci, td));
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Fix up the data toggles for URBs in a queue, when one of them
|
|
* terminates early (short transfer, error, or dequeued).
|
|
*/
|
|
static void uhci_fixup_toggles(struct uhci_hcd *uhci, struct uhci_qh *qh,
|
|
int skip_first)
|
|
{
|
|
struct urb_priv *urbp = NULL;
|
|
struct uhci_td *td;
|
|
unsigned int toggle = qh->initial_toggle;
|
|
unsigned int pipe;
|
|
|
|
/* Fixups for a short transfer start with the second URB in the
|
|
* queue (the short URB is the first). */
|
|
if (skip_first)
|
|
urbp = list_entry(qh->queue.next, struct urb_priv, node);
|
|
|
|
/* When starting with the first URB, if the QH element pointer is
|
|
* still valid then we know the URB's toggles are okay. */
|
|
else if (qh_element(qh) != UHCI_PTR_TERM(uhci))
|
|
toggle = 2;
|
|
|
|
/* Fix up the toggle for the URBs in the queue. Normally this
|
|
* loop won't run more than once: When an error or short transfer
|
|
* occurs, the queue usually gets emptied. */
|
|
urbp = list_prepare_entry(urbp, &qh->queue, node);
|
|
list_for_each_entry_continue(urbp, &qh->queue, node) {
|
|
|
|
/* If the first TD has the right toggle value, we don't
|
|
* need to change any toggles in this URB */
|
|
td = list_entry(urbp->td_list.next, struct uhci_td, list);
|
|
if (toggle > 1 || uhci_toggle(td_token(uhci, td)) == toggle) {
|
|
td = list_entry(urbp->td_list.prev, struct uhci_td,
|
|
list);
|
|
toggle = uhci_toggle(td_token(uhci, td)) ^ 1;
|
|
|
|
/* Otherwise all the toggles in the URB have to be switched */
|
|
} else {
|
|
list_for_each_entry(td, &urbp->td_list, list) {
|
|
td->token ^= cpu_to_hc32(uhci,
|
|
TD_TOKEN_TOGGLE);
|
|
toggle ^= 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
wmb();
|
|
pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe;
|
|
usb_settoggle(qh->udev, usb_pipeendpoint(pipe),
|
|
usb_pipeout(pipe), toggle);
|
|
qh->needs_fixup = 0;
|
|
}
|
|
|
|
/*
|
|
* Link an Isochronous QH into its skeleton's list
|
|
*/
|
|
static inline void link_iso(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
list_add_tail(&qh->node, &uhci->skel_iso_qh->node);
|
|
|
|
/* Isochronous QHs aren't linked by the hardware */
|
|
}
|
|
|
|
/*
|
|
* Link a high-period interrupt QH into the schedule at the end of its
|
|
* skeleton's list
|
|
*/
|
|
static void link_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
struct uhci_qh *pqh;
|
|
|
|
list_add_tail(&qh->node, &uhci->skelqh[qh->skel]->node);
|
|
|
|
pqh = list_entry(qh->node.prev, struct uhci_qh, node);
|
|
qh->link = pqh->link;
|
|
wmb();
|
|
pqh->link = LINK_TO_QH(uhci, qh);
|
|
}
|
|
|
|
/*
|
|
* Link a period-1 interrupt or async QH into the schedule at the
|
|
* correct spot in the async skeleton's list, and update the FSBR link
|
|
*/
|
|
static void link_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
struct uhci_qh *pqh;
|
|
__hc32 link_to_new_qh;
|
|
|
|
/* Find the predecessor QH for our new one and insert it in the list.
|
|
* The list of QHs is expected to be short, so linear search won't
|
|
* take too long. */
|
|
list_for_each_entry_reverse(pqh, &uhci->skel_async_qh->node, node) {
|
|
if (pqh->skel <= qh->skel)
|
|
break;
|
|
}
|
|
list_add(&qh->node, &pqh->node);
|
|
|
|
/* Link it into the schedule */
|
|
qh->link = pqh->link;
|
|
wmb();
|
|
link_to_new_qh = LINK_TO_QH(uhci, qh);
|
|
pqh->link = link_to_new_qh;
|
|
|
|
/* If this is now the first FSBR QH, link the terminating skeleton
|
|
* QH to it. */
|
|
if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR)
|
|
uhci->skel_term_qh->link = link_to_new_qh;
|
|
}
|
|
|
|
/*
|
|
* Put a QH on the schedule in both hardware and software
|
|
*/
|
|
static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
WARN_ON(list_empty(&qh->queue));
|
|
|
|
/* Set the element pointer if it isn't set already.
|
|
* This isn't needed for Isochronous queues, but it doesn't hurt. */
|
|
if (qh_element(qh) == UHCI_PTR_TERM(uhci)) {
|
|
struct urb_priv *urbp = list_entry(qh->queue.next,
|
|
struct urb_priv, node);
|
|
struct uhci_td *td = list_entry(urbp->td_list.next,
|
|
struct uhci_td, list);
|
|
|
|
qh->element = LINK_TO_TD(uhci, td);
|
|
}
|
|
|
|
/* Treat the queue as if it has just advanced */
|
|
qh->wait_expired = 0;
|
|
qh->advance_jiffies = jiffies;
|
|
|
|
if (qh->state == QH_STATE_ACTIVE)
|
|
return;
|
|
qh->state = QH_STATE_ACTIVE;
|
|
|
|
/* Move the QH from its old list to the correct spot in the appropriate
|
|
* skeleton's list */
|
|
if (qh == uhci->next_qh)
|
|
uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
|
|
node);
|
|
list_del(&qh->node);
|
|
|
|
if (qh->skel == SKEL_ISO)
|
|
link_iso(uhci, qh);
|
|
else if (qh->skel < SKEL_ASYNC)
|
|
link_interrupt(uhci, qh);
|
|
else
|
|
link_async(uhci, qh);
|
|
}
|
|
|
|
/*
|
|
* Unlink a high-period interrupt QH from the schedule
|
|
*/
|
|
static void unlink_interrupt(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
struct uhci_qh *pqh;
|
|
|
|
pqh = list_entry(qh->node.prev, struct uhci_qh, node);
|
|
pqh->link = qh->link;
|
|
mb();
|
|
}
|
|
|
|
/*
|
|
* Unlink a period-1 interrupt or async QH from the schedule
|
|
*/
|
|
static void unlink_async(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
struct uhci_qh *pqh;
|
|
__hc32 link_to_next_qh = qh->link;
|
|
|
|
pqh = list_entry(qh->node.prev, struct uhci_qh, node);
|
|
pqh->link = link_to_next_qh;
|
|
|
|
/* If this was the old first FSBR QH, link the terminating skeleton
|
|
* QH to the next (new first FSBR) QH. */
|
|
if (pqh->skel < SKEL_FSBR && qh->skel >= SKEL_FSBR)
|
|
uhci->skel_term_qh->link = link_to_next_qh;
|
|
mb();
|
|
}
|
|
|
|
/*
|
|
* Take a QH off the hardware schedule
|
|
*/
|
|
static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
if (qh->state == QH_STATE_UNLINKING)
|
|
return;
|
|
WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev);
|
|
qh->state = QH_STATE_UNLINKING;
|
|
|
|
/* Unlink the QH from the schedule and record when we did it */
|
|
if (qh->skel == SKEL_ISO)
|
|
;
|
|
else if (qh->skel < SKEL_ASYNC)
|
|
unlink_interrupt(uhci, qh);
|
|
else
|
|
unlink_async(uhci, qh);
|
|
|
|
uhci_get_current_frame_number(uhci);
|
|
qh->unlink_frame = uhci->frame_number;
|
|
|
|
/* Force an interrupt so we know when the QH is fully unlinked */
|
|
if (list_empty(&uhci->skel_unlink_qh->node) || uhci->is_stopped)
|
|
uhci_set_next_interrupt(uhci);
|
|
|
|
/* Move the QH from its old list to the end of the unlinking list */
|
|
if (qh == uhci->next_qh)
|
|
uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
|
|
node);
|
|
list_move_tail(&qh->node, &uhci->skel_unlink_qh->node);
|
|
}
|
|
|
|
/*
|
|
* When we and the controller are through with a QH, it becomes IDLE.
