2141 lines
54 KiB
C
2141 lines
54 KiB
C
/* hfcsusb.c
|
|
* mISDN driver for Colognechip HFC-S USB chip
|
|
*
|
|
* Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
|
|
* Copyright 2008 by Martin Bachem (info@bachem-it.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* module params
|
|
* debug=<n>, default=0, with n=0xHHHHGGGG
|
|
* H - l1 driver flags described in hfcsusb.h
|
|
* G - common mISDN debug flags described at mISDNhw.h
|
|
*
|
|
* poll=<n>, default 128
|
|
* n : burst size of PH_DATA_IND at transparent rx data
|
|
*
|
|
* Revision: 0.3.3 (socket), 2008-11-05
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/usb.h>
|
|
#include <linux/mISDNhw.h>
|
|
#include <linux/slab.h>
|
|
#include "hfcsusb.h"
|
|
|
|
static unsigned int debug;
|
|
static int poll = DEFAULT_TRANSP_BURST_SZ;
|
|
|
|
static LIST_HEAD(HFClist);
|
|
static DEFINE_RWLOCK(HFClock);
|
|
|
|
|
|
MODULE_AUTHOR("Martin Bachem");
|
|
MODULE_LICENSE("GPL");
|
|
module_param(debug, uint, S_IRUGO | S_IWUSR);
|
|
module_param(poll, int, 0);
|
|
|
|
static int hfcsusb_cnt;
|
|
|
|
/* some function prototypes */
|
|
static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
|
|
static void release_hw(struct hfcsusb *hw);
|
|
static void reset_hfcsusb(struct hfcsusb *hw);
|
|
static void setPortMode(struct hfcsusb *hw);
|
|
static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
|
|
static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
|
|
static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
|
|
static void deactivate_bchannel(struct bchannel *bch);
|
|
static void hfcsusb_ph_info(struct hfcsusb *hw);
|
|
|
|
/* start next background transfer for control channel */
|
|
static void
|
|
ctrl_start_transfer(struct hfcsusb *hw)
|
|
{
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
|
|
|
|
if (hw->ctrl_cnt) {
|
|
hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
|
|
hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
|
|
hw->ctrl_urb->transfer_buffer = NULL;
|
|
hw->ctrl_urb->transfer_buffer_length = 0;
|
|
hw->ctrl_write.wIndex =
|
|
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
|
|
hw->ctrl_write.wValue =
|
|
cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
|
|
|
|
usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* queue a control transfer request to write HFC-S USB
|
|
* chip register using CTRL resuest queue
|
|
*/
|
|
static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
|
|
{
|
|
struct ctrl_buf *buf;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
|
|
hw->name, __func__, reg, val);
|
|
|
|
spin_lock(&hw->ctrl_lock);
|
|
if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
|
|
spin_unlock(&hw->ctrl_lock);
|
|
return 1;
|
|
}
|
|
buf = &hw->ctrl_buff[hw->ctrl_in_idx];
|
|
buf->hfcs_reg = reg;
|
|
buf->reg_val = val;
|
|
if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
|
|
hw->ctrl_in_idx = 0;
|
|
if (++hw->ctrl_cnt == 1)
|
|
ctrl_start_transfer(hw);
|
|
spin_unlock(&hw->ctrl_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* control completion routine handling background control cmds */
|
|
static void
|
|
ctrl_complete(struct urb *urb)
|
|
{
|
|
struct hfcsusb *hw = (struct hfcsusb *) urb->context;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
|
|
|
|
urb->dev = hw->dev;
|
|
if (hw->ctrl_cnt) {
|
|
hw->ctrl_cnt--; /* decrement actual count */
|
|
if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
|
|
hw->ctrl_out_idx = 0; /* pointer wrap */
|
|
|
|
ctrl_start_transfer(hw); /* start next transfer */
|
|
}
|
|
}
|
|
|
|
/* handle LED bits */
|
|
static void
|
|
set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
|
|
{
|
|
if (set_on) {
|
|
if (led_bits < 0)
|
|
hw->led_state &= ~abs(led_bits);
|
|
else
|
|
hw->led_state |= led_bits;
|
|
} else {
|
|
if (led_bits < 0)
|
|
hw->led_state |= abs(led_bits);
|
|
else
|
|
hw->led_state &= ~led_bits;
|
|
}
|
|
}
|
|
|
|
/* handle LED requests */
|
|
static void
|
|
handle_led(struct hfcsusb *hw, int event)
|
|
{
|
|
struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
|
|
hfcsusb_idtab[hw->vend_idx].driver_info;
|
|
__u8 tmpled;
|
|
|
|
if (driver_info->led_scheme == LED_OFF)
|
|
return;
|
|
tmpled = hw->led_state;
|
|
|
|
switch (event) {
|
|
case LED_POWER_ON:
|
|
set_led_bit(hw, driver_info->led_bits[0], 1);
|
|
set_led_bit(hw, driver_info->led_bits[1], 0);
|
|
set_led_bit(hw, driver_info->led_bits[2], 0);
|
|
set_led_bit(hw, driver_info->led_bits[3], 0);
|
|
break;
|
|
case LED_POWER_OFF:
|
|
set_led_bit(hw, driver_info->led_bits[0], 0);
|
|
set_led_bit(hw, driver_info->led_bits[1], 0);
|
|
set_led_bit(hw, driver_info->led_bits[2], 0);
|
|
set_led_bit(hw, driver_info->led_bits[3], 0);
|
|
break;
|
|
case LED_S0_ON:
|
|
set_led_bit(hw, driver_info->led_bits[1], 1);
|
|
break;
|
|
case LED_S0_OFF:
|
|
set_led_bit(hw, driver_info->led_bits[1], 0);
|
|
break;
|
|
case LED_B1_ON:
|
|
set_led_bit(hw, driver_info->led_bits[2], 1);
|
|
break;
|
|
case LED_B1_OFF:
|
|
set_led_bit(hw, driver_info->led_bits[2], 0);
|
|
break;
|
|
case LED_B2_ON:
|
|
set_led_bit(hw, driver_info->led_bits[3], 1);
|
|
break;
|
|
case LED_B2_OFF:
|
|
set_led_bit(hw, driver_info->led_bits[3], 0);
|
|
break;
|
|
}
|
|
|
|
if (hw->led_state != tmpled) {
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
|
|
hw->name, __func__,
|
|
HFCUSB_P_DATA, hw->led_state);
|
|
|
|
write_reg(hw, HFCUSB_P_DATA, hw->led_state);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Layer2 -> Layer 1 Bchannel data
|
|
*/
|
|
static int
|
|
hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
|
|
{
|
|
struct bchannel *bch = container_of(ch, struct bchannel, ch);
|
|
struct hfcsusb *hw = bch->hw;
|
|
int ret = -EINVAL;
|
|
struct mISDNhead *hh = mISDN_HEAD_P(skb);
|
|
u_long flags;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
|
|
|
|
switch (hh->prim) {
|
|
case PH_DATA_REQ:
|
|
spin_lock_irqsave(&hw->lock, flags);
|
|
ret = bchannel_senddata(bch, skb);
|
|
spin_unlock_irqrestore(&hw->lock, flags);
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
|
|
hw->name, __func__, ret);
|
|
if (ret > 0)
|
|
ret = 0;
|
|
return ret;
|
|
case PH_ACTIVATE_REQ:
|
|
if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
|
|
hfcsusb_start_endpoint(hw, bch->nr - 1);
|
|
ret = hfcsusb_setup_bch(bch, ch->protocol);
|
|
} else
|
|
ret = 0;
|
|
if (!ret)
|
|
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
|
|
0, NULL, GFP_KERNEL);
|
|
break;
|
|
case PH_DEACTIVATE_REQ:
|
|
deactivate_bchannel(bch);
|
|
_queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
|
|
0, NULL, GFP_KERNEL);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (!ret)
|
|
dev_kfree_skb(skb);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* send full D/B channel status information
|
|
* as MPH_INFORMATION_IND
|
|
*/
|
|
static void
|
|
hfcsusb_ph_info(struct hfcsusb *hw)
|
|
{
|
|
