364 lines
8.7 KiB
C
364 lines
8.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Interrupt request handling routines. On the
|
|
* Sparc the IRQs are basically 'cast in stone'
|
|
* and you are supposed to probe the prom's device
|
|
* node trees to find out who's got which IRQ.
|
|
*
|
|
* Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
|
|
* Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
|
|
* Copyright (C) 1995,2002 Pete A. Zaitcev (zaitcev@yahoo.com)
|
|
* Copyright (C) 1996 Dave Redman (djhr@tadpole.co.uk)
|
|
* Copyright (C) 1998-2000 Anton Blanchard (anton@samba.org)
|
|
*/
|
|
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cpudata.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/pcic.h>
|
|
#include <asm/leon.h>
|
|
|
|
#include "kernel.h"
|
|
#include "irq.h"
|
|
|
|
/* platform specific irq setup */
|
|
struct sparc_config sparc_config;
|
|
|
|
unsigned long arch_local_irq_save(void)
|
|
{
|
|
unsigned long retval;
|
|
unsigned long tmp;
|
|
|
|
__asm__ __volatile__(
|
|
"rd %%psr, %0\n\t"
|
|
"or %0, %2, %1\n\t"
|
|
"wr %1, 0, %%psr\n\t"
|
|
"nop; nop; nop\n"
|
|
: "=&r" (retval), "=r" (tmp)
|
|
: "i" (PSR_PIL)
|
|
: "memory");
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(arch_local_irq_save);
|
|
|
|
void arch_local_irq_enable(void)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
__asm__ __volatile__(
|
|
"rd %%psr, %0\n\t"
|
|
"andn %0, %1, %0\n\t"
|
|
"wr %0, 0, %%psr\n\t"
|
|
"nop; nop; nop\n"
|
|
: "=&r" (tmp)
|
|
: "i" (PSR_PIL)
|
|
: "memory");
|
|
}
|
|
EXPORT_SYMBOL(arch_local_irq_enable);
|
|
|
|
void arch_local_irq_restore(unsigned long old_psr)
|
|
{
|
|
unsigned long tmp;
|
|
|
|
__asm__ __volatile__(
|
|
"rd %%psr, %0\n\t"
|
|
"and %2, %1, %2\n\t"
|
|
"andn %0, %1, %0\n\t"
|
|
"wr %0, %2, %%psr\n\t"
|
|
"nop; nop; nop\n"
|
|
: "=&r" (tmp)
|
|
: "i" (PSR_PIL), "r" (old_psr)
|
|
: "memory");
|
|
}
|
|
EXPORT_SYMBOL(arch_local_irq_restore);
|
|
|
|
/*
|
|
* Dave Redman (djhr@tadpole.co.uk)
|
|
*
|
|
* IRQ numbers.. These are no longer restricted to 15..
|
|
*
|
|
* this is done to enable SBUS cards and onboard IO to be masked
|
|
* correctly. using the interrupt level isn't good enough.
|
|
*
|
|
* For example:
|
|
* A device interrupting at sbus level6 and the Floppy both come in
|
|
* at IRQ11, but enabling and disabling them requires writing to
|
|
* different bits in the SLAVIO/SEC.
|
|
*
|
|
* As a result of these changes sun4m machines could now support
|
|
* directed CPU interrupts using the existing enable/disable irq code
|
|
* with tweaks.
|
|
*
|
|
* Sun4d complicates things even further. IRQ numbers are arbitrary
|
|
* 32-bit values in that case. Since this is similar to sparc64,
|
|
* we adopt a virtual IRQ numbering scheme as is done there.
|
|
* Virutal interrupt numbers are allocated by build_irq(). So NR_IRQS
|
|
* just becomes a limit of how many interrupt sources we can handle in
|
|
* a single system. Even fully loaded SS2000 machines top off at
|
|
* about 32 interrupt sources or so, therefore a NR_IRQS value of 64
|
|
* is more than enough.
|
|
*
|
|
* We keep a map of per-PIL enable interrupts. These get wired
|
|
* up via the irq_chip->startup() method which gets invoked by
|
|
* the generic IRQ layer during request_irq().