|
|
* This happens when a QH has been off the schedule (on the unlinking
|
|
* list) for more than one frame, or when an error occurs while adding
|
|
* the first URB onto a new QH.
|
|
*/
|
|
static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
WARN_ON(qh->state == QH_STATE_ACTIVE);
|
|
|
|
if (qh == uhci->next_qh)
|
|
uhci->next_qh = list_entry(qh->node.next, struct uhci_qh,
|
|
node);
|
|
list_move(&qh->node, &uhci->idle_qh_list);
|
|
qh->state = QH_STATE_IDLE;
|
|
|
|
/* Now that the QH is idle, its post_td isn't being used */
|
|
if (qh->post_td) {
|
|
uhci_free_td(uhci, qh->post_td);
|
|
qh->post_td = NULL;
|
|
}
|
|
|
|
/* If anyone is waiting for a QH to become idle, wake them up */
|
|
if (uhci->num_waiting)
|
|
wake_up_all(&uhci->waitqh);
|
|
}
|
|
|
|
/*
|
|
* Find the highest existing bandwidth load for a given phase and period.
|
|
*/
|
|
static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period)
|
|
{
|
|
int highest_load = uhci->load[phase];
|
|
|
|
for (phase += period; phase < MAX_PHASE; phase += period)
|
|
highest_load = max_t(int, highest_load, uhci->load[phase]);
|
|
return highest_load;
|
|
}
|
|
|
|
/*
|
|
* Set qh->phase to the optimal phase for a periodic transfer and
|
|
* check whether the bandwidth requirement is acceptable.
|
|
*/
|
|
static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
int minimax_load;
|
|
|
|
/* Find the optimal phase (unless it is already set) and get
|
|
* its load value. */
|
|
if (qh->phase >= 0)
|
|
minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
|
|
else {
|
|
int phase, load;
|
|
int max_phase = min_t(int, MAX_PHASE, qh->period);
|
|
|
|
qh->phase = 0;
|
|
minimax_load = uhci_highest_load(uhci, qh->phase, qh->period);
|
|
for (phase = 1; phase < max_phase; ++phase) {
|
|
load = uhci_highest_load(uhci, phase, qh->period);
|
|
if (load < minimax_load) {
|
|
minimax_load = load;
|
|
qh->phase = phase;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */
|
|
if (minimax_load + qh->load > 900) {
|
|
dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: "
|
|
"period %d, phase %d, %d + %d us\n",
|
|
qh->period, qh->phase, minimax_load, qh->load);
|
|
return -ENOSPC;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Reserve a periodic QH's bandwidth in the schedule
|
|
*/
|
|
static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
int i;
|
|
int load = qh->load;
|
|
char *p = "??";
|
|
|
|
for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
|
|
uhci->load[i] += load;
|
|
uhci->total_load += load;
|
|
}
|
|
uhci_to_hcd(uhci)->self.bandwidth_allocated =
|
|
uhci->total_load / MAX_PHASE;
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_INT:
|
|
++uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
|
|
p = "INT";
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
|
|
p = "ISO";
|
|
break;
|
|
}
|
|
qh->bandwidth_reserved = 1;
|
|
dev_dbg(uhci_dev(uhci),
|
|
"%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
|
|
"reserve", qh->udev->devnum,
|
|
qh->hep->desc.bEndpointAddress, p,
|
|
qh->period, qh->phase, load);
|
|
}
|
|
|
|
/*
|
|
* Release a periodic QH's bandwidth reservation
|
|
*/
|
|
static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
int i;
|
|
int load = qh->load;
|
|
char *p = "??";
|
|
|
|
for (i = qh->phase; i < MAX_PHASE; i += qh->period) {
|
|
uhci->load[i] -= load;
|
|
uhci->total_load -= load;
|
|
}
|
|
uhci_to_hcd(uhci)->self.bandwidth_allocated =
|
|
uhci->total_load / MAX_PHASE;
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_INT:
|
|
--uhci_to_hcd(uhci)->self.bandwidth_int_reqs;
|
|
p = "INT";
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
--uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs;
|
|
p = "ISO";
|
|
break;
|
|
}
|
|
qh->bandwidth_reserved = 0;
|
|
dev_dbg(uhci_dev(uhci),
|
|
"%s dev %d ep%02x-%s, period %d, phase %d, %d us\n",
|
|
"release", qh->udev->devnum,
|
|
qh->hep->desc.bEndpointAddress, p,
|
|
qh->period, qh->phase, load);
|
|
}
|
|
|
|
static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci,
|
|
struct urb *urb)
|
|
{
|
|
struct urb_priv *urbp;
|
|
|
|
urbp = kmem_cache_zalloc(uhci_up_cachep, GFP_ATOMIC);
|
|
if (!urbp)
|
|
return NULL;
|
|
|
|
urbp->urb = urb;
|
|
urb->hcpriv = urbp;
|
|
|
|
INIT_LIST_HEAD(&urbp->node);
|
|
INIT_LIST_HEAD(&urbp->td_list);
|
|
|
|
return urbp;
|
|
}
|
|
|
|
static void uhci_free_urb_priv(struct uhci_hcd *uhci,
|
|
struct urb_priv *urbp)
|
|
{
|
|
struct uhci_td *td, *tmp;
|
|
|
|
if (!list_empty(&urbp->node))
|
|
dev_WARN(uhci_dev(uhci), "urb %p still on QH's list!\n",
|
|
urbp->urb);
|
|
|
|
list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
|
|
uhci_remove_td_from_urbp(td);
|
|
uhci_free_td(uhci, td);
|
|
}
|
|
|
|
kmem_cache_free(uhci_up_cachep, urbp);
|
|
}
|
|
|
|
/*
|
|
* Map status to standard result codes
|
|
*
|
|
* <status> is (td_status(uhci, td) & 0xF60000), a.k.a.