struct ph_info *phi;
|
|
struct dchannel *dch = &hw->dch;
|
|
int i;
|
|
|
|
phi = kzalloc(sizeof(struct ph_info) +
|
|
dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
|
|
phi->dch.ch.protocol = hw->protocol;
|
|
phi->dch.ch.Flags = dch->Flags;
|
|
phi->dch.state = dch->state;
|
|
phi->dch.num_bch = dch->dev.nrbchan;
|
|
for (i = 0; i < dch->dev.nrbchan; i++) {
|
|
phi->bch[i].protocol = hw->bch[i].ch.protocol;
|
|
phi->bch[i].Flags = hw->bch[i].Flags;
|
|
}
|
|
_queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
|
|
sizeof(struct ph_info_dch) + dch->dev.nrbchan *
|
|
sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
|
|
kfree(phi);
|
|
}
|
|
|
|
/*
|
|
* Layer2 -> Layer 1 Dchannel data
|
|
*/
|
|
static int
|
|
hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
|
|
{
|
|
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
|
|
struct dchannel *dch = container_of(dev, struct dchannel, dev);
|
|
struct mISDNhead *hh = mISDN_HEAD_P(skb);
|
|
struct hfcsusb *hw = dch->hw;
|
|
int ret = -EINVAL;
|
|
u_long flags;
|
|
|
|
switch (hh->prim) {
|
|
case PH_DATA_REQ:
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
|
|
hw->name, __func__);
|
|
|
|
spin_lock_irqsave(&hw->lock, flags);
|
|
ret = dchannel_senddata(dch, skb);
|
|
spin_unlock_irqrestore(&hw->lock, flags);
|
|
if (ret > 0) {
|
|
ret = 0;
|
|
queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
|
|
}
|
|
break;
|
|
|
|
case PH_ACTIVATE_REQ:
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
|
|
hw->name, __func__,
|
|
(hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
|
|
|
|
if (hw->protocol == ISDN_P_NT_S0) {
|
|
ret = 0;
|
|
if (test_bit(FLG_ACTIVE, &dch->Flags)) {
|
|
_queue_data(&dch->dev.D,
|
|
PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
|
|
NULL, GFP_ATOMIC);
|
|
} else {
|
|
hfcsusb_ph_command(hw,
|
|
HFC_L1_ACTIVATE_NT);
|
|
test_and_set_bit(FLG_L2_ACTIVATED,
|
|
&dch->Flags);
|
|
}
|
|
} else {
|
|
hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
|
|
ret = l1_event(dch->l1, hh->prim);
|
|
}
|
|
break;
|
|
|
|
case PH_DEACTIVATE_REQ:
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
|
|
hw->name, __func__);
|
|
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
|
|
|
|
if (hw->protocol == ISDN_P_NT_S0) {
|
|
hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
|
|
spin_lock_irqsave(&hw->lock, flags);
|
|
skb_queue_purge(&dch->squeue);
|
|
if (dch->tx_skb) {
|
|
dev_kfree_skb(dch->tx_skb);
|
|
dch->tx_skb = NULL;
|
|
}
|
|
dch->tx_idx = 0;
|
|
if (dch->rx_skb) {
|
|
dev_kfree_skb(dch->rx_skb);
|
|
dch->rx_skb = NULL;
|
|
}
|
|
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
|
|
spin_unlock_irqrestore(&hw->lock, flags);
|
|
#ifdef FIXME
|
|
if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
|
|
dchannel_sched_event(&hc->dch, D_CLEARBUSY);
|
|
#endif
|
|
ret = 0;
|
|
} else
|
|
ret = l1_event(dch->l1, hh->prim);
|
|
break;
|
|
case MPH_INFORMATION_REQ:
|
|
hfcsusb_ph_info(hw);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Layer 1 callback function
|
|
*/
|
|
static int
|
|
hfc_l1callback(struct dchannel *dch, u_int cmd)
|
|
{
|
|
struct hfcsusb *hw = dch->hw;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
|
|
hw->name, __func__, cmd);
|
|
|
|
switch (cmd) {
|
|
case INFO3_P8:
|
|
case INFO3_P10:
|
|
case HW_RESET_REQ:
|
|
case HW_POWERUP_REQ:
|
|
break;
|
|
|
|
case HW_DEACT_REQ:
|
|
skb_queue_purge(&dch->squeue);
|
|
if (dch->tx_skb) {
|
|
dev_kfree_skb(dch->tx_skb);
|
|
dch->tx_skb = NULL;
|
|
}
|
|
dch->tx_idx = 0;
|
|
if (dch->rx_skb) {
|
|
dev_kfree_skb(dch->rx_skb);
|
|
dch->rx_skb = NULL;
|
|
}
|
|
test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
|
|
break;
|
|
case PH_ACTIVATE_IND:
|
|
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
|
|
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
|
|
GFP_ATOMIC);
|
|
break;
|
|
case PH_DEACTIVATE_IND:
|
|
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
|
|
_queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
|
|
GFP_ATOMIC);
|
|
break;
|
|
default:
|
|
if (dch->debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
|
|
hw->name, __func__, cmd);
|
|
return -1;
|
|
}
|
|
hfcsusb_ph_info(hw);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
|
|
struct channel_req *rq)
|
|
{
|
|
int err = 0;
|
|
|
|
if (debug & DEBUG_HW_OPEN)
|
|
printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
|
|
hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
|
|
__builtin_return_address(0));
|
|
if (rq->protocol == ISDN_P_NONE)
|
|
return -EINVAL;
|
|
|
|
test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
|
|
test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
|
|
hfcsusb_start_endpoint(hw, HFC_CHAN_D);
|
|
|
|
/* E-Channel logging */
|
|
if (rq->adr.channel == 1) {
|
|
if (hw->fifos[HFCUSB_PCM_RX].pipe) {
|
|
hfcsusb_start_endpoint(hw, HFC_CHAN_E);
|
|
set_bit(FLG_ACTIVE, &hw->ech.Flags);
|
|
_queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
|
|
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
|
|
} else
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!hw->initdone) {
|
|
hw->protocol = rq->protocol;
|
|
if (rq->protocol == ISDN_P_TE_S0) {
|
|
err = create_l1(&hw->dch, hfc_l1callback);
|
|
if (err)
|
|
return err;
|
|
}
|
|
setPortMode(hw);
|
|
ch->protocol = rq->protocol;
|
|
hw->initdone = 1;
|
|
} else {
|
|
if (rq->protocol != ch->protocol)
|
|
return -EPROTONOSUPPORT;
|
|
}
|
|
|
|
if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
|
|
((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
|
|
_queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
|
|
0, NULL, GFP_KERNEL);
|
|
rq->ch = ch;
|
|
if (!try_module_get(THIS_MODULE))
|
|
printk(KERN_WARNING "%s: %s: cannot get module\n",
|
|
hw->name, __func__);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
|
|
{
|
|
struct bchannel *bch;
|
|
|
|
if (rq->adr.channel == 0 || rq->adr.channel > 2)
|
|
return -EINVAL;
|
|
if (rq->protocol == ISDN_P_NONE)
|
|
return -EINVAL;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s B%i\n",
|
|
hw->name, __func__, rq->adr.channel);
|
|
|
|
bch = &hw->bch[rq->adr.channel - 1];
|
|
if (test_and_set_bit(FLG_OPEN, &bch->Flags))
|
|
return -EBUSY; /* b-channel can be only open once */
|
|
bch->ch.protocol = rq->protocol;
|
|
rq->ch = &bch->ch;
|
|
|
|
if (!try_module_get(THIS_MODULE))
|
|
printk(KERN_WARNING "%s: %s:cannot get module\n",
|
|
hw->name, __func__);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
|
|
hw->name, __func__, (cq->op), (cq->channel));
|
|
|
|
switch (cq->op) {
|
|
case MISDN_CTRL_GETOP:
|
|
cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
|
|
MISDN_CTRL_DISCONNECT;
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "%s: %s: unknown Op %x\n",
|
|
hw->name, __func__, cq->op);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* device control function
