linux-sg2042/drivers/gpu/drm/nouveau/nv50_crtc.c

770 lines
20 KiB
C

/*
* Copyright (C) 2008 Maarten Maathuis.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "drmP.h"
#include "drm_mode.h"
#include "drm_crtc_helper.h"
#define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
#include "nouveau_reg.h"
#include "nouveau_drv.h"
#include "nouveau_hw.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
#include "nouveau_fb.h"
#include "nouveau_connector.h"
#include "nv50_display.h"
static void
nv50_crtc_lut_load(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
int i;
NV_DEBUG_KMS(crtc->dev, "\n");
for (i = 0; i < 256; i++) {
writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
}
if (nv_crtc->lut.depth == 30) {
writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0);
writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2);
writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4);
}
}
int
nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked)
{
struct drm_device *dev = nv_crtc->base.dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_channel *evo = dev_priv->evo;
int index = nv_crtc->index, ret;
NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked");
if (blanked) {
nv_crtc->cursor.hide(nv_crtc, false);
ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5);
if (ret) {
NV_ERROR(dev, "no space while blanking crtc\n");
return ret;
}
BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK);
OUT_RING(evo, 0);
if (dev_priv->chipset != 0x50) {
BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE);
}
BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE);
} else {
if (nv_crtc->cursor.visible)
nv_crtc->cursor.show(nv_crtc, false);
else
nv_crtc->cursor.hide(nv_crtc, false);
ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8);
if (ret) {
NV_ERROR(dev, "no space while unblanking crtc\n");
return ret;
}
BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
OUT_RING(evo, nv_crtc->lut.depth == 8 ?
NV50_EVO_CRTC_CLUT_MODE_OFF :
NV50_EVO_CRTC_CLUT_MODE_ON);
OUT_RING(evo, (nv_crtc->lut.nvbo->bo.mem.mm_node->start <<
PAGE_SHIFT) >> 8);
if (dev_priv->chipset != 0x50) {
BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
OUT_RING(evo, NvEvoVRAM);
}
BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2);
OUT_RING(evo, nv_crtc->fb.offset >> 8);
OUT_RING(evo, 0);
BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
if (dev_priv->chipset != 0x50)
if (nv_crtc->fb.tile_flags == 0x7a00)
OUT_RING(evo, NvEvoFB32);
else
if (nv_crtc->fb.tile_flags == 0x7000)
OUT_RING(evo, NvEvoFB16);
else
OUT_RING(evo, NvEvoVRAM);
else
OUT_RING(evo, NvEvoVRAM);
}
nv_crtc->fb.blanked = blanked;
return 0;
}
static int
nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool on, bool update)
{
struct drm_device *dev = nv_crtc->base.dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_channel *evo = dev_priv->evo;
int ret;
NV_DEBUG_KMS(dev, "\n");
ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
if (ret) {
NV_ERROR(dev, "no space while setting dither\n");
return ret;
}
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, DITHER_CTRL), 1);
if (on)
OUT_RING(evo, NV50_EVO_CRTC_DITHER_CTRL_ON);
else
OUT_RING(evo, NV50_EVO_CRTC_DITHER_CTRL_OFF);
if (update) {
BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
OUT_RING(evo, 0);
FIRE_RING(evo);
}
return 0;
}
struct nouveau_connector *
nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc)
{
struct drm_device *dev = nv_crtc->base.dev;
struct drm_connector *connector;
struct drm_crtc *crtc = to_drm_crtc(nv_crtc);