|
|
* uhci_status_bits(td_status(uhci, td)).
|
|
* Note: <status> does not include the TD_CTRL_NAK bit.
|
|
* <dir_out> is True for output TDs and False for input TDs.
|
|
*/
|
|
static int uhci_map_status(int status, int dir_out)
|
|
{
|
|
if (!status)
|
|
return 0;
|
|
if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */
|
|
return -EPROTO;
|
|
if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */
|
|
if (dir_out)
|
|
return -EPROTO;
|
|
else
|
|
return -EILSEQ;
|
|
}
|
|
if (status & TD_CTRL_BABBLE) /* Babble */
|
|
return -EOVERFLOW;
|
|
if (status & TD_CTRL_DBUFERR) /* Buffer error */
|
|
return -ENOSR;
|
|
if (status & TD_CTRL_STALLED) /* Stalled */
|
|
return -EPIPE;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Control transfers
|
|
*/
|
|
static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb,
|
|
struct uhci_qh *qh)
|
|
{
|
|
struct uhci_td *td;
|
|
unsigned long destination, status;
|
|
int maxsze = usb_endpoint_maxp(&qh->hep->desc);
|
|
int len = urb->transfer_buffer_length;
|
|
dma_addr_t data = urb->transfer_dma;
|
|
__hc32 *plink;
|
|
struct urb_priv *urbp = urb->hcpriv;
|
|
int skel;
|
|
|
|
/* The "pipe" thing contains the destination in bits 8--18 */
|
|
destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP;
|
|
|
|
/* 3 errors, dummy TD remains inactive */
|
|
status = uhci_maxerr(3);
|
|
if (urb->dev->speed == USB_SPEED_LOW)
|
|
status |= TD_CTRL_LS;
|
|
|
|
/*
|
|
* Build the TD for the control request setup packet
|
|
*/
|
|
td = qh->dummy_td;
|
|
uhci_add_td_to_urbp(td, urbp);
|
|
uhci_fill_td(uhci, td, status, destination | uhci_explen(8),
|
|
urb->setup_dma);
|
|
plink = &td->link;
|
|
status |= TD_CTRL_ACTIVE;
|
|
|
|
/*
|
|
* If direction is "send", change the packet ID from SETUP (0x2D)
|
|
* to OUT (0xE1). Else change it from SETUP to IN (0x69) and
|
|
* set Short Packet Detect (SPD) for all data packets.
|
|
*
|
|
* 0-length transfers always get treated as "send".
|
|
*/
|
|
if (usb_pipeout(urb->pipe) || len == 0)
|
|
destination ^= (USB_PID_SETUP ^ USB_PID_OUT);
|
|
else {
|
|
destination ^= (USB_PID_SETUP ^ USB_PID_IN);
|
|
status |= TD_CTRL_SPD;
|
|
}
|
|
|
|
/*
|
|
* Build the DATA TDs
|
|
*/
|
|
while (len > 0) {
|
|
int pktsze = maxsze;
|
|
|
|
if (len <= pktsze) { /* The last data packet */
|
|
pktsze = len;
|
|
status &= ~TD_CTRL_SPD;
|
|
}
|
|
|
|
td = uhci_alloc_td(uhci);
|
|
if (!td)
|
|
goto nomem;
|
|
*plink = LINK_TO_TD(uhci, td);
|
|
|
|
/* Alternate Data0/1 (start with Data1) */
|
|
destination ^= TD_TOKEN_TOGGLE;
|
|
|
|
uhci_add_td_to_urbp(td, urbp);
|
|
uhci_fill_td(uhci, td, status,
|
|
destination | uhci_explen(pktsze), data);
|
|
plink = &td->link;
|
|
|
|
data += pktsze;
|
|
len -= pktsze;
|
|
}
|
|
|
|
/*
|
|
* Build the final TD for control status
|
|
*/
|
|
td = uhci_alloc_td(uhci);
|
|
if (!td)
|
|
goto nomem;
|
|
*plink = LINK_TO_TD(uhci, td);
|
|
|
|
/* Change direction for the status transaction */
|
|
destination ^= (USB_PID_IN ^ USB_PID_OUT);
|
|
destination |= TD_TOKEN_TOGGLE; /* End in Data1 */
|
|
|
|
uhci_add_td_to_urbp(td, urbp);
|
|
uhci_fill_td(uhci, td, status | TD_CTRL_IOC,
|
|
destination | uhci_explen(0), 0);
|
|
plink = &td->link;
|
|
|
|
/*
|
|
* Build the new dummy TD and activate the old one
|
|
*/
|
|
td = uhci_alloc_td(uhci);
|
|
if (!td)
|
|
goto nomem;
|
|
*plink = LINK_TO_TD(uhci, td);
|
|
|
|
uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0);
|
|
wmb();
|
|
qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE);
|
|
qh->dummy_td = td;
|
|
|
|
/* Low-speed transfers get a different queue, and won't hog the bus.