|
|
*/
|
|
static int
|
|
hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
|
|
{
|
|
struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
|
|
struct dchannel *dch = container_of(dev, struct dchannel, dev);
|
|
struct hfcsusb *hw = dch->hw;
|
|
struct channel_req *rq;
|
|
int err = 0;
|
|
|
|
if (dch->debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
|
|
hw->name, __func__, cmd, arg);
|
|
switch (cmd) {
|
|
case OPEN_CHANNEL:
|
|
rq = arg;
|
|
if ((rq->protocol == ISDN_P_TE_S0) ||
|
|
(rq->protocol == ISDN_P_NT_S0))
|
|
err = open_dchannel(hw, ch, rq);
|
|
else
|
|
err = open_bchannel(hw, rq);
|
|
if (!err)
|
|
hw->open++;
|
|
break;
|
|
case CLOSE_CHANNEL:
|
|
hw->open--;
|
|
if (debug & DEBUG_HW_OPEN)
|
|
printk(KERN_DEBUG
|
|
"%s: %s: dev(%d) close from %p (open %d)\n",
|
|
hw->name, __func__, hw->dch.dev.id,
|
|
__builtin_return_address(0), hw->open);
|
|
if (!hw->open) {
|
|
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
|
|
if (hw->fifos[HFCUSB_PCM_RX].pipe)
|
|
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
|
|
handle_led(hw, LED_POWER_ON);
|
|
}
|
|
module_put(THIS_MODULE);
|
|
break;
|
|
case CONTROL_CHANNEL:
|
|
err = channel_ctrl(hw, arg);
|
|
break;
|
|
default:
|
|
if (dch->debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: unknown command %x\n",
|
|
hw->name, __func__, cmd);
|
|
return -EINVAL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* S0 TE state change event handler
|
|
*/
|
|
static void
|
|
ph_state_te(struct dchannel *dch)
|
|
{
|
|
struct hfcsusb *hw = dch->hw;
|
|
|
|
if (debug & DEBUG_HW) {
|
|
if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
|
|
printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
|
|
HFC_TE_LAYER1_STATES[dch->state]);
|
|
else
|
|
printk(KERN_DEBUG "%s: %s: TE F%d\n",
|
|
hw->name, __func__, dch->state);
|
|
}
|
|
|
|
switch (dch->state) {
|
|
case 0:
|
|
l1_event(dch->l1, HW_RESET_IND);
|
|
break;
|
|
case 3:
|
|
l1_event(dch->l1, HW_DEACT_IND);
|
|
break;
|
|
case 5:
|
|
case 8:
|
|
l1_event(dch->l1, ANYSIGNAL);
|
|
break;
|
|
case 6:
|
|
l1_event(dch->l1, INFO2);
|
|
break;
|
|
case 7:
|
|
l1_event(dch->l1, INFO4_P8);
|
|
break;
|
|
}
|
|
if (dch->state == 7)
|
|
handle_led(hw, LED_S0_ON);
|
|
else
|
|
handle_led(hw, LED_S0_OFF);
|
|
}
|
|
|
|
/*
|
|
* S0 NT state change event handler
|
|
*/
|
|
static void
|
|
ph_state_nt(struct dchannel *dch)
|
|
{
|
|
struct hfcsusb *hw = dch->hw;
|
|
|
|
if (debug & DEBUG_HW) {
|
|
if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
|
|
printk(KERN_DEBUG "%s: %s: %s\n",
|
|
hw->name, __func__,
|
|
HFC_NT_LAYER1_STATES[dch->state]);
|
|
|
|
else
|
|
printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
|
|
hw->name, __func__, dch->state);
|
|
}
|
|
|
|
switch (dch->state) {
|
|
case (1):
|
|
test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
|
|
test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
|
|
hw->nt_timer = 0;
|
|
hw->timers &= ~NT_ACTIVATION_TIMER;
|
|
handle_led(hw, LED_S0_OFF);
|
|
break;
|
|
|
|
case (2):
|
|
if (hw->nt_timer < 0) {
|
|
hw->nt_timer = 0;
|
|
hw->timers &= ~NT_ACTIVATION_TIMER;
|
|
hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
|
|
} else {
|
|
hw->timers |= NT_ACTIVATION_TIMER;
|
|
hw->nt_timer = NT_T1_COUNT;
|
|
/* allow G2 -> G3 transition */
|
|
write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
|
|
}
|
|
break;
|
|
case (3):
|
|
hw->nt_timer = 0;
|
|
hw->timers &= ~NT_ACTIVATION_TIMER;
|
|
test_and_set_bit(FLG_ACTIVE, &dch->Flags);
|
|
_queue_data(&dch->dev.D, PH_ACTIVATE_IND,
|
|
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
|
|
handle_led(hw, LED_S0_ON);
|
|
break;
|
|
case (4):
|
|
hw->nt_timer = 0;
|
|
hw->timers &= ~NT_ACTIVATION_TIMER;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
hfcsusb_ph_info(hw);
|
|
}
|
|
|
|
static void
|
|
ph_state(struct dchannel *dch)
|
|
{
|
|
struct hfcsusb *hw = dch->hw;
|
|
|
|
if (hw->protocol == ISDN_P_NT_S0)
|
|
ph_state_nt(dch);
|
|
else if (hw->protocol == ISDN_P_TE_S0)
|
|
ph_state_te(dch);
|
|
}
|
|
|
|
/*
|
|
* disable/enable BChannel for desired protocoll
|
|
*/
|
|
static int
|
|
hfcsusb_setup_bch(struct bchannel *bch, int protocol)
|
|
{
|
|
struct hfcsusb *hw = bch->hw;
|
|
__u8 conhdlc, sctrl, sctrl_r;
|
|
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
|
|
hw->name, __func__, bch->state, protocol,
|
|
bch->nr);
|
|
|
|
/* setup val for CON_HDLC */
|
|
conhdlc = 0;
|
|
if (protocol > ISDN_P_NONE)
|
|
conhdlc = 8; /* enable FIFO */
|
|
|
|
switch (protocol) {
|
|
case (-1): /* used for init */
|
|
bch->state = -1;
|
|
/* fall through */
|
|
case (ISDN_P_NONE):
|
|
if (bch->state == ISDN_P_NONE)
|
|
return 0; /* already in idle state */
|
|
bch->state = ISDN_P_NONE;
|
|
clear_bit(FLG_HDLC, &bch->Flags);
|
|
clear_bit(FLG_TRANSPARENT, &bch->Flags);
|
|
break;
|
|
case (ISDN_P_B_RAW):
|
|
conhdlc |= 2;
|
|
bch->state = protocol;
|
|
set_bit(FLG_TRANSPARENT, &bch->Flags);
|
|
break;
|
|
case (ISDN_P_B_HDLC):
|
|
bch->state = protocol;
|
|
set_bit(FLG_HDLC, &bch->Flags);
|
|
break;
|
|
default:
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: prot not known %x\n",
|
|
hw->name, __func__, protocol);
|
|
return -ENOPROTOOPT;
|
|
}
|
|
|
|
if (protocol >= ISDN_P_NONE) {
|
|
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
|
|
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
|
|
write_reg(hw, HFCUSB_INC_RES_F, 2);
|
|
write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
|
|
write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
|
|
write_reg(hw, HFCUSB_INC_RES_F, 2);
|
|
|
|
sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
|
|
sctrl_r = 0x0;
|
|
if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
|
|
sctrl |= 1;
|
|
sctrl_r |= 1;
|
|
}
|
|
if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
|
|
sctrl |= 2;
|
|
sctrl_r |= 2;
|
|
}
|
|
write_reg(hw, HFCUSB_SCTRL, sctrl);
|
|
write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
|
|
|
|
if (protocol > ISDN_P_NONE)
|
|
handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
|
|
else
|
|
handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
|
|
LED_B2_OFF);
|
|
}
|
|
hfcsusb_ph_info(hw);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
|
|
{
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: %x\n",
|
|
hw->name, __func__, command);
|
|
|
|
switch (command) {
|
|
case HFC_L1_ACTIVATE_TE:
|
|
/* force sending sending INFO1 */
|
|
write_reg(hw, HFCUSB_STATES, 0x14);
|
|
/* start l1 activation */
|
|
write_reg(hw, HFCUSB_STATES, 0x04);
|
|
break;
|
|
|
|
case HFC_L1_FORCE_DEACTIVATE_TE:
|
|
write_reg(hw, HFCUSB_STATES, 0x10);
|
|
write_reg(hw, HFCUSB_STATES, 0x03);
|
|
break;
|
|
|
|
case HFC_L1_ACTIVATE_NT:
|
|
if (hw->dch.state == 3)
|
|
_queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
|
|
MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
|