|
|
*/
|
|
|
|
|
|
/* Table of allocated irqs. Unused entries has irq == 0 */
|
|
static struct irq_bucket irq_table[NR_IRQS];
|
|
/* Protect access to irq_table */
|
|
static DEFINE_SPINLOCK(irq_table_lock);
|
|
|
|
/* Map between the irq identifier used in hw to the irq_bucket. */
|
|
struct irq_bucket *irq_map[SUN4D_MAX_IRQ];
|
|
/* Protect access to irq_map */
|
|
static DEFINE_SPINLOCK(irq_map_lock);
|
|
|
|
/* Allocate a new irq from the irq_table */
|
|
unsigned int irq_alloc(unsigned int real_irq, unsigned int pil)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int i;
|
|
|
|
spin_lock_irqsave(&irq_table_lock, flags);
|
|
for (i = 1; i < NR_IRQS; i++) {
|
|
if (irq_table[i].real_irq == real_irq && irq_table[i].pil == pil)
|
|
goto found;
|
|
}
|
|
|
|
for (i = 1; i < NR_IRQS; i++) {
|
|
if (!irq_table[i].irq)
|
|
break;
|
|
}
|
|
|
|
if (i < NR_IRQS) {
|
|
irq_table[i].real_irq = real_irq;
|
|
irq_table[i].irq = i;
|
|
irq_table[i].pil = pil;
|
|
} else {
|
|
printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
|
|
i = 0;
|
|
}
|
|
found:
|
|
spin_unlock_irqrestore(&irq_table_lock, flags);
|
|
|
|
return i;
|
|
}
|
|
|
|
/* Based on a single pil handler_irq may need to call several
|
|
* interrupt handlers. Use irq_map as entry to irq_table,
|
|
* and let each entry in irq_table point to the next entry.
|
|
*/
|
|
void irq_link(unsigned int irq)
|
|
{
|
|
struct irq_bucket *p;
|
|
unsigned long flags;
|
|
unsigned int pil;
|
|
|
|
BUG_ON(irq >= NR_IRQS);
|
|
|
|
spin_lock_irqsave(&irq_map_lock, flags);
|
|
|
|
p = &irq_table[irq];
|
|
pil = p->pil;
|
|
BUG_ON(pil >= SUN4D_MAX_IRQ);
|
|
p->next = irq_map[pil];
|
|
irq_map[pil] = p;
|
|
|
|
spin_unlock_irqrestore(&irq_map_lock, flags);
|
|
}
|
|
|
|
void irq_unlink(unsigned int irq)
|
|
{
|
|
struct irq_bucket *p, **pnext;
|
|
unsigned long flags;
|
|
|
|
BUG_ON(irq >= NR_IRQS);
|
|
|
|
spin_lock_irqsave(&irq_map_lock, flags);
|
|
|
|
p = &irq_table[irq];
|
|
BUG_ON(p->pil >= SUN4D_MAX_IRQ);
|
|
pnext = &irq_map[p->pil];
|
|
while (*pnext != p)
|
|
pnext = &(*pnext)->next;
|
|
*pnext = p->next;
|
|
|
|
spin_unlock_irqrestore(&irq_map_lock, flags);
|
|
}
|
|
|
|
|
|
/* /proc/interrupts printing */
|
|
int arch_show_interrupts(struct seq_file *p, int prec)
|
|
{
|
|
int j;
|
|
|
|
#ifdef CONFIG_SMP
|
|
seq_printf(p, "RES: ");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", cpu_data(j).irq_resched_count);
|
|
seq_printf(p, " IPI rescheduling interrupts\n");
|
|
seq_printf(p, "CAL: ");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", cpu_data(j).irq_call_count);
|
|
seq_printf(p, " IPI function call interrupts\n");
|
|
#endif
|
|
seq_printf(p, "NMI: ");
|
|
for_each_online_cpu(j)
|
|
seq_printf(p, "%10u ", cpu_data(j).counter);
|
|
seq_printf(p, " Non-maskable interrupts\n");
|
|
return 0;
|
|
}
|
|
|
|
void handler_irq(unsigned int pil, struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs;
|
|
struct irq_bucket *p;
|
|
|
|
BUG_ON(pil > 15);
|
|
old_regs = set_irq_regs(regs);
|
|
irq_enter();
|
|
|
|
p = irq_map[pil];
|
|
while (p) {
|
|
struct irq_bucket *next = p->next;
|
|
|
|
generic_handle_irq(p->irq);
|
|
p = next;
|
|
}
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
#if defined(CONFIG_BLK_DEV_FD) || defined(CONFIG_BLK_DEV_FD_MODULE)
|
|
static unsigned int floppy_irq;
|
|
|
|
int sparc_floppy_request_irq(unsigned int irq, irq_handler_t irq_handler)