/* The safest approach is to find an encoder with the right crtc, that
* is also linked to a connector. */
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
if (connector->encoder)
if (connector->encoder->crtc == crtc)
return nouveau_connector(connector);
}
return NULL;
}
static int
nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, int scaling_mode, bool update)
{
struct nouveau_connector *nv_connector =
nouveau_crtc_connector_get(nv_crtc);
struct drm_device *dev = nv_crtc->base.dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_channel *evo = dev_priv->evo;
struct drm_display_mode *native_mode = NULL;
struct drm_display_mode *mode = &nv_crtc->base.mode;
uint32_t outX, outY, horiz, vert;
int ret;
NV_DEBUG_KMS(dev, "\n");
switch (scaling_mode) {
case DRM_MODE_SCALE_NONE:
break;
default:
if (!nv_connector || !nv_connector->native_mode) {
NV_ERROR(dev, "No native mode, forcing panel scaling\n");
scaling_mode = DRM_MODE_SCALE_NONE;
} else {
native_mode = nv_connector->native_mode;
}
break;
}
switch (scaling_mode) {
case DRM_MODE_SCALE_ASPECT:
horiz = (native_mode->hdisplay << 19) / mode->hdisplay;
vert = (native_mode->vdisplay << 19) / mode->vdisplay;
if (vert > horiz) {
outX = (mode->hdisplay * horiz) >> 19;
outY = (mode->vdisplay * horiz) >> 19;
} else {
outX = (mode->hdisplay * vert) >> 19;
outY = (mode->vdisplay * vert) >> 19;
}
break;
case DRM_MODE_SCALE_FULLSCREEN:
outX = native_mode->hdisplay;
outY = native_mode->vdisplay;
break;
case DRM_MODE_SCALE_CENTER:
case DRM_MODE_SCALE_NONE:
default:
outX = mode->hdisplay;
outY = mode->vdisplay;
break;
}
ret = RING_SPACE(evo, update ? 7 : 5);
if (ret)
return ret;
/* Got a better name for SCALER_ACTIVE? */
/* One day i've got to really figure out why this is needed. */
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1);
if ((mode->flags & DRM_MODE_FLAG_DBLSCAN) ||
(mode->flags & DRM_MODE_FLAG_INTERLACE) ||
mode->hdisplay != outX || mode->vdisplay != outY) {
OUT_RING(evo, NV50_EVO_CRTC_SCALE_CTRL_ACTIVE);
} else {
OUT_RING(evo, NV50_EVO_CRTC_SCALE_CTRL_INACTIVE);
}
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2);
OUT_RING(evo, outY << 16 | outX);
OUT_RING(evo, outY << 16 | outX);
if (update) {
BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
OUT_RING(evo, 0);
FIRE_RING(evo);
}
return 0;
}
int
nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk)
{
uint32_t pll_reg = NV50_PDISPLAY_CRTC_CLK_CTRL1(head);
struct nouveau_pll_vals pll;
struct pll_lims limits;
uint32_t reg1, reg2;
int ret;
ret = get_pll_limits(dev, pll_reg, &limits);
if (ret)
return ret;
ret = nouveau_calc_pll_mnp(dev, &limits, pclk, &pll);
if (ret <= 0)
return ret;
if (limits.vco2.maxfreq) {
reg1 = nv_rd32(dev, pll_reg + 4) & 0xff00ff00;
reg2 = nv_rd32(dev, pll_reg + 8) & 0x8000ff00;
nv_wr32(dev, pll_reg, 0x10000611);
nv_wr32(dev, pll_reg + 4, reg1 | (pll.M1 << 16) | pll.N1);
nv_wr32(dev, pll_reg + 8,
reg2 | (pll.log2P << 28) | (pll.M2 << 16) | pll.N2);
} else {
reg1 = nv_rd32(dev, pll_reg + 4) & 0xffc00000;
nv_wr32(dev, pll_reg, 0x50000610);
nv_wr32(dev, pll_reg + 4, reg1 |
(pll.log2P << 16) | (pll.M1 << 8) | pll.N1);
}
return 0;
}
static void
nv50_crtc_destroy(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
NV_DEBUG_KMS(dev, "\n");
if (!crtc)
return;
drm_crtc_cleanup(&nv_crtc->base);
nv50_cursor_fini(nv_crtc);
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
kfree(nv_crtc->mode);
kfree(nv_crtc);
}
int
nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
uint32_t buffer_handle, uint32_t width, uint32_t height)
{