|
else
|
|
write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
|
|
HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
|
|
break;
|
|
|
|
case HFC_L1_DEACTIVATE_NT:
|
|
write_reg(hw, HFCUSB_STATES,
|
|
HFCUSB_DO_ACTION);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Layer 1 B-channel hardware access
|
|
*/
|
|
static int
|
|
channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
|
|
{
|
|
return mISDN_ctrl_bchannel(bch, cq);
|
|
}
|
|
|
|
/* collect data from incoming interrupt or isochron USB data */
|
|
static void
|
|
hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
|
|
int finish)
|
|
{
|
|
struct hfcsusb *hw = fifo->hw;
|
|
struct sk_buff *rx_skb = NULL;
|
|
int maxlen = 0;
|
|
int fifon = fifo->fifonum;
|
|
int i;
|
|
int hdlc = 0;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
|
|
"dch(%p) bch(%p) ech(%p)\n",
|
|
hw->name, __func__, fifon, len,
|
|
fifo->dch, fifo->bch, fifo->ech);
|
|
|
|
if (!len)
|
|
return;
|
|
|
|
if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
|
|
printk(KERN_DEBUG "%s: %s: undefined channel\n",
|
|
hw->name, __func__);
|
|
return;
|
|
}
|
|
|
|
spin_lock(&hw->lock);
|
|
if (fifo->dch) {
|
|
rx_skb = fifo->dch->rx_skb;
|
|
maxlen = fifo->dch->maxlen;
|
|
hdlc = 1;
|
|
}
|
|
if (fifo->bch) {
|
|
if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
|
|
fifo->bch->dropcnt += len;
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
maxlen = bchannel_get_rxbuf(fifo->bch, len);
|
|
rx_skb = fifo->bch->rx_skb;
|
|
if (maxlen < 0) {
|
|
if (rx_skb)
|
|
skb_trim(rx_skb, 0);
|
|
pr_warning("%s.B%d: No bufferspace for %d bytes\n",
|
|
hw->name, fifo->bch->nr, len);
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
maxlen = fifo->bch->maxlen;
|
|
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
|
|
}
|
|
if (fifo->ech) {
|
|
rx_skb = fifo->ech->rx_skb;
|
|
maxlen = fifo->ech->maxlen;
|
|
hdlc = 1;
|
|
}
|
|
|
|
if (fifo->dch || fifo->ech) {
|
|
if (!rx_skb) {
|
|
rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
|
|
if (rx_skb) {
|
|
if (fifo->dch)
|
|
fifo->dch->rx_skb = rx_skb;
|
|
if (fifo->ech)
|
|
fifo->ech->rx_skb = rx_skb;
|
|
skb_trim(rx_skb, 0);
|
|
} else {
|
|
printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
|
|
hw->name, __func__);
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
}
|
|
/* D/E-Channel SKB range check */
|
|
if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
|
|
printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
|
|
"for fifo(%d) HFCUSB_D_RX\n",
|
|
hw->name, __func__, fifon);
|
|
skb_trim(rx_skb, 0);
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
}
|
|
|
|
skb_put_data(rx_skb, data, len);
|
|
|
|
if (hdlc) {
|
|
/* we have a complete hdlc packet */
|
|
if (finish) {
|
|
if ((rx_skb->len > 3) &&
|
|
(!(rx_skb->data[rx_skb->len - 1]))) {
|
|
if (debug & DBG_HFC_FIFO_VERBOSE) {
|
|
printk(KERN_DEBUG "%s: %s: fifon(%i)"
|
|
" new RX len(%i): ",
|
|
hw->name, __func__, fifon,
|
|
rx_skb->len);
|
|
i = 0;
|
|
while (i < rx_skb->len)
|
|
printk("%02x ",
|
|
rx_skb->data[i++]);
|
|
printk("\n");
|
|
}
|
|
|
|
/* remove CRC & status */
|
|
skb_trim(rx_skb, rx_skb->len - 3);
|
|
|
|
if (fifo->dch)
|
|
recv_Dchannel(fifo->dch);
|
|
if (fifo->bch)
|
|
recv_Bchannel(fifo->bch, MISDN_ID_ANY,
|
|
0);
|
|
if (fifo->ech)
|
|
recv_Echannel(fifo->ech,
|
|
&hw->dch);
|
|
} else {
|
|
if (debug & DBG_HFC_FIFO_VERBOSE) {
|
|
printk(KERN_DEBUG
|
|
"%s: CRC or minlen ERROR fifon(%i) "
|
|
"RX len(%i): ",
|
|
hw->name, fifon, rx_skb->len);
|
|
i = 0;
|
|
while (i < rx_skb->len)
|
|
printk("%02x ",
|
|
rx_skb->data[i++]);
|
|
printk("\n");
|
|
}
|
|
skb_trim(rx_skb, 0);
|
|
}
|
|
}
|
|
} else {
|
|
/* deliver transparent data to layer2 */
|
|
recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
|
|
}
|
|
spin_unlock(&hw->lock);
|
|
}
|
|
|
|
static void
|
|
fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
|
|
void *buf, int num_packets, int packet_size, int interval,
|
|
usb_complete_t complete, void *context)
|
|
{
|
|
int k;
|
|
|
|
usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
|
|
complete, context);
|
|
|
|
urb->number_of_packets = num_packets;
|
|
urb->transfer_flags = URB_ISO_ASAP;
|
|
urb->actual_length = 0;
|
|
urb->interval = interval;
|
|
|
|
for (k = 0; k < num_packets; k++) {
|
|
urb->iso_frame_desc[k].offset = packet_size * k;
|
|
urb->iso_frame_desc[k].length = packet_size;
|
|
urb->iso_frame_desc[k].actual_length = 0;
|
|
}
|
|
}
|
|
|
|
/* receive completion routine for all ISO tx fifos */
|
|
static void
|
|
rx_iso_complete(struct urb *urb)
|
|
{
|
|
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
|
|
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
|
|
struct hfcsusb *hw = fifo->hw;
|
|
int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
|
|
status, iso_status, i;
|
|
__u8 *buf;
|
|
static __u8 eof[8];
|
|
__u8 s0_state;
|
|
|
|
fifon = fifo->fifonum;
|
|
status = urb->status;
|
|
|
|
spin_lock(&hw->lock);
|
|
if (fifo->stop_gracefull) {
|
|
fifo->stop_gracefull = 0;
|
|
fifo->active = 0;
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
spin_unlock(&hw->lock);
|
|
|
|
/*
|
|
* ISO transfer only partially completed,
|
|
* look at individual frame status for details
|
|
*/
|
|
if (status == -EXDEV) {
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: with -EXDEV "
|
|
"urb->status %d, fifonum %d\n",
|
|
hw->name, __func__, status, fifon);
|
|
|
|
/* clear status, so go on with ISO transfers */
|
|
status = 0;
|
|
}
|
|
|
|
s0_state = 0;
|
|
if (fifo->active && !status) {
|
|
num_isoc_packets = iso_packets[fifon];
|
|
maxlen = fifo->usb_packet_maxlen;
|
|
|
|
for (k = 0; k < num_isoc_packets; ++k) {
|
|
len = urb->iso_frame_desc[k].actual_length;
|
|
offset = urb->iso_frame_desc[k].offset;
|
|
buf = context_iso_urb->buffer + offset;
|
|
iso_status = urb->iso_frame_desc[k].status;
|
|
|
|
if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
|
|
printk(KERN_DEBUG "%s: %s: "
|
|
"ISO packet %i, status: %i\n",
|
|
hw->name, __func__, k, iso_status);
|
|
}
|
|
|
|
/* USB data log for every D ISO in */
|
|
if ((fifon == HFCUSB_D_RX) &&
|
|
(debug & DBG_HFC_USB_VERBOSE)) {
|
|
printk(KERN_DEBUG
|
|
"%s: %s: %d (%d/%d) len(%d) ",
|
|
hw->name, __func__, urb->start_frame,
|
|
k, num_isoc_packets - 1,
|
|
len);
|
|
for (i = 0; i < len; i++)
|
|
printk("%x ", buf[i]);
|
|
printk("\n");
|
|
}
|
|
|
|
if (!iso_status) {
|
|
if (fifo->last_urblen != maxlen) {
|
|
/*
|
|
* save fifo fill-level threshold bits
|
|
* to use them later in TX ISO URB
|
|
* completions
|
|
*/
|
|
hw->threshold_mask = buf[1];
|
|
|
|
if (fifon == HFCUSB_D_RX)
|
|
s0_state = (buf[0] >> 4);
|
|
|
|
eof[fifon] = buf[0] & 1;
|
|
if (len > 2)
|
|
hfcsusb_rx_frame(fifo, buf + 2,
|
|
len - 2, (len < maxlen)
|
|
? eof[fifon] : 0);
|
|
} else
|
|
hfcsusb_rx_frame(fifo, buf, len,
|
|
(len < maxlen) ?