|
|
{
|
|
unsigned int cpu_irq;
|
|
int err;
|
|
|
|
|
|
err = request_irq(irq, irq_handler, 0, "floppy", NULL);
|
|
if (err)
|
|
return -1;
|
|
|
|
/* Save for later use in floppy interrupt handler */
|
|
floppy_irq = irq;
|
|
|
|
cpu_irq = (irq & (NR_IRQS - 1));
|
|
|
|
/* Dork with trap table if we get this far. */
|
|
#define INSTANTIATE(table) \
|
|
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_one = SPARC_RD_PSR_L0; \
|
|
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two = \
|
|
SPARC_BRANCH((unsigned long) floppy_hardint, \
|
|
(unsigned long) &table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_two);\
|
|
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_three = SPARC_RD_WIM_L3; \
|
|
table[SP_TRAP_IRQ1+(cpu_irq-1)].inst_four = SPARC_NOP;
|
|
|
|
INSTANTIATE(sparc_ttable)
|
|
|
|
#if defined CONFIG_SMP
|
|
if (sparc_cpu_model != sparc_leon) {
|
|
struct tt_entry *trap_table;
|
|
|
|
trap_table = &trapbase_cpu1;
|
|
INSTANTIATE(trap_table)
|
|
trap_table = &trapbase_cpu2;
|
|
INSTANTIATE(trap_table)
|
|
trap_table = &trapbase_cpu3;
|
|
INSTANTIATE(trap_table)
|
|
}
|
|
#endif
|
|
#undef INSTANTIATE
|
|
/*
|
|
* XXX Correct thing whould be to flush only I- and D-cache lines
|
|
* which contain the handler in question. But as of time of the
|
|
* writing we have no CPU-neutral interface to fine-grained flushes.
|
|
*/
|
|
flush_cache_all();
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(sparc_floppy_request_irq);
|
|
|
|
/*
|
|
* These variables are used to access state from the assembler
|
|
* interrupt handler, floppy_hardint, so we cannot put these in
|
|
* the floppy driver image because that would not work in the
|
|
* modular case.
|
|
*/
|
|
volatile unsigned char *fdc_status;
|
|
EXPORT_SYMBOL(fdc_status);
|
|
|
|
char *pdma_vaddr;
|
|
EXPORT_SYMBOL(pdma_vaddr);
|
|
|
|
unsigned long pdma_size;
|
|
EXPORT_SYMBOL(pdma_size);
|
|
|
|
volatile int doing_pdma;
|
|
EXPORT_SYMBOL(doing_pdma);
|
|
|
|
char *pdma_base;
|
|
EXPORT_SYMBOL(pdma_base);
|
|
|
|
unsigned long pdma_areasize;
|
|
EXPORT_SYMBOL(pdma_areasize);
|
|
|
|
/* Use the generic irq support to call floppy_interrupt
|
|
* which was setup using request_irq() in sparc_floppy_request_irq().
|
|
* We only have one floppy interrupt so we do not need to check
|
|
* for additional handlers being wired up by irq_link()
|
|
*/
|
|
void sparc_floppy_irq(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs;
|
|
|
|
old_regs = set_irq_regs(regs);
|
|
irq_enter();
|
|
generic_handle_irq(floppy_irq);
|
|
irq_exit();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
#endif
|
|
|
|
/* djhr
|
|
* This could probably be made indirect too and assigned in the CPU
|
|
* bits of the code. That would be much nicer I think and would also
|
|
* fit in with the idea of being able to tune your kernel for your machine
|
|
* by removing unrequired machine and device support.
|
|
*
|
|
*/
|
|
|
|
void __init init_IRQ(void)
|
|
{
|
|
switch (sparc_cpu_model) {
|
|
case sun4m:
|
|
pcic_probe();
|
|
if (pcic_present())
|
|
sun4m_pci_init_IRQ();
|
|
else
|
|
sun4m_init_IRQ();
|
|
break;
|
|
|
|
case sun4d:
|
|
sun4d_init_IRQ();
|
|
break;
|
|
|
|
case sparc_leon:
|
|
leon_init_IRQ();
|
|
break;
|
|
|
|
default:
|
|
prom_printf("Cannot initialize IRQs on this Sun machine...");
|
|
break;
|
|
}
|
|
}
|
|
|