struct drm_device *dev = crtc->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_bo *cursor = NULL;
struct drm_gem_object *gem;
int ret = 0, i;
if (width != 64 || height != 64)
return -EINVAL;
if (!buffer_handle) {
nv_crtc->cursor.hide(nv_crtc, true);
return 0;
}
gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
if (!gem)
return -EINVAL;
cursor = nouveau_gem_object(gem);
ret = nouveau_bo_map(cursor);
if (ret)
goto out;
/* The simple will do for now. */
for (i = 0; i < 64 * 64; i++)
nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i));
nouveau_bo_unmap(cursor);
nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset -
dev_priv->vm_vram_base);
nv_crtc->cursor.show(nv_crtc, true);
out:
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(gem);
mutex_unlock(&dev->struct_mutex);
return ret;
}
int
nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
nv_crtc->cursor.set_pos(nv_crtc, x, y);
return 0;
}
static void
nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
uint32_t size)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int i;
if (size != 256)
return;
for (i = 0; i < 256; i++) {
nv_crtc->lut.r[i] = r[i];
nv_crtc->lut.g[i] = g[i];
nv_crtc->lut.b[i] = b[i];
}
/* We need to know the depth before we upload, but it's possible to
* get called before a framebuffer is bound. If this is the case,
* mark the lut values as dirty by setting depth==0, and it'll be
* uploaded on the first mode_set_base()
*/
if (!nv_crtc->base.fb) {
nv_crtc->lut.depth = 0;
return;
}
nv50_crtc_lut_load(crtc);
}
static void
nv50_crtc_save(struct drm_crtc *crtc)
{
NV_ERROR(crtc->dev, "!!\n");
}
static void
nv50_crtc_restore(struct drm_crtc *crtc)
{
NV_ERROR(crtc->dev, "!!\n");
}
static const struct drm_crtc_funcs nv50_crtc_funcs = {
.save = nv50_crtc_save,
.restore = nv50_crtc_restore,
.cursor_set = nv50_crtc_cursor_set,
.cursor_move = nv50_crtc_cursor_move,
.gamma_set = nv50_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = nv50_crtc_destroy,
};
static void
nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
{
}
static void
nv50_crtc_prepare(struct drm_crtc *crtc)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_encoder *encoder;
NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
/* Disconnect all unused encoders. */
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
if (drm_helper_encoder_in_use(encoder))
continue;
nv_encoder->disconnect(nv_encoder);
}
nv50_crtc_blank(nv_crtc, true);
}
static void
nv50_crtc_commit(struct drm_crtc *crtc)
{
struct drm_crtc *crtc2;
struct drm_device *dev = crtc->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_channel *evo = dev_priv->evo;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
int ret;
NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
nv50_crtc_blank(nv_crtc, false);
/* Explicitly blank all unused crtc's. */
list_for_each_entry(crtc2, &dev->mode_config.crtc_list, head) {
if (!drm_helper_crtc_in_use(crtc2))
nv50_crtc_blank(nouveau_crtc(crtc2), true);
}
ret = RING_SPACE(evo, 2);
if (ret) {
NV_ERROR(dev, "no space while committing crtc\n");
return;
}
BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
OUT_RING(evo, 0);
FIRE_RING(evo);
}
static bool
nv50_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
return true;
}
static int
nv50_crtc_do_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb, bool update)
{
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct drm_device *dev = nv_crtc->base.dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_channel *evo = dev_priv->evo;
struct drm_framebuffer *drm_fb = nv_crtc->base.fb;
struct nouveau_framebuffer *fb = nouveau_framebuffer(drm_fb);