|
|
eof[fifon] : 0);
|
|
fifo->last_urblen = len;
|
|
}
|
|
}
|
|
|
|
/* signal S0 layer1 state change */
|
|
if ((s0_state) && (hw->initdone) &&
|
|
(s0_state != hw->dch.state)) {
|
|
hw->dch.state = s0_state;
|
|
schedule_event(&hw->dch, FLG_PHCHANGE);
|
|
}
|
|
|
|
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
|
|
context_iso_urb->buffer, num_isoc_packets,
|
|
fifo->usb_packet_maxlen, fifo->intervall,
|
|
(usb_complete_t)rx_iso_complete, urb->context);
|
|
errcode = usb_submit_urb(urb, GFP_ATOMIC);
|
|
if (errcode < 0) {
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: error submitting "
|
|
"ISO URB: %d\n",
|
|
hw->name, __func__, errcode);
|
|
}
|
|
} else {
|
|
if (status && (debug & DBG_HFC_URB_INFO))
|
|
printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
|
|
"urb->status %d, fifonum %d\n",
|
|
hw->name, __func__, status, fifon);
|
|
}
|
|
}
|
|
|
|
/* receive completion routine for all interrupt rx fifos */
|
|
static void
|
|
rx_int_complete(struct urb *urb)
|
|
{
|
|
int len, status, i;
|
|
__u8 *buf, maxlen, fifon;
|
|
struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
|
|
struct hfcsusb *hw = fifo->hw;
|
|
static __u8 eof[8];
|
|
|
|
spin_lock(&hw->lock);
|
|
if (fifo->stop_gracefull) {
|
|
fifo->stop_gracefull = 0;
|
|
fifo->active = 0;
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
spin_unlock(&hw->lock);
|
|
|
|
fifon = fifo->fifonum;
|
|
if ((!fifo->active) || (urb->status)) {
|
|
if (debug & DBG_HFC_URB_ERROR)
|
|
printk(KERN_DEBUG
|
|
"%s: %s: RX-Fifo %i is going down (%i)\n",
|
|
hw->name, __func__, fifon, urb->status);
|
|
|
|
fifo->urb->interval = 0; /* cancel automatic rescheduling */
|
|
return;
|
|
}
|
|
len = urb->actual_length;
|
|
buf = fifo->buffer;
|
|
maxlen = fifo->usb_packet_maxlen;
|
|
|
|
/* USB data log for every D INT in */
|
|
if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
|
|
printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
|
|
hw->name, __func__, len);
|
|
for (i = 0; i < len; i++)
|
|
printk("%02x ", buf[i]);
|
|
printk("\n");
|
|
}
|
|
|
|
if (fifo->last_urblen != fifo->usb_packet_maxlen) {
|
|
/* the threshold mask is in the 2nd status byte */
|
|
hw->threshold_mask = buf[1];
|
|
|
|
/* signal S0 layer1 state change */
|
|
if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
|
|
hw->dch.state = (buf[0] >> 4);
|
|
schedule_event(&hw->dch, FLG_PHCHANGE);
|
|
}
|
|
|
|
eof[fifon] = buf[0] & 1;
|
|
/* if we have more than the 2 status bytes -> collect data */
|
|
if (len > 2)
|
|
hfcsusb_rx_frame(fifo, buf + 2,
|
|
urb->actual_length - 2,
|
|
(len < maxlen) ? eof[fifon] : 0);
|
|
} else {
|
|
hfcsusb_rx_frame(fifo, buf, urb->actual_length,
|
|
(len < maxlen) ? eof[fifon] : 0);
|
|
}
|
|
fifo->last_urblen = urb->actual_length;
|
|
|
|
status = usb_submit_urb(urb, GFP_ATOMIC);
|
|
if (status) {
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
|
|
hw->name, __func__);
|
|
}
|
|
}
|
|
|
|
/* transmit completion routine for all ISO tx fifos */
|
|
static void
|
|
tx_iso_complete(struct urb *urb)
|
|
{
|
|
struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
|
|
struct usb_fifo *fifo = context_iso_urb->owner_fifo;
|
|
struct hfcsusb *hw = fifo->hw;
|
|
struct sk_buff *tx_skb;
|
|
int k, tx_offset, num_isoc_packets, sink, remain, current_len,
|
|
errcode, hdlc, i;
|
|
int *tx_idx;
|
|
int frame_complete, fifon, status, fillempty = 0;
|
|
__u8 threshbit, *p;
|
|
|
|
spin_lock(&hw->lock);
|
|
if (fifo->stop_gracefull) {
|
|
fifo->stop_gracefull = 0;
|
|
fifo->active = 0;
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
|
|
if (fifo->dch) {
|
|
tx_skb = fifo->dch->tx_skb;
|
|
tx_idx = &fifo->dch->tx_idx;
|
|
hdlc = 1;
|
|
} else if (fifo->bch) {
|
|
tx_skb = fifo->bch->tx_skb;
|
|
tx_idx = &fifo->bch->tx_idx;
|
|
hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
|
|
if (!tx_skb && !hdlc &&
|
|
test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
|
|
fillempty = 1;
|
|
} else {
|
|
printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
|
|
hw->name, __func__);
|
|
spin_unlock(&hw->lock);
|
|
return;
|
|
}
|
|
|
|
fifon = fifo->fifonum;
|
|
status = urb->status;
|
|
|
|
tx_offset = 0;
|
|
|
|
/*
|
|
* ISO transfer only partially completed,
|
|
* look at individual frame status for details
|
|
*/
|
|
if (status == -EXDEV) {
|
|
if (debug & DBG_HFC_URB_ERROR)
|
|
printk(KERN_DEBUG "%s: %s: "
|
|
"-EXDEV (%i) fifon (%d)\n",
|
|
hw->name, __func__, status, fifon);
|
|
|
|
/* clear status, so go on with ISO transfers */
|
|
status = 0;
|
|
}
|
|
|
|
if (fifo->active && !status) {
|
|
/* is FifoFull-threshold set for our channel? */
|
|
threshbit = (hw->threshold_mask & (1 << fifon));
|
|
num_isoc_packets = iso_packets[fifon];
|
|
|
|
/* predict dataflow to avoid fifo overflow */
|
|
if (fifon >= HFCUSB_D_TX)
|
|
sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
|
|
else
|
|
sink = (threshbit) ? SINK_MIN : SINK_MAX;
|
|
fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
|
|
context_iso_urb->buffer, num_isoc_packets,
|
|
fifo->usb_packet_maxlen, fifo->intervall,
|
|
(usb_complete_t)tx_iso_complete, urb->context);
|
|
memset(context_iso_urb->buffer, 0,
|
|
sizeof(context_iso_urb->buffer));
|
|
frame_complete = 0;
|
|
|
|
for (k = 0; k < num_isoc_packets; ++k) {
|
|
/* analyze tx success of previous ISO packets */
|
|
if (debug & DBG_HFC_URB_ERROR) {
|
|
errcode = urb->iso_frame_desc[k].status;
|
|
if (errcode) {
|
|
printk(KERN_DEBUG "%s: %s: "
|
|
"ISO packet %i, status: %i\n",
|
|
hw->name, __func__, k, errcode);
|
|
}
|
|
}
|
|
|
|
/* Generate next ISO Packets */
|
|
if (tx_skb)
|
|
remain = tx_skb->len - *tx_idx;
|
|
else if (fillempty)
|
|
remain = 15; /* > not complete */
|
|
else
|
|
remain = 0;
|
|
|
|
if (remain > 0) {
|
|
fifo->bit_line -= sink;
|
|
current_len = (0 - fifo->bit_line) / 8;
|
|
if (current_len > 14)
|
|
current_len = 14;
|
|
if (current_len < 0)
|
|
current_len = 0;
|
|
if (remain < current_len)
|
|
current_len = remain;
|
|
|
|
/* how much bit do we put on the line? */
|
|
fifo->bit_line += current_len * 8;
|
|
|
|
context_iso_urb->buffer[tx_offset] = 0;
|
|
if (current_len == remain) {
|
|
if (hdlc) {
|
|
/* signal frame completion */
|
|
context_iso_urb->
|
|
buffer[tx_offset] = 1;
|
|
/* add 2 byte flags and 16bit
|
|
* CRC at end of ISDN frame */
|
|
fifo->bit_line += 32;
|
|
}
|
|
frame_complete = 1;
|
|
}
|
|
|
|
/* copy tx data to iso-urb buffer */
|
|
p = context_iso_urb->buffer + tx_offset + 1;
|
|
if (fillempty) {
|
|
memset(p, fifo->bch->fill[0],
|
|
current_len);
|
|
} else {
|
|
memcpy(p, (tx_skb->data + *tx_idx),
|
|
current_len);
|
|
*tx_idx += current_len;
|
|
}
|
|
urb->iso_frame_desc[k].offset = tx_offset;
|
|
urb->iso_frame_desc[k].length = current_len + 1;
|
|
|
|
/* USB data log for every D ISO out */
|
|
if ((fifon == HFCUSB_D_RX) && !fillempty &&
|
|
(debug & DBG_HFC_USB_VERBOSE)) {
|
|
printk(KERN_DEBUG
|
|
"%s: %s (%d/%d) offs(%d) len(%d) ",
|
|
hw->name, __func__,
|
|
k, num_isoc_packets - 1,
|
|
urb->iso_frame_desc[k].offset,
|
|
urb->iso_frame_desc[k].length);
|
|
|
|
for (i = urb->iso_frame_desc[k].offset;
|
|
i < (urb->iso_frame_desc[k].offset
|
|
+ urb->iso_frame_desc[k].length);
|
|
i++)
|
|
printk("%x ",
|
|
context_iso_urb->buffer[i]);
|
|
|
|
printk(" skb->len(%i) tx-idx(%d)\n",
|
|
tx_skb->len, *tx_idx);
|
|
}
|
|
|
|
tx_offset += (current_len + 1);
|
|
} else {
|
|
urb->iso_frame_desc[k].offset = tx_offset++;
|
|
urb->iso_frame_desc[k].length = 1;
|
|
/* we lower data margin every msec */
|
|
fifo->bit_line -= sink;
|
|
if (fifo->bit_line < BITLINE_INF)
|
|
fifo->bit_line = BITLINE_INF;
|
|
}
|
|
|
|
if (frame_complete) {
|
|
frame_complete = 0;
|
|
|
|
if (debug & DBG_HFC_FIFO_VERBOSE) {