|
|
* Also, some devices enumerate better without FSBR; the easiest way
|
|
* to do that is to put URBs on the low-speed queue while the device
|
|
* isn't in the CONFIGURED state. */
|
|
if (urb->dev->speed == USB_SPEED_LOW ||
|
|
urb->dev->state != USB_STATE_CONFIGURED)
|
|
skel = SKEL_LS_CONTROL;
|
|
else {
|
|
skel = SKEL_FS_CONTROL;
|
|
uhci_add_fsbr(uhci, urb);
|
|
}
|
|
if (qh->state != QH_STATE_ACTIVE)
|
|
qh->skel = skel;
|
|
return 0;
|
|
|
|
nomem:
|
|
/* Remove the dummy TD from the td_list so it doesn't get freed */
|
|
uhci_remove_td_from_urbp(qh->dummy_td);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Common submit for bulk and interrupt
|
|
*/
|
|
static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb,
|
|
struct uhci_qh *qh)
|
|
{
|
|
struct uhci_td *td;
|
|
unsigned long destination, status;
|
|
int maxsze = usb_endpoint_maxp(&qh->hep->desc);
|
|
int len = urb->transfer_buffer_length;
|
|
int this_sg_len;
|
|
dma_addr_t data;
|
|
__hc32 *plink;
|
|
struct urb_priv *urbp = urb->hcpriv;
|
|
unsigned int toggle;
|
|
struct scatterlist *sg;
|
|
int i;
|
|
|
|
if (len < 0)
|
|
return -EINVAL;
|
|
|
|
/* The "pipe" thing contains the destination in bits 8--18 */
|
|
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
|
|
toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe),
|
|
usb_pipeout(urb->pipe));
|
|
|
|
/* 3 errors, dummy TD remains inactive */
|
|
status = uhci_maxerr(3);
|
|
if (urb->dev->speed == USB_SPEED_LOW)
|
|
status |= TD_CTRL_LS;
|
|
if (usb_pipein(urb->pipe))
|
|
status |= TD_CTRL_SPD;
|
|
|
|
i = urb->num_mapped_sgs;
|
|
if (len > 0 && i > 0) {
|
|
sg = urb->sg;
|
|
data = sg_dma_address(sg);
|
|
|
|
/* urb->transfer_buffer_length may be smaller than the
|
|
* size of the scatterlist (or vice versa)
|
|
*/
|
|
this_sg_len = min_t(int, sg_dma_len(sg), len);
|
|
} else {
|
|
sg = NULL;
|
|
data = urb->transfer_dma;
|
|
this_sg_len = len;
|
|
}
|
|
/*
|
|
* Build the DATA TDs
|
|
*/
|
|
plink = NULL;
|
|
td = qh->dummy_td;
|
|
for (;;) { /* Allow zero length packets */
|
|
int pktsze = maxsze;
|
|
|
|
if (len <= pktsze) { /* The last packet */
|
|
pktsze = len;
|
|
if (!(urb->transfer_flags & URB_SHORT_NOT_OK))
|
|
status &= ~TD_CTRL_SPD;
|
|
}
|
|
|
|
if (plink) {
|
|
td = uhci_alloc_td(uhci);
|
|
if (!td)
|
|
goto nomem;
|
|
*plink = LINK_TO_TD(uhci, td);
|
|
}
|
|
uhci_add_td_to_urbp(td, urbp);
|
|
uhci_fill_td(uhci, td, status,
|
|
destination | uhci_explen(pktsze) |
|
|
(toggle << TD_TOKEN_TOGGLE_SHIFT),
|
|
data);
|
|
plink = &td->link;
|
|
status |= TD_CTRL_ACTIVE;
|
|
|
|
toggle ^= 1;
|
|
data += pktsze;
|
|
this_sg_len -= pktsze;
|
|
len -= maxsze;
|
|
if (this_sg_len <= 0) {
|
|
if (--i <= 0 || len <= 0)
|
|
break;
|
|
sg = sg_next(sg);
|
|
data = sg_dma_address(sg);
|
|
this_sg_len = min_t(int, sg_dma_len(sg), len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* URB_ZERO_PACKET means adding a 0-length packet, if direction
|
|
* is OUT and the transfer_length was an exact multiple of maxsze,
|
|
* hence (len = transfer_length - N * maxsze) == 0
|
|
* however, if transfer_length == 0, the zero packet was already
|
|
* prepared above.
|
|
*/
|
|
if ((urb->transfer_flags & URB_ZERO_PACKET) &&
|
|
usb_pipeout(urb->pipe) && len == 0 &&
|
|
urb->transfer_buffer_length > 0) {
|
|
td = uhci_alloc_td(uhci);
|
|
if (!td)
|
|
goto nomem;
|
|
*plink = LINK_TO_TD(uhci, td);
|
|
|
|
uhci_add_td_to_urbp(td, urbp);
|
|
uhci_fill_td(uhci, td, status,
|
|
destination | uhci_explen(0) |
|
|
(toggle << TD_TOKEN_TOGGLE_SHIFT),
|
|
data);
|
|
plink = &td->link;
|
|
|
|
toggle ^= 1;
|
|
}
|
|
|
|
/* Set the interrupt-on-completion flag on the last packet.
|
|
* A more-or-less typical 4 KB URB (= size of one memory page)
|
|
* will require about 3 ms to transfer; that's a little on the
|
|
* fast side but not enough to justify delaying an interrupt
|
|
* more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT
|
|
* flag setting. */
|
|
td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
|
|
|
|
/*
|
|
* Build the new dummy TD and activate the old one
|
|
*/
|
|
td = uhci_alloc_td(uhci);
|
|
if (!td)
|
|
goto nomem;
|
|
*plink = LINK_TO_TD(uhci, td);
|
|
|
|
uhci_fill_td(uhci, td, 0, USB_PID_OUT | uhci_explen(0), 0);
|
|
wmb();
|
|
qh->dummy_td->status |= cpu_to_hc32(uhci, TD_CTRL_ACTIVE);
|
|
qh->dummy_td = td;
|
|
|
|
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
|
|
usb_pipeout(urb->pipe), toggle);
|
|
return 0;
|
|
|
|
nomem:
|
|
/* Remove the dummy TD from the td_list so it doesn't get freed */
|
|
uhci_remove_td_from_urbp(qh->dummy_td);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb,
|
|
struct uhci_qh *qh)
|
|
{
|
|
int ret;
|
|
|
|
/* Can't have low-speed bulk transfers */
|
|
if (urb->dev->speed == USB_SPEED_LOW)
|
|
return -EINVAL;
|
|
|
|
if (qh->state != QH_STATE_ACTIVE)
|
|
qh->skel = SKEL_BULK;
|
|
ret = uhci_submit_common(uhci, urb, qh);
|
|
if (ret == 0)
|
|
uhci_add_fsbr(uhci, urb);
|
|
return ret;
|
|
}
|
|
|
|
static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb,
|
|
struct uhci_qh *qh)
|
|
{
|
|
int ret;
|
|
|
|
/* USB 1.1 interrupt transfers only involve one packet per interval.
|
|
* Drivers can submit URBs of any length, but longer ones will need
|
|
* multiple intervals to complete.