int ret, format;
NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
switch (drm_fb->depth) {
case 8:
format = NV50_EVO_CRTC_FB_DEPTH_8;
break;
case 15:
format = NV50_EVO_CRTC_FB_DEPTH_15;
break;
case 16:
format = NV50_EVO_CRTC_FB_DEPTH_16;
break;
case 24:
case 32:
format = NV50_EVO_CRTC_FB_DEPTH_24;
break;
case 30:
format = NV50_EVO_CRTC_FB_DEPTH_30;
break;
default:
NV_ERROR(dev, "unknown depth %d\n", drm_fb->depth);
return -EINVAL;
}
ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM);
if (ret)
return ret;
if (old_fb) {
struct nouveau_framebuffer *ofb = nouveau_framebuffer(old_fb);
nouveau_bo_unpin(ofb->nvbo);
}
nv_crtc->fb.offset = fb->nvbo->bo.offset - dev_priv->vm_vram_base;
nv_crtc->fb.tile_flags = fb->nvbo->tile_flags;
nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8;
if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) {
ret = RING_SPACE(evo, 2);
if (ret)
return ret;
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1);
if (nv_crtc->fb.tile_flags == 0x7a00)
OUT_RING(evo, NvEvoFB32);
else
if (nv_crtc->fb.tile_flags == 0x7000)
OUT_RING(evo, NvEvoFB16);
else
OUT_RING(evo, NvEvoVRAM);
}
ret = RING_SPACE(evo, 12);
if (ret)
return ret;
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5);
OUT_RING(evo, nv_crtc->fb.offset >> 8);
OUT_RING(evo, 0);
OUT_RING(evo, (drm_fb->height << 16) | drm_fb->width);
if (!nv_crtc->fb.tile_flags) {
OUT_RING(evo, drm_fb->pitch | (1 << 20));
} else {
OUT_RING(evo, ((drm_fb->pitch / 4) << 4) |
fb->nvbo->tile_mode);
}
if (dev_priv->chipset == 0x50)
OUT_RING(evo, (fb->nvbo->tile_flags << 8) | format);
else
OUT_RING(evo, format);
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1);
OUT_RING(evo, fb->base.depth == 8 ?
NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON);
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1);
OUT_RING(evo, NV50_EVO_CRTC_COLOR_CTRL_COLOR);
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1);
OUT_RING(evo, (y << 16) | x);
if (nv_crtc->lut.depth != fb->base.depth) {
nv_crtc->lut.depth = fb->base.depth;
nv50_crtc_lut_load(crtc);
}
if (update) {
ret = RING_SPACE(evo, 2);
if (ret)
return ret;
BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
OUT_RING(evo, 0);
FIRE_RING(evo);
}
return 0;
}
static int
nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct nouveau_channel *evo = dev_priv->evo;
struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
struct nouveau_connector *nv_connector = NULL;
uint32_t hsync_dur, vsync_dur, hsync_start_to_end, vsync_start_to_end;
uint32_t hunk1, vunk1, vunk2a, vunk2b;
int ret;
/* Find the connector attached to this CRTC */
nv_connector = nouveau_crtc_connector_get(nv_crtc);
*nv_crtc->mode = *adjusted_mode;
NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
hsync_dur = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
vsync_dur = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
hsync_start_to_end = adjusted_mode->htotal - adjusted_mode->hsync_start;
vsync_start_to_end = adjusted_mode->vtotal - adjusted_mode->vsync_start;
/* I can't give this a proper name, anyone else can? */
hunk1 = adjusted_mode->htotal -
adjusted_mode->hsync_start + adjusted_mode->hdisplay;
vunk1 = adjusted_mode->vtotal -
adjusted_mode->vsync_start + adjusted_mode->vdisplay;
/* Another strange value, this time only for interlaced adjusted_modes. */
vunk2a = 2 * adjusted_mode->vtotal -
adjusted_mode->vsync_start + adjusted_mode->vdisplay;
vunk2b = adjusted_mode->vtotal -
adjusted_mode->vsync_start + adjusted_mode->vtotal;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