|
|
printk(KERN_DEBUG "%s: %s: "
|
|
"fifon(%i) new TX len(%i): ",
|
|
hw->name, __func__,
|
|
fifon, tx_skb->len);
|
|
i = 0;
|
|
while (i < tx_skb->len)
|
|
printk("%02x ",
|
|
tx_skb->data[i++]);
|
|
printk("\n");
|
|
}
|
|
|
|
dev_kfree_skb(tx_skb);
|
|
tx_skb = NULL;
|
|
if (fifo->dch && get_next_dframe(fifo->dch))
|
|
tx_skb = fifo->dch->tx_skb;
|
|
else if (fifo->bch &&
|
|
get_next_bframe(fifo->bch))
|
|
tx_skb = fifo->bch->tx_skb;
|
|
}
|
|
}
|
|
errcode = usb_submit_urb(urb, GFP_ATOMIC);
|
|
if (errcode < 0) {
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG
|
|
"%s: %s: error submitting ISO URB: %d \n",
|
|
hw->name, __func__, errcode);
|
|
}
|
|
|
|
/*
|
|
* abuse DChannel tx iso completion to trigger NT mode state
|
|
* changes tx_iso_complete is assumed to be called every
|
|
* fifo->intervall (ms)
|
|
*/
|
|
if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
|
|
&& (hw->timers & NT_ACTIVATION_TIMER)) {
|
|
if ((--hw->nt_timer) < 0)
|
|
schedule_event(&hw->dch, FLG_PHCHANGE);
|
|
}
|
|
|
|
} else {
|
|
if (status && (debug & DBG_HFC_URB_ERROR))
|
|
printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
|
|
"fifonum=%d\n",
|
|
hw->name, __func__,
|
|
symbolic(urb_errlist, status), status, fifon);
|
|
}
|
|
spin_unlock(&hw->lock);
|
|
}
|
|
|
|
/*
|
|
* allocs urbs and start isoc transfer with two pending urbs to avoid
|
|
* gaps in the transfer chain
|
|
*/
|
|
static int
|
|
start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
|
|
usb_complete_t complete, int packet_size)
|
|
{
|
|
struct hfcsusb *hw = fifo->hw;
|
|
int i, k, errcode;
|
|
|
|
if (debug)
|
|
printk(KERN_DEBUG "%s: %s: fifo %i\n",
|
|
hw->name, __func__, fifo->fifonum);
|
|
|
|
/* allocate Memory for Iso out Urbs */
|
|
for (i = 0; i < 2; i++) {
|
|
if (!(fifo->iso[i].urb)) {
|
|
fifo->iso[i].urb =
|
|
usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
|
|
if (!(fifo->iso[i].urb)) {
|
|
printk(KERN_DEBUG
|
|
"%s: %s: alloc urb for fifo %i failed",
|
|
hw->name, __func__, fifo->fifonum);
|
|
}
|
|
fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
|
|
fifo->iso[i].indx = i;
|
|
|
|
/* Init the first iso */
|
|
if (ISO_BUFFER_SIZE >=
|
|
(fifo->usb_packet_maxlen *
|
|
num_packets_per_urb)) {
|
|
fill_isoc_urb(fifo->iso[i].urb,
|
|
fifo->hw->dev, fifo->pipe,
|
|
fifo->iso[i].buffer,
|
|
num_packets_per_urb,
|
|
fifo->usb_packet_maxlen,
|
|
fifo->intervall, complete,
|
|
&fifo->iso[i]);
|
|
memset(fifo->iso[i].buffer, 0,
|
|
sizeof(fifo->iso[i].buffer));
|
|
|
|
for (k = 0; k < num_packets_per_urb; k++) {
|
|
fifo->iso[i].urb->
|
|
iso_frame_desc[k].offset =
|
|
k * packet_size;
|
|
fifo->iso[i].urb->
|
|
iso_frame_desc[k].length =
|
|
packet_size;
|
|
}
|
|
} else {
|
|
printk(KERN_DEBUG
|
|
"%s: %s: ISO Buffer size to small!\n",
|
|
hw->name, __func__);
|
|
}
|
|
}
|
|
fifo->bit_line = BITLINE_INF;
|
|
|
|
errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
|
|
fifo->active = (errcode >= 0) ? 1 : 0;
|
|
fifo->stop_gracefull = 0;
|
|
if (errcode < 0) {
|
|
printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
|
|
hw->name, __func__,
|
|
symbolic(urb_errlist, errcode), i);
|
|
}
|
|
}
|
|
return fifo->active;
|
|
}
|
|
|
|
static void
|
|
stop_iso_gracefull(struct usb_fifo *fifo)
|
|
{
|
|
struct hfcsusb *hw = fifo->hw;
|
|
int i, timeout;
|
|
u_long flags;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
spin_lock_irqsave(&hw->lock, flags);
|
|
if (debug)
|
|
printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
|
|
hw->name, __func__, fifo->fifonum, i);
|
|
fifo->stop_gracefull = 1;
|
|
spin_unlock_irqrestore(&hw->lock, flags);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
timeout = 3;
|
|
while (fifo->stop_gracefull && timeout--)
|
|
schedule_timeout_interruptible((HZ / 1000) * 16);
|
|
if (debug && fifo->stop_gracefull)
|
|
printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
|
|
hw->name, __func__, fifo->fifonum, i);
|
|
}
|
|
}
|
|
|
|
static void
|
|
stop_int_gracefull(struct usb_fifo *fifo)
|
|
{
|
|
struct hfcsusb *hw = fifo->hw;
|
|
int timeout;
|
|
u_long flags;
|
|
|
|
spin_lock_irqsave(&hw->lock, flags);
|
|
if (debug)
|
|
printk(KERN_DEBUG "%s: %s for fifo %i\n",
|
|
hw->name, __func__, fifo->fifonum);
|
|
fifo->stop_gracefull = 1;
|
|
spin_unlock_irqrestore(&hw->lock, flags);
|
|
|
|
timeout = 3;
|
|
while (fifo->stop_gracefull && timeout--)
|
|
schedule_timeout_interruptible((HZ / 1000) * 3);
|
|
if (debug && fifo->stop_gracefull)
|
|
printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
|
|
hw->name, __func__, fifo->fifonum);
|
|
}
|
|
|
|
/* start the interrupt transfer for the given fifo */
|
|
static void
|
|
start_int_fifo(struct usb_fifo *fifo)
|
|
{
|
|
struct hfcsusb *hw = fifo->hw;
|
|
int errcode;
|
|
|
|
if (debug)
|
|
printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
|
|
hw->name, __func__, fifo->fifonum);
|
|
|
|
if (!fifo->urb) {
|
|
fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
|
|
if (!fifo->urb)
|
|
return;
|
|
}
|
|
usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
|
|
fifo->buffer, fifo->usb_packet_maxlen,
|
|
(usb_complete_t)rx_int_complete, fifo, fifo->intervall);
|
|
fifo->active = 1;
|
|
fifo->stop_gracefull = 0;
|
|
errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
|
|
if (errcode) {
|
|
printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
|
|
hw->name, __func__, errcode);
|
|
fifo->active = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
setPortMode(struct hfcsusb *hw)
|
|
{
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
|
|
(hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
|
|
|
|
if (hw->protocol == ISDN_P_TE_S0) {
|
|
write_reg(hw, HFCUSB_SCTRL, 0x40);
|
|
write_reg(hw, HFCUSB_SCTRL_E, 0x00);
|
|
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
|
|
write_reg(hw, HFCUSB_STATES, 3 | 0x10);
|
|
write_reg(hw, HFCUSB_STATES, 3);
|
|
} else {
|
|
write_reg(hw, HFCUSB_SCTRL, 0x44);
|
|
write_reg(hw, HFCUSB_SCTRL_E, 0x09);
|
|
write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
|
|
write_reg(hw, HFCUSB_STATES, 1 | 0x10);
|
|
write_reg(hw, HFCUSB_STATES, 1);
|
|
}
|
|
}
|
|
|
|
static void
|
|
reset_hfcsusb(struct hfcsusb *hw)
|
|
{
|
|
struct usb_fifo *fifo;
|
|
int i;
|
|
|
|
if (debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
|
|
|
|
/* do Chip reset */
|
|
write_reg(hw, HFCUSB_CIRM, 8);
|
|
|
|
/* aux = output, reset off */
|
|
write_reg(hw, HFCUSB_CIRM, 0x10);
|
|
|
|
/* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
|
|
write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
|
|
((hw->packet_size / 8) << 4));
|
|
|
|
/* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
|
|
write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
|
|
|
|
/* enable PCM/GCI master mode */
|
|
write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
|
|
write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
|
|
|
|
/* init the fifos */
|
|
write_reg(hw, HFCUSB_F_THRES,
|
|
(HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
|
|
|
|
fifo = hw->fifos;
|
|
for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
|
|
write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
|
|
fifo[i].max_size =
|
|
(i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
|
|
fifo[i].last_urblen = 0;
|
|
|
|
/* set 2 bit for D- & E-channel */
|
|
write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
|
|
|
|
/* enable all fifos */
|
|
if (i == HFCUSB_D_TX)
|
|
write_reg(hw, HFCUSB_CON_HDLC,
|
|
(hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
|
|
else
|
|
write_reg(hw, HFCUSB_CON_HDLC, 0x08);
|
|
write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
|
|
}
|
|
|
|