|
|
*/
|
|
|
|
if (!qh->bandwidth_reserved) {
|
|
int exponent;
|
|
|
|
/* Figure out which power-of-two queue to use */
|
|
for (exponent = 7; exponent >= 0; --exponent) {
|
|
if ((1 << exponent) <= urb->interval)
|
|
break;
|
|
}
|
|
if (exponent < 0)
|
|
return -EINVAL;
|
|
|
|
/* If the slot is full, try a lower period */
|
|
do {
|
|
qh->period = 1 << exponent;
|
|
qh->skel = SKEL_INDEX(exponent);
|
|
|
|
/* For now, interrupt phase is fixed by the layout
|
|
* of the QH lists.
|
|
*/
|
|
qh->phase = (qh->period / 2) & (MAX_PHASE - 1);
|
|
ret = uhci_check_bandwidth(uhci, qh);
|
|
} while (ret != 0 && --exponent >= 0);
|
|
if (ret)
|
|
return ret;
|
|
} else if (qh->period > urb->interval)
|
|
return -EINVAL; /* Can't decrease the period */
|
|
|
|
ret = uhci_submit_common(uhci, urb, qh);
|
|
if (ret == 0) {
|
|
urb->interval = qh->period;
|
|
if (!qh->bandwidth_reserved)
|
|
uhci_reserve_bandwidth(uhci, qh);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Fix up the data structures following a short transfer
|
|
*/
|
|
static int uhci_fixup_short_transfer(struct uhci_hcd *uhci,
|
|
struct uhci_qh *qh, struct urb_priv *urbp)
|
|
{
|
|
struct uhci_td *td;
|
|
struct list_head *tmp;
|
|
int ret;
|
|
|
|
td = list_entry(urbp->td_list.prev, struct uhci_td, list);
|
|
if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
|
|
|
|
/* When a control transfer is short, we have to restart
|
|
* the queue at the status stage transaction, which is
|
|
* the last TD. */
|
|
WARN_ON(list_empty(&urbp->td_list));
|
|
qh->element = LINK_TO_TD(uhci, td);
|
|
tmp = td->list.prev;
|
|
ret = -EINPROGRESS;
|
|
|
|
} else {
|
|
|
|
/* When a bulk/interrupt transfer is short, we have to
|
|
* fix up the toggles of the following URBs on the queue
|
|
* before restarting the queue at the next URB. */
|
|
qh->initial_toggle =
|
|
uhci_toggle(td_token(uhci, qh->post_td)) ^ 1;
|
|
uhci_fixup_toggles(uhci, qh, 1);
|
|
|
|
if (list_empty(&urbp->td_list))
|
|
td = qh->post_td;
|
|
qh->element = td->link;
|
|
tmp = urbp->td_list.prev;
|
|
ret = 0;
|
|
}
|
|
|
|
/* Remove all the TDs we skipped over, from tmp back to the start */
|
|
while (tmp != &urbp->td_list) {
|
|
td = list_entry(tmp, struct uhci_td, list);
|
|
tmp = tmp->prev;
|
|
|
|
uhci_remove_td_from_urbp(td);
|
|
uhci_free_td(uhci, td);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Common result for control, bulk, and interrupt
|
|
*/
|
|
static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb)
|
|
{
|
|
struct urb_priv *urbp = urb->hcpriv;
|
|
struct uhci_qh *qh = urbp->qh;
|
|
struct uhci_td *td, *tmp;
|
|
unsigned status;
|
|
int ret = 0;
|
|
|
|
list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
|
|
unsigned int ctrlstat;
|
|
int len;
|
|
|
|
ctrlstat = td_status(uhci, td);
|
|
status = uhci_status_bits(ctrlstat);
|
|
if (status & TD_CTRL_ACTIVE)
|
|
return -EINPROGRESS;
|
|
|
|
len = uhci_actual_length(ctrlstat);
|
|
urb->actual_length += len;
|
|
|
|
if (status) {
|
|
ret = uhci_map_status(status,
|
|
uhci_packetout(td_token(uhci, td)));
|
|
if ((debug == 1 && ret != -EPIPE) || debug > 1) {
|
|
/* Some debugging code */
|
|
dev_dbg(&urb->dev->dev,
|
|
"%s: failed with status %x\n",
|
|
__func__, status);
|
|
|
|
if (debug > 1 && errbuf) {
|
|
/* Print the chain for debugging */
|
|
uhci_show_qh(uhci, urbp->qh, errbuf,
|
|
ERRBUF_LEN - EXTRA_SPACE, 0);
|
|
lprintk(errbuf);
|
|
}
|
|
}
|
|
|
|
/* Did we receive a short packet? */
|
|
} else if (len < uhci_expected_length(td_token(uhci, td))) {
|
|
|
|
/* For control transfers, go to the status TD if
|
|
* this isn't already the last data TD */
|
|
if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
|
|
if (td->list.next != urbp->td_list.prev)
|
|
ret = 1;
|
|
}
|
|
|
|
/* For bulk and interrupt, this may be an error */
|
|
else if (urb->transfer_flags & URB_SHORT_NOT_OK)
|
|
ret = -EREMOTEIO;
|
|
|
|
/* Fixup needed only if this isn't the URB's last TD */
|
|
else if (&td->list != urbp->td_list.prev)
|
|
ret = 1;
|
|
}
|
|
|
|
uhci_remove_td_from_urbp(td);
|
|
if (qh->post_td)
|
|
uhci_free_td(uhci, qh->post_td);
|
|
qh->post_td = td;
|
|
|
|
if (ret != 0)
|
|
goto err;
|
|
}
|
|
return ret;
|
|
|
|
err:
|
|
if (ret < 0) {
|
|
/* Note that the queue has stopped and save
|
|
* the next toggle value */
|
|
qh->element = UHCI_PTR_TERM(uhci);
|
|
qh->is_stopped = 1;
|
|
qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL);
|
|
qh->initial_toggle = uhci_toggle(td_token(uhci, td)) ^
|
|
(ret == -EREMOTEIO);
|
|
|
|
} else /* Short packet received */
|
|
ret = uhci_fixup_short_transfer(uhci, qh, urbp);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Isochronous transfers
|
|
*/
|
|
static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb,
|
|
struct uhci_qh *qh)
|
|
{
|
|
struct uhci_td *td = NULL; /* Since urb->number_of_packets > 0 */
|
|
int i;
|
|
unsigned frame, next;
|
|
unsigned long destination, status;
|
|
struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
|
|
|
|
/* Values must not be too big (could overflow below) */
|
|
if (urb->interval >= UHCI_NUMFRAMES ||
|
|
urb->number_of_packets >= UHCI_NUMFRAMES)
|
|
return -EFBIG;
|
|
|
|
uhci_get_current_frame_number(uhci);
|
|
|
|
/* Check the period and figure out the starting frame number */
|
|
if (!qh->bandwidth_reserved) {
|
|
qh->period = urb->interval;
|
|
qh->phase = -1; /* Find the best phase */
|
|
i = uhci_check_bandwidth(uhci, qh);
|
|
if (i)
|
|
return i;
|
|
|
|
/* Allow a little time to allocate the TDs */
|
|
next = uhci->frame_number + 10;
|
|
frame = qh->phase;
|
|
|
|
/* Round up to the first available slot */
|
|
frame += (next - frame + qh->period - 1) & -qh->period;
|
|
|
|
} else if (qh->period != urb->interval) {
|
|
return -EINVAL; /* Can't change the period */
|
|
|
|
} else {
|
|
next = uhci->frame_number + 1;
|
|
|
|
/* Find the next unused frame */
|
|
if (list_empty(&qh->queue)) {
|
|
frame = qh->iso_frame;
|
|
} else {
|
|
struct urb *lurb;
|
|
|
|
lurb = list_entry(qh->queue.prev,
|
|
struct urb_priv, node)->urb;
|
|
frame = lurb->start_frame +
|
|
lurb->number_of_packets *
|
|
lurb->interval;
|
|
}
|
|
|
|
/* Fell behind? */
|
|
if (!uhci_frame_before_eq(next, frame)) {
|
|
|
|
/* USB_ISO_ASAP: Round up to the first available slot */
|
|
if (urb->transfer_flags & URB_ISO_ASAP)
|
|
frame += (next - frame + qh->period - 1) &
|
|
-qh->period;
|
|
|
|
/*
|
|
* Not ASAP: Use the next slot in the stream,
|
|
* no matter what.