vsync_dur /= 2;
vsync_start_to_end /= 2;
vunk1 /= 2;
vunk2a /= 2;
vunk2b /= 2;
/* magic */
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
vsync_start_to_end -= 1;
vunk1 -= 1;
vunk2a -= 1;
vunk2b -= 1;
}
}
ret = RING_SPACE(evo, 17);
if (ret)
return ret;
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLOCK), 2);
OUT_RING(evo, adjusted_mode->clock | 0x800000);
OUT_RING(evo, (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 0);
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, DISPLAY_START), 5);
OUT_RING(evo, 0);
OUT_RING(evo, (adjusted_mode->vtotal << 16) | adjusted_mode->htotal);
OUT_RING(evo, (vsync_dur - 1) << 16 | (hsync_dur - 1));
OUT_RING(evo, (vsync_start_to_end - 1) << 16 |
(hsync_start_to_end - 1));
OUT_RING(evo, (vunk1 - 1) << 16 | (hunk1 - 1));
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, UNK0824), 1);
OUT_RING(evo, (vunk2b - 1) << 16 | (vunk2a - 1));
} else {
OUT_RING(evo, 0);
OUT_RING(evo, 0);
}
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, UNK082C), 1);
OUT_RING(evo, 0);
/* This is the actual resolution of the mode. */
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, REAL_RES), 1);
OUT_RING(evo, (mode->vdisplay << 16) | mode->hdisplay);
BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CENTER_OFFSET), 1);
OUT_RING(evo, NV50_EVO_CRTC_SCALE_CENTER_OFFSET_VAL(0, 0));
nv_crtc->set_dither(nv_crtc, nv_connector->use_dithering, false);
nv_crtc->set_scale(nv_crtc, nv_connector->scaling_mode, false);
return nv50_crtc_do_mode_set_base(crtc, x, y, old_fb, false);
}
static int
nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
return nv50_crtc_do_mode_set_base(crtc, x, y, old_fb, true);
}
static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = {
.dpms = nv50_crtc_dpms,
.prepare = nv50_crtc_prepare,
.commit = nv50_crtc_commit,
.mode_fixup = nv50_crtc_mode_fixup,
.mode_set = nv50_crtc_mode_set,
.mode_set_base = nv50_crtc_mode_set_base,
.load_lut = nv50_crtc_lut_load,
};
int
nv50_crtc_create(struct drm_device *dev, int index)
{
struct nouveau_crtc *nv_crtc = NULL;
int ret, i;
NV_DEBUG_KMS(dev, "\n");
nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
if (!nv_crtc)
return -ENOMEM;
nv_crtc->mode = kzalloc(sizeof(*nv_crtc->mode), GFP_KERNEL);
if (!nv_crtc->mode) {
kfree(nv_crtc);
return -ENOMEM;
}
/* Default CLUT parameters, will be activated on the hw upon
* first mode set.
*/
for (i = 0; i < 256; i++) {
nv_crtc->lut.r[i] = i << 8;
nv_crtc->lut.g[i] = i << 8;
nv_crtc->lut.b[i] = i << 8;
}
nv_crtc->lut.depth = 0;
ret = nouveau_bo_new(dev, NULL, 4096, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, false, true, &nv_crtc->lut.nvbo);
if (!ret) {
ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(nv_crtc->lut.nvbo);
if (ret)
nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
}
if (ret) {
kfree(nv_crtc->mode);
kfree(nv_crtc);
return ret;
}
nv_crtc->index = index;
/* set function pointers */
nv_crtc->set_dither = nv50_crtc_set_dither;
nv_crtc->set_scale = nv50_crtc_set_scale;
drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs);
drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs);
drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
ret = nouveau_bo_new(dev, NULL, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
0, 0x0000, false, true, &nv_crtc->cursor.nvbo);
if (!ret) {
ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
if (!ret)
ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
if (ret)
nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
}
nv50_cursor_init(nv_crtc);
return 0;
}