write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
|
|
handle_led(hw, LED_POWER_ON);
|
|
}
|
|
|
|
/* start USB data pipes dependand on device's endpoint configuration */
|
|
static void
|
|
hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
|
|
{
|
|
/* quick check if endpoint already running */
|
|
if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
|
|
return;
|
|
if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
|
|
return;
|
|
if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
|
|
return;
|
|
if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
|
|
return;
|
|
|
|
/* start rx endpoints using USB INT IN method */
|
|
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
|
|
start_int_fifo(hw->fifos + channel * 2 + 1);
|
|
|
|
/* start rx endpoints using USB ISO IN method */
|
|
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
|
|
switch (channel) {
|
|
case HFC_CHAN_D:
|
|
start_isoc_chain(hw->fifos + HFCUSB_D_RX,
|
|
ISOC_PACKETS_D,
|
|
(usb_complete_t)rx_iso_complete,
|
|
16);
|
|
break;
|
|
case HFC_CHAN_E:
|
|
start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
|
|
ISOC_PACKETS_D,
|
|
(usb_complete_t)rx_iso_complete,
|
|
16);
|
|
break;
|
|
case HFC_CHAN_B1:
|
|
start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
|
|
ISOC_PACKETS_B,
|
|
(usb_complete_t)rx_iso_complete,
|
|
16);
|
|
break;
|
|
case HFC_CHAN_B2:
|
|
start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
|
|
ISOC_PACKETS_B,
|
|
(usb_complete_t)rx_iso_complete,
|
|
16);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* start tx endpoints using USB ISO OUT method */
|
|
switch (channel) {
|
|
case HFC_CHAN_D:
|
|
start_isoc_chain(hw->fifos + HFCUSB_D_TX,
|
|
ISOC_PACKETS_B,
|
|
(usb_complete_t)tx_iso_complete, 1);
|
|
break;
|
|
case HFC_CHAN_B1:
|
|
start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
|
|
ISOC_PACKETS_D,
|
|
(usb_complete_t)tx_iso_complete, 1);
|
|
break;
|
|
case HFC_CHAN_B2:
|
|
start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
|
|
ISOC_PACKETS_B,
|
|
(usb_complete_t)tx_iso_complete, 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* stop USB data pipes dependand on device's endpoint configuration */
|
|
static void
|
|
hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
|
|
{
|
|
/* quick check if endpoint currently running */
|
|
if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
|
|
return;
|
|
if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
|
|
return;
|
|
if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
|
|
return;
|
|
if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
|
|
return;
|
|
|
|
/* rx endpoints using USB INT IN method */
|
|
if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
|
|
stop_int_gracefull(hw->fifos + channel * 2 + 1);
|
|
|
|
/* rx endpoints using USB ISO IN method */
|
|
if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
|
|
stop_iso_gracefull(hw->fifos + channel * 2 + 1);
|
|
|
|
/* tx endpoints using USB ISO OUT method */
|
|
if (channel != HFC_CHAN_E)
|
|
stop_iso_gracefull(hw->fifos + channel * 2);
|
|
}
|
|
|
|
|
|
/* Hardware Initialization */
|
|
static int
|
|
setup_hfcsusb(struct hfcsusb *hw)
|
|
{
|
|
u_char b;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
|
|
|
|
/* check the chip id */
|
|
if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
|
|
printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
|
|
hw->name, __func__);
|
|
return 1;
|
|
}
|
|
if (b != HFCUSB_CHIPID) {
|
|
printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
|
|
hw->name, __func__, b);
|
|
return 1;
|
|
}
|
|
|
|
/* first set the needed config, interface and alternate */
|
|
(void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
|
|
|
|
hw->led_state = 0;
|
|
|
|
/* init the background machinery for control requests */
|
|
hw->ctrl_read.bRequestType = 0xc0;
|
|
hw->ctrl_read.bRequest = 1;
|
|
hw->ctrl_read.wLength = cpu_to_le16(1);
|
|
hw->ctrl_write.bRequestType = 0x40;
|
|
hw->ctrl_write.bRequest = 0;
|
|
hw->ctrl_write.wLength = 0;
|
|
usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
|
|
(u_char *)&hw->ctrl_write, NULL, 0,
|
|
(usb_complete_t)ctrl_complete, hw);
|
|
|
|
reset_hfcsusb(hw);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
release_hw(struct hfcsusb *hw)
|
|
{
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
|
|
|
|
/*
|
|
* stop all endpoints gracefully
|
|
* TODO: mISDN_core should generate CLOSE_CHANNEL
|
|
* signals after calling mISDN_unregister_device()
|
|
*/
|
|
hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
|
|
hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
|
|
hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
|
|
if (hw->fifos[HFCUSB_PCM_RX].pipe)
|
|
hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
|
|
if (hw->protocol == ISDN_P_TE_S0)
|
|
l1_event(hw->dch.l1, CLOSE_CHANNEL);
|
|
|
|
mISDN_unregister_device(&hw->dch.dev);
|
|
mISDN_freebchannel(&hw->bch[1]);
|
|
mISDN_freebchannel(&hw->bch[0]);
|
|
mISDN_freedchannel(&hw->dch);
|
|
|
|
if (hw->ctrl_urb) {
|
|
usb_kill_urb(hw->ctrl_urb);
|
|
usb_free_urb(hw->ctrl_urb);
|
|
hw->ctrl_urb = NULL;
|
|
}
|
|
|
|
if (hw->intf)
|
|
usb_set_intfdata(hw->intf, NULL);
|
|
list_del(&hw->list);
|
|
kfree(hw);
|
|
hw = NULL;
|
|
}
|
|
|
|
static void
|
|
deactivate_bchannel(struct bchannel *bch)
|
|
{
|
|
struct hfcsusb *hw = bch->hw;
|
|
u_long flags;
|
|
|
|
if (bch->debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
|
|
hw->name, __func__, bch->nr);
|
|
|
|
spin_lock_irqsave(&hw->lock, flags);
|
|
mISDN_clear_bchannel(bch);
|
|
spin_unlock_irqrestore(&hw->lock, flags);
|
|
hfcsusb_setup_bch(bch, ISDN_P_NONE);
|
|
hfcsusb_stop_endpoint(hw, bch->nr - 1);
|
|
}
|
|
|
|
/*
|
|
* Layer 1 B-channel hardware access
|
|
*/
|
|
static int
|
|
hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
|
|
{
|
|
struct bchannel *bch = container_of(ch, struct bchannel, ch);
|
|
int ret = -EINVAL;
|
|
|
|
if (bch->debug & DEBUG_HW)
|
|
printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
|
|
|
|
switch (cmd) {
|
|
case HW_TESTRX_RAW:
|
|
case HW_TESTRX_HDLC:
|
|
case HW_TESTRX_OFF:
|
|
ret = -EINVAL;
|
|
break;
|
|
|
|
case CLOSE_CHANNEL:
|
|
test_and_clear_bit(FLG_OPEN, &bch->Flags);
|
|
deactivate_bchannel(bch);
|
|
ch->protocol = ISDN_P_NONE;
|
|
ch->peer = NULL;
|
|
module_put(THIS_MODULE);
|
|
ret = 0;
|
|
break;
|
|
case CONTROL_CHANNEL:
|
|
ret = channel_bctrl(bch, arg);
|
|
break;
|
|
default:
|
|
printk(KERN_WARNING "%s: unknown prim(%x)\n",
|
|
__func__, cmd);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
setup_instance(struct hfcsusb *hw, struct device *parent)
|
|
{
|
|
u_long flags;
|
|
int err, i;
|
|
|
|
if (debug & DBG_HFC_CALL_TRACE)
|
|
printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
|
|
|
|
spin_lock_init(&hw->ctrl_lock);
|
|
spin_lock_init(&hw->lock);
|
|
|
|
mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
|
|
hw->dch.debug = debug & 0xFFFF;
|
|
hw->dch.hw = hw;
|
|
hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
|
|
hw->dch.dev.D.send = hfcusb_l2l1D;
|
|
hw->dch.dev.D.ctrl = hfc_dctrl;
|
|
|
|
/* enable E-Channel logging */
|
|
if (hw->fifos[HFCUSB_PCM_RX].pipe)
|
|
mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
|
|
|
|
hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
|
|
(1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
|
|
hw->dch.dev.nrbchan = 2;
|
|
for (i = 0; i < 2; i++) {
|
|
hw->bch[i].nr = i + 1;
|
|
set_channelmap(i + 1, hw->dch.dev.channelmap);
|
|
hw->bch[i].debug = debug;
|
|
mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
|
|
hw->bch[i].hw = hw;
|
|
hw->bch[i].ch.send = hfcusb_l2l1B;
|
|
hw->bch[i].ch.ctrl = hfc_bctrl;
|
|
hw->bch[i].ch.nr = i + 1;