|
|
*/
|
|
else if (!uhci_frame_before_eq(next,
|
|
frame + (urb->number_of_packets - 1) *
|
|
qh->period))
|
|
dev_dbg(uhci_dev(uhci), "iso underrun %p (%u+%u < %u)\n",
|
|
urb, frame,
|
|
(urb->number_of_packets - 1) *
|
|
qh->period,
|
|
next);
|
|
}
|
|
}
|
|
|
|
/* Make sure we won't have to go too far into the future */
|
|
if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES,
|
|
frame + urb->number_of_packets * urb->interval))
|
|
return -EFBIG;
|
|
urb->start_frame = frame;
|
|
|
|
status = TD_CTRL_ACTIVE | TD_CTRL_IOS;
|
|
destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe);
|
|
|
|
for (i = 0; i < urb->number_of_packets; i++) {
|
|
td = uhci_alloc_td(uhci);
|
|
if (!td)
|
|
return -ENOMEM;
|
|
|
|
uhci_add_td_to_urbp(td, urbp);
|
|
uhci_fill_td(uhci, td, status, destination |
|
|
uhci_explen(urb->iso_frame_desc[i].length),
|
|
urb->transfer_dma +
|
|
urb->iso_frame_desc[i].offset);
|
|
}
|
|
|
|
/* Set the interrupt-on-completion flag on the last packet. */
|
|
td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
|
|
|
|
/* Add the TDs to the frame list */
|
|
frame = urb->start_frame;
|
|
list_for_each_entry(td, &urbp->td_list, list) {
|
|
uhci_insert_td_in_frame_list(uhci, td, frame);
|
|
frame += qh->period;
|
|
}
|
|
|
|
if (list_empty(&qh->queue)) {
|
|
qh->iso_packet_desc = &urb->iso_frame_desc[0];
|
|
qh->iso_frame = urb->start_frame;
|
|
}
|
|
|
|
qh->skel = SKEL_ISO;
|
|
if (!qh->bandwidth_reserved)
|
|
uhci_reserve_bandwidth(uhci, qh);
|
|
return 0;
|
|
}
|
|
|
|
static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb)
|
|
{
|
|
struct uhci_td *td, *tmp;
|
|
struct urb_priv *urbp = urb->hcpriv;
|
|
struct uhci_qh *qh = urbp->qh;
|
|
|
|
list_for_each_entry_safe(td, tmp, &urbp->td_list, list) {
|
|
unsigned int ctrlstat;
|
|
int status;
|
|
int actlength;
|
|
|
|
if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame))
|
|
return -EINPROGRESS;
|
|
|
|
uhci_remove_tds_from_frame(uhci, qh->iso_frame);
|
|
|
|
ctrlstat = td_status(uhci, td);
|
|
if (ctrlstat & TD_CTRL_ACTIVE) {
|
|
status = -EXDEV; /* TD was added too late? */
|
|
} else {
|
|
status = uhci_map_status(uhci_status_bits(ctrlstat),
|
|
usb_pipeout(urb->pipe));
|
|
actlength = uhci_actual_length(ctrlstat);
|
|
|
|
urb->actual_length += actlength;
|
|
qh->iso_packet_desc->actual_length = actlength;
|
|
qh->iso_packet_desc->status = status;
|
|
}
|
|
if (status)
|
|
urb->error_count++;
|
|
|
|
uhci_remove_td_from_urbp(td);
|
|
uhci_free_td(uhci, td);
|
|
qh->iso_frame += qh->period;
|
|
++qh->iso_packet_desc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int uhci_urb_enqueue(struct usb_hcd *hcd,
|
|
struct urb *urb, gfp_t mem_flags)
|
|
{
|
|
int ret;
|
|
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
|
|
unsigned long flags;
|
|
struct urb_priv *urbp;
|
|
struct uhci_qh *qh;
|
|
|
|
spin_lock_irqsave(&uhci->lock, flags);
|
|
|
|
ret = usb_hcd_link_urb_to_ep(hcd, urb);
|
|
if (ret)
|
|
goto done_not_linked;
|
|
|
|
ret = -ENOMEM;
|
|
urbp = uhci_alloc_urb_priv(uhci, urb);
|
|
if (!urbp)
|
|
goto done;
|
|
|
|
if (urb->ep->hcpriv)
|
|
qh = urb->ep->hcpriv;
|
|
else {
|
|
qh = uhci_alloc_qh(uhci, urb->dev, urb->ep);
|
|
if (!qh)
|
|
goto err_no_qh;
|
|
}
|
|
urbp->qh = qh;
|
|
|
|
switch (qh->type) {
|
|
case USB_ENDPOINT_XFER_CONTROL:
|
|
ret = uhci_submit_control(uhci, urb, qh);
|
|
break;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
ret = uhci_submit_bulk(uhci, urb, qh);
|
|
break;
|
|
case USB_ENDPOINT_XFER_INT:
|
|
ret = uhci_submit_interrupt(uhci, urb, qh);
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
urb->error_count = 0;
|
|
ret = uhci_submit_isochronous(uhci, urb, qh);
|
|
break;
|
|
}
|
|
if (ret != 0)
|
|
goto err_submit_failed;
|
|
|
|
/* Add this URB to the QH */
|
|
list_add_tail(&urbp->node, &qh->queue);
|
|
|
|
/* If the new URB is the first and only one on this QH then either
|
|
* the QH is new and idle or else it's unlinked and waiting to
|
|
* become idle, so we can activate it right away. But only if the
|
|
* queue isn't stopped. */
|
|
if (qh->queue.next == &urbp->node && !qh->is_stopped) {
|
|
uhci_activate_qh(uhci, qh);
|
|
uhci_urbp_wants_fsbr(uhci, urbp);
|
|
}
|
|
goto done;
|
|
|
|
err_submit_failed:
|
|
if (qh->state == QH_STATE_IDLE)
|
|
uhci_make_qh_idle(uhci, qh); /* Reclaim unused QH */
|
|
err_no_qh:
|
|
uhci_free_urb_priv(uhci, urbp);
|
|
done:
|
|
if (ret)
|
|
usb_hcd_unlink_urb_from_ep(hcd, urb);
|
|
done_not_linked:
|
|
spin_unlock_irqrestore(&uhci->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
|
|
{
|
|
struct uhci_hcd *uhci = hcd_to_uhci(hcd);
|
|
unsigned long flags;
|
|
struct uhci_qh *qh;
|
|
int rc;
|
|
|
|
spin_lock_irqsave(&uhci->lock, flags);
|
|
rc = usb_hcd_check_unlink_urb(hcd, urb, status);
|
|
if (rc)
|
|
goto done;
|
|
|
|
qh = ((struct urb_priv *) urb->hcpriv)->qh;
|
|
|
|
/* Remove Isochronous TDs from the frame list ASAP */
|
|
if (qh->type == USB_ENDPOINT_XFER_ISOC) {
|
|
uhci_unlink_isochronous_tds(uhci, urb);
|
|
mb();
|
|
|
|
/* If the URB has already started, update the QH unlink time */
|
|
uhci_get_current_frame_number(uhci);
|
|
if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number))
|
|
qh->unlink_frame = uhci->frame_number;
|
|
}
|
|
|
|
uhci_unlink_qh(uhci, qh);
|
|
|
|
done:
|
|
spin_unlock_irqrestore(&uhci->lock, flags);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Finish unlinking an URB and give it back
|
|
*/
|
|
static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh,
|
|
struct urb *urb, int status)
|
|
__releases(uhci->lock)
|
|
__acquires(uhci->lock)
|
|
{
|
|
struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv;
|
|
|
|
if (qh->type == USB_ENDPOINT_XFER_CONTROL) {
|
|
|
|
/* Subtract off the length of the SETUP packet from
|
|
* urb->actual_length.
|
|
*/
|
|
urb->actual_length -= min_t(u32, 8, urb->actual_length);
|
|
}
|
|
|
|
/* When giving back the first URB in an Isochronous queue,
|
|
* reinitialize the QH's iso-related members for the next URB. */
|
|
else if (qh->type == USB_ENDPOINT_XFER_ISOC &&
|
|
urbp->node.prev == &qh->queue &&
|
|
urbp->node.next != &qh->queue) {
|
|
struct urb *nurb = list_entry(urbp->node.next,
|
|
struct urb_priv, node)->urb;
|
|
|
|
qh->iso_packet_desc = &nurb->iso_frame_desc[0];
|
|
qh->iso_frame = nurb->start_frame;
|
|
}
|
|
|
|
/* Take the URB off the QH's queue. If the queue is now empty,
|
|
* this is a perfect time for a toggle fixup. */
|
|
list_del_init(&urbp->node);
|
|
if (list_empty(&qh->queue) && qh->needs_fixup) {
|
|
usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe),
|
|
usb_pipeout(urb->pipe), qh->initial_toggle);
|
|
qh->needs_fixup = 0;
|
|
}
|
|
|
|
uhci_free_urb_priv(uhci, urbp);
|
|
usb_hcd_unlink_urb_from_ep(uhci_to_hcd(uhci), urb);
|
|
|
|
spin_unlock(&uhci->lock);
|
|
usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb, status);
|
|
spin_lock(&uhci->lock);
|
|
|
|
/* If the queue is now empty, we can unlink the QH and give up its
|
|
* reserved bandwidth. */
|
|
if (list_empty(&qh->queue)) {
|
|
uhci_unlink_qh(uhci, qh);
|
|
if (qh->bandwidth_reserved)
|
|
uhci_release_bandwidth(uhci, qh);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan the URBs in a QH's queue
|
|
*/
|
|
#define QH_FINISHED_UNLINKING(qh) \
|
|
(qh->state == QH_STATE_UNLINKING && \
|
|
uhci->frame_number + uhci->is_stopped != qh->unlink_frame)
|
|
|
|
static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
struct urb_priv *urbp;
|
|
struct urb *urb;
|
|
int status;
|
|
|
|
while (!list_empty(&qh->queue)) {
|
|
urbp = list_entry(qh->queue.next, struct urb_priv, node);
|
|
urb = urbp->urb;
|
|
|
|
if (qh->type == USB_ENDPOINT_XFER_ISOC)
|
|
status = uhci_result_isochronous(uhci, urb);
|
|
else
|
|
status = uhci_result_common(uhci, urb);
|
|
if (status == -EINPROGRESS)
|
|
break;
|
|
|
|
/* Dequeued but completed URBs can't be given back unless
|
|
* the QH is stopped or has finished unlinking. */
|
|
if (urb->unlinked) {
|
|
if (QH_FINISHED_UNLINKING(qh))
|
|
qh->is_stopped = 1;
|
|
else if (!qh->is_stopped)
|
|
return;
|
|
}
|
|
|
|
uhci_giveback_urb(uhci, qh, urb, status);
|
|
if (status < 0)
|
|
break;
|
|
}
|
|
|
|
/* If the QH is neither stopped nor finished unlinking (normal case),
|
|
* our work here is done. */
|
|
if (QH_FINISHED_UNLINKING(qh))
|
|
qh->is_stopped = 1;
|
|
else if (!qh->is_stopped)
|
|
return;
|
|
|
|
/* Otherwise give back each of the dequeued URBs */
|
|
restart:
|
|
list_for_each_entry(urbp, &qh->queue, node) {
|
|
urb = urbp->urb;
|
|
if (urb->unlinked) {
|
|
|
|
/* Fix up the TD links and save the toggles for
|
|
* non-Isochronous queues. For Isochronous queues,
|
|
* test for too-recent dequeues. */
|
|
if (!uhci_cleanup_queue(uhci, qh, urb)) {
|
|
qh->is_stopped = 0;
|
|
return;
|
|
}
|
|
uhci_giveback_urb(uhci, qh, urb, 0);
|
|
goto restart;
|
|
}
|
|
}
|
|
qh->is_stopped = 0;
|
|
|
|
/* There are no more dequeued URBs. If there are still URBs on the
|
|
* queue, the QH can now be re-activated. */
|
|
if (!list_empty(&qh->queue)) {
|
|
if (qh->needs_fixup)
|
|
uhci_fixup_toggles(uhci, qh, 0);
|
|
|
|
/* If the first URB on the queue wants FSBR but its time
|
|
* limit has expired, set the next TD to interrupt on
|
|
* completion before reactivating the QH. */
|
|
urbp = list_entry(qh->queue.next, struct urb_priv, node);
|
|
if (urbp->fsbr && qh->wait_expired) {
|
|
struct uhci_td *td = list_entry(urbp->td_list.next,
|
|
struct uhci_td, list);
|
|
|
|
td->status |= cpu_to_hc32(uhci, TD_CTRL_IOC);
|
|
}
|
|
|
|
uhci_activate_qh(uhci, qh);
|
|
}
|
|
|
|
/* The queue is empty. The QH can become idle if it is fully
|
|
* unlinked. */
|
|
else if (QH_FINISHED_UNLINKING(qh))
|
|
uhci_make_qh_idle(uhci, qh);
|
|
}
|
|
|
|
/*
|
|
* Check for queues that have made some forward progress.