|
|
list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
|
|
}
|
|
|
|
hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
|
|
hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
|
|
hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
|
|
hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
|
|
hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
|
|
hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
|
|
hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
|
|
hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
|
|
|
|
err = setup_hfcsusb(hw);
|
|
if (err)
|
|
goto out;
|
|
|
|
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
|
|
hfcsusb_cnt + 1);
|
|
printk(KERN_INFO "%s: registered as '%s'\n",
|
|
DRIVER_NAME, hw->name);
|
|
|
|
err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
|
|
if (err)
|
|
goto out;
|
|
|
|
hfcsusb_cnt++;
|
|
write_lock_irqsave(&HFClock, flags);
|
|
list_add_tail(&hw->list, &HFClist);
|
|
write_unlock_irqrestore(&HFClock, flags);
|
|
return 0;
|
|
|
|
out:
|
|
mISDN_freebchannel(&hw->bch[1]);
|
|
mISDN_freebchannel(&hw->bch[0]);
|
|
mISDN_freedchannel(&hw->dch);
|
|
kfree(hw);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
|
|
{
|
|
struct hfcsusb *hw;
|
|
struct usb_device *dev = interface_to_usbdev(intf);
|
|
struct usb_host_interface *iface = intf->cur_altsetting;
|
|
struct usb_host_interface *iface_used = NULL;
|
|
struct usb_host_endpoint *ep;
|
|
struct hfcsusb_vdata *driver_info;
|
|
int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
|
|
probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
|
|
ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
|
|
alt_used = 0;
|
|
|
|
vend_idx = 0xffff;
|
|
for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
|
|
if ((le16_to_cpu(dev->descriptor.idVendor)
|
|
== hfcsusb_idtab[i].idVendor) &&
|
|
(le16_to_cpu(dev->descriptor.idProduct)
|
|
== hfcsusb_idtab[i].idProduct)) {
|
|
vend_idx = i;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
printk(KERN_DEBUG
|
|
"%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
|
|
__func__, ifnum, iface->desc.bAlternateSetting,
|
|
intf->minor, vend_idx);
|
|
|
|
if (vend_idx == 0xffff) {
|
|
printk(KERN_WARNING
|
|
"%s: no valid vendor found in USB descriptor\n",
|
|
__func__);
|
|
return -EIO;
|
|
}
|
|
/* if vendor and product ID is OK, start probing alternate settings */
|
|
alt_idx = 0;
|
|
small_match = -1;
|
|
|
|
/* default settings */
|
|
iso_packet_size = 16;
|
|
packet_size = 64;
|
|
|
|
while (alt_idx < intf->num_altsetting) {
|
|
iface = intf->altsetting + alt_idx;
|
|
probe_alt_setting = iface->desc.bAlternateSetting;
|
|
cfg_used = 0;
|
|
|
|
while (validconf[cfg_used][0]) {
|
|
cfg_found = 1;
|
|
vcf = validconf[cfg_used];
|
|
ep = iface->endpoint;
|
|
memcpy(cmptbl, vcf, 16 * sizeof(int));
|
|
|
|
/* check for all endpoints in this alternate setting */
|
|
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
|
|
ep_addr = ep->desc.bEndpointAddress;
|
|
|
|
/* get endpoint base */
|
|
idx = ((ep_addr & 0x7f) - 1) * 2;
|
|
if (ep_addr & 0x80)
|
|
idx++;
|
|
attr = ep->desc.bmAttributes;
|
|
|
|
if (cmptbl[idx] != EP_NOP) {
|
|
if (cmptbl[idx] == EP_NUL)
|
|
cfg_found = 0;
|
|
if (attr == USB_ENDPOINT_XFER_INT
|
|
&& cmptbl[idx] == EP_INT)
|
|
cmptbl[idx] = EP_NUL;
|
|
if (attr == USB_ENDPOINT_XFER_BULK
|
|
&& cmptbl[idx] == EP_BLK)
|
|
cmptbl[idx] = EP_NUL;
|
|
if (attr == USB_ENDPOINT_XFER_ISOC
|
|
&& cmptbl[idx] == EP_ISO)
|
|
cmptbl[idx] = EP_NUL;
|
|
|
|
if (attr == USB_ENDPOINT_XFER_INT &&
|
|
ep->desc.bInterval < vcf[17]) {
|
|
cfg_found = 0;
|
|
}
|
|
}
|
|
ep++;
|
|
}
|
|
|
|
for (i = 0; i < 16; i++)
|
|
if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
|
|
cfg_found = 0;
|
|
|
|
if (cfg_found) {
|
|
if (small_match < cfg_used) {
|
|
small_match = cfg_used;
|
|
alt_used = probe_alt_setting;
|
|
iface_used = iface;
|
|
}
|
|
}
|
|
cfg_used++;
|
|
}
|
|
alt_idx++;
|
|
} /* (alt_idx < intf->num_altsetting) */
|
|
|
|
/* not found a valid USB Ta Endpoint config */
|
|
if (small_match == -1)
|
|
return -EIO;
|
|
|
|
iface = iface_used;
|
|
hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
|
|
if (!hw)
|
|
return -ENOMEM; /* got no mem */
|
|
snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
|
|
|
|
ep = iface->endpoint;
|
|
vcf = validconf[small_match];
|
|
|
|
for (i = 0; i < iface->desc.bNumEndpoints; i++) {
|
|
struct usb_fifo *f;
|
|
|
|
ep_addr = ep->desc.bEndpointAddress;
|
|
/* get endpoint base */
|
|
idx = ((ep_addr & 0x7f) - 1) * 2;
|
|
if (ep_addr & 0x80)
|
|
idx++;
|
|
f = &hw->fifos[idx & 7];
|
|
|
|
/* init Endpoints */
|
|
if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
|
|
ep++;
|
|
continue;
|
|
}
|
|
switch (ep->desc.bmAttributes) {
|
|
case USB_ENDPOINT_XFER_INT:
|
|
f->pipe = usb_rcvintpipe(dev,
|
|
ep->desc.bEndpointAddress);
|
|
f->usb_transfer_mode = USB_INT;
|
|
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
|
|
break;
|
|
case USB_ENDPOINT_XFER_BULK:
|
|
if (ep_addr & 0x80)
|
|
f->pipe = usb_rcvbulkpipe(dev,
|
|
ep->desc.bEndpointAddress);
|
|
else
|
|
f->pipe = usb_sndbulkpipe(dev,
|
|
ep->desc.bEndpointAddress);
|
|
f->usb_transfer_mode = USB_BULK;
|
|
packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
|
|
break;
|
|
case USB_ENDPOINT_XFER_ISOC:
|
|
if (ep_addr & 0x80)
|
|
f->pipe = usb_rcvisocpipe(dev,
|
|
ep->desc.bEndpointAddress);
|
|
else
|
|
f->pipe = usb_sndisocpipe(dev,
|
|
ep->desc.bEndpointAddress);
|
|
f->usb_transfer_mode = USB_ISOC;
|
|
iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
|
|
break;
|
|
default:
|
|
f->pipe = 0;
|
|
}
|
|
|
|
if (f->pipe) {
|
|
f->fifonum = idx & 7;
|
|
f->hw = hw;
|
|
f->usb_packet_maxlen =
|
|
le16_to_cpu(ep->desc.wMaxPacketSize);
|
|
f->intervall = ep->desc.bInterval;
|
|
}
|
|
ep++;
|
|
}
|
|
hw->dev = dev; /* save device */
|
|
hw->if_used = ifnum; /* save used interface */
|
|
hw->alt_used = alt_used; /* and alternate config */
|
|
hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
|
|
hw->cfg_used = vcf[16]; /* store used config */
|
|
hw->vend_idx = vend_idx; /* store found vendor */
|
|
hw->packet_size = packet_size;
|
|
hw->iso_packet_size = iso_packet_size;
|
|
|
|
/* create the control pipes needed for register access */
|
|
hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
|
|
hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
|
|
|
|
driver_info = (struct hfcsusb_vdata *)
|
|
hfcsusb_idtab[vend_idx].driver_info;
|
|
|
|
hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
|
|
if (!hw->ctrl_urb) {
|
|
pr_warn("%s: No memory for control urb\n",
|
|
driver_info->vend_name);
|
|
kfree(hw);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
|
|
hw->name, __func__, driver_info->vend_name,
|
|
conf_str[small_match], ifnum, alt_used);
|
|
|
|
if (setup_instance(hw, dev->dev.parent))
|
|
return -EIO;
|
|
|
|
hw->intf = intf;
|
|
usb_set_intfdata(hw->intf, hw);
|
|
return 0;
|
|
}
|
|
|
|
/* function called when an active device is removed */
|
|
static void
|
|
hfcsusb_disconnect(struct usb_interface *intf)
|
|
{
|
|
struct hfcsusb *hw = usb_get_intfdata(intf);
|
|
struct hfcsusb *next;
|
|
int cnt = 0;
|
|
|
|
printk(KERN_INFO "%s: device disconnected\n", hw->name);
|
|
|
|
handle_led(hw, LED_POWER_OFF);
|
|
release_hw(hw);
|
|
|
|
list_for_each_entry_safe(hw, next, &HFClist, list)
|
|
cnt++;
|
|
if (!cnt)
|
|
hfcsusb_cnt = 0;
|
|
|
|
usb_set_intfdata(intf, NULL);
|
|
}
|
|
|
|
static struct usb_driver hfcsusb_drv = {
|
|
.name = DRIVER_NAME,
|
|
.id_table = hfcsusb_idtab,
|
|
.probe = hfcsusb_probe,
|
|
.disconnect = hfcsusb_disconnect,
|
|
.disable_hub_initiated_lpm = 1,
|
|
};
|
|
|
|
module_usb_driver(hfcsusb_drv);
|