|
|
* Returns 0 if the queue is not Isochronous, is ACTIVE, and
|
|
* has not advanced since last examined; 1 otherwise.
|
|
*
|
|
* Early Intel controllers have a bug which causes qh->element sometimes
|
|
* not to advance when a TD completes successfully. The queue remains
|
|
* stuck on the inactive completed TD. We detect such cases and advance
|
|
* the element pointer by hand.
|
|
*/
|
|
static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh)
|
|
{
|
|
struct urb_priv *urbp = NULL;
|
|
struct uhci_td *td;
|
|
int ret = 1;
|
|
unsigned status;
|
|
|
|
if (qh->type == USB_ENDPOINT_XFER_ISOC)
|
|
goto done;
|
|
|
|
/* Treat an UNLINKING queue as though it hasn't advanced.
|
|
* This is okay because reactivation will treat it as though
|
|
* it has advanced, and if it is going to become IDLE then
|
|
* this doesn't matter anyway. Furthermore it's possible
|
|
* for an UNLINKING queue not to have any URBs at all, or
|
|
* for its first URB not to have any TDs (if it was dequeued
|
|
* just as it completed). So it's not easy in any case to
|
|
* test whether such queues have advanced. */
|
|
if (qh->state != QH_STATE_ACTIVE) {
|
|
urbp = NULL;
|
|
status = 0;
|
|
|
|
} else {
|
|
urbp = list_entry(qh->queue.next, struct urb_priv, node);
|
|
td = list_entry(urbp->td_list.next, struct uhci_td, list);
|
|
status = td_status(uhci, td);
|
|
if (!(status & TD_CTRL_ACTIVE)) {
|
|
|
|
/* We're okay, the queue has advanced */
|
|
qh->wait_expired = 0;
|
|
qh->advance_jiffies = jiffies;
|
|
goto done;
|
|
}
|
|
ret = uhci->is_stopped;
|
|
}
|
|
|
|
/* The queue hasn't advanced; check for timeout */
|
|
if (qh->wait_expired)
|
|
goto done;
|
|
|
|
if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) {
|
|
|
|
/* Detect the Intel bug and work around it */
|
|
if (qh->post_td && qh_element(qh) ==
|
|
LINK_TO_TD(uhci, qh->post_td)) {
|
|
qh->element = qh->post_td->link;
|
|
qh->advance_jiffies = jiffies;
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
|
|
qh->wait_expired = 1;
|
|
|
|
/* If the current URB wants FSBR, unlink it temporarily
|
|
* so that we can safely set the next TD to interrupt on
|
|
* completion. That way we'll know as soon as the queue
|
|
* starts moving again. */
|
|
if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC))
|
|
uhci_unlink_qh(uhci, qh);
|
|
|
|
} else {
|
|
/* Unmoving but not-yet-expired queues keep FSBR alive */
|
|
if (urbp)
|
|
uhci_urbp_wants_fsbr(uhci, urbp);
|
|
}
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Process events in the schedule, but only in one thread at a time
|
|
*/
|
|
static void uhci_scan_schedule(struct uhci_hcd *uhci)
|
|
{
|
|
int i;
|
|
struct uhci_qh *qh;
|
|
|
|
/* Don't allow re-entrant calls */
|
|
if (uhci->scan_in_progress) {
|
|
uhci->need_rescan = 1;
|
|
return;
|
|
}
|
|
uhci->scan_in_progress = 1;
|
|
rescan:
|
|
uhci->need_rescan = 0;
|
|
uhci->fsbr_is_wanted = 0;
|
|
|
|
uhci_clear_next_interrupt(uhci);
|
|
uhci_get_current_frame_number(uhci);
|
|
uhci->cur_iso_frame = uhci->frame_number;
|
|
|
|
/* Go through all the QH queues and process the URBs in each one */
|
|
for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) {
|
|
uhci->next_qh = list_entry(uhci->skelqh[i]->node.next,
|
|
struct uhci_qh, node);
|
|
while ((qh = uhci->next_qh) != uhci->skelqh[i]) {
|
|
uhci->next_qh = list_entry(qh->node.next,
|
|
struct uhci_qh, node);
|
|
|
|
if (uhci_advance_check(uhci, qh)) {
|
|
uhci_scan_qh(uhci, qh);
|
|
if (qh->state == QH_STATE_ACTIVE) {
|
|
uhci_urbp_wants_fsbr(uhci,
|
|
list_entry(qh->queue.next, struct urb_priv, node));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uhci->last_iso_frame = uhci->cur_iso_frame;
|
|
if (uhci->need_rescan)
|
|
goto rescan;
|
|
uhci->scan_in_progress = 0;
|
|
|
|
if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted &&
|
|
!uhci->fsbr_expiring) {
|
|
uhci->fsbr_expiring = 1;
|
|
mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY);
|
|
}
|
|
|
|
if (list_empty(&uhci->skel_unlink_qh->node))
|
|
uhci_clear_next_interrupt(uhci);
|
|
else
|
|
uhci_set_next_interrupt(uhci);
|
|
}
|