linux-sg2042/arch/sh/mm/cache-sh4.c

395 lines
9.7 KiB
C

/*
* arch/sh/mm/cache-sh4.c
*
* Copyright (C) 1999, 2000, 2002 Niibe Yutaka
* Copyright (C) 2001 - 2009 Paul Mundt
* Copyright (C) 2003 Richard Curnow
* Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/io.h>
#include <linux/mutex.h>
#include <linux/fs.h>
#include <linux/highmem.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/cache_insns.h>
#include <asm/cacheflush.h>
/*
* The maximum number of pages we support up to when doing ranged dcache
* flushing. Anything exceeding this will simply flush the dcache in its
* entirety.
*/
#define MAX_ICACHE_PAGES 32
static void __flush_cache_one(unsigned long addr, unsigned long phys,
unsigned long exec_offset);
/*
* Write back the range of D-cache, and purge the I-cache.
*
* Called from kernel/module.c:sys_init_module and routine for a.out format,
* signal handler code and kprobes code
*/
static void sh4_flush_icache_range(void *args)
{
struct flusher_data *data = args;
unsigned long start, end;
unsigned long flags, v;
int i;
start = data->addr1;
end = data->addr2;
/* If there are too many pages then just blow away the caches */
if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
local_flush_cache_all(NULL);
return;
}
/*
* Selectively flush d-cache then invalidate the i-cache.
* This is inefficient, so only use this for small ranges.
*/
start &= ~(L1_CACHE_BYTES-1);
end += L1_CACHE_BYTES-1;
end &= ~(L1_CACHE_BYTES-1);
local_irq_save(flags);
jump_to_uncached();
for (v = start; v < end; v += L1_CACHE_BYTES) {
unsigned long icacheaddr;
int j, n;
__ocbwb(v);
icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
cpu_data->icache.entry_mask);
/* Clear i-cache line valid-bit */
n = boot_cpu_data.icache.n_aliases;
for (i = 0; i < cpu_data->icache.ways; i++) {
for (j = 0; j < n; j++)
__raw_writel(0, icacheaddr + (j * PAGE_SIZE));
icacheaddr += cpu_data->icache.way_incr;
}
}
back_to_cached();
local_irq_restore(flags);
}
static inline void flush_cache_one(unsigned long start, unsigned long phys)
{
unsigned long flags, exec_offset = 0;
/*
* All types of SH-4 require PC to be uncached to operate on the I-cache.
* Some types of SH-4 require PC to be uncached to operate on the D-cache.
*/
if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
(start < CACHE_OC_ADDRESS_ARRAY))
exec_offset = cached_to_uncached;
local_irq_save(flags);
__flush_cache_one(start, phys, exec_offset);
local_irq_restore(flags);
}
/*
* Write back & invalidate the D-cache of the page.
* (To avoid "alias" issues)
*/
static void sh4_flush_dcache_page(void *arg)
{
struct page *page = arg;
unsigned long addr = (unsigned long)page_address(page);
#ifndef CONFIG_SMP
struct address_space *mapping = page_mapping(page);
if (mapping && !mapping_mapped(mapping))
clear_bit(PG_dcache_clean, &page->flags);
else
#endif
flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
(addr & shm_align_mask), page_to_phys(page));
wmb();
}
/* TODO: Selective icache invalidation through IC address array.. */
static void flush_icache_all(void)
{
unsigned long flags, ccr;
local_irq_save(flags);
jump_to_uncached();
/* Flush I-cache */
ccr = __raw_readl(CCR);
ccr |= CCR_CACHE_ICI;
__raw_writel(ccr, CCR);
/*
* back_to_cached() will take care of the barrier for us, don't add
* another one!
*/
back_to_cached();
local_irq_restore(flags);
}
static void flush_dcache_all(void)
{
unsigned long addr, end_addr, entry_offset;
end_addr = CACHE_OC_ADDRESS_ARRAY +
(current_cpu_data.dcache.sets <<
current_cpu_data.dcache.entry_shift) *
current_cpu_data.dcache.ways;
entry_offset = 1 << current_cpu_data.dcache.entry_shift;
for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
__raw_writel(0, addr); addr += entry_offset;
__raw_writel(0, addr); addr += entry_offset;
__raw_writel(0, addr); addr += entry_offset;
__raw_writel(0, addr); addr += entry_offset;
__raw_writel(0, addr); addr += entry_offset;
__raw_writel(0, addr); addr += entry_offset;
__raw_writel(0, addr); addr += entry_offset;
__raw_writel(0, addr); addr += entry_offset;
}
}
static void sh4_flush_cache_all(void *unused)
{
flush_dcache_all();
flush_icache_all();
}
/*
* Note : (RPC) since the caches are physically tagged, the only point
* of flush_cache_mm for SH-4 is to get rid of aliases from the
* D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
* lines can stay resident so long as the virtual address they were
* accessed with (hence cache set) is in accord with the physical
* address (i.e. tag). It's no different here.
*
* Caller takes mm->mmap_sem.
*/
static void sh4_flush_cache_mm(void *arg)
{
struct mm_struct *mm = arg;
if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
return;
flush_dcache_all();
}
/*
* Write back and invalidate I/D-caches for the page.
*
* ADDR: Virtual Address (U0 address)
* PFN: Physical page number
*/
static void sh4_flush_cache_page(void *args)
{
struct flusher_data *data = args;
struct vm_area_struct *vma;
struct page *page;
unsigned long address, pfn, phys;
int map_coherent = 0;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
void *vaddr;
vma = data->vma;
address = data->addr1 & PAGE_MASK;
pfn = data->addr2;
phys = pfn << PAGE_SHIFT;
page = pfn_to_page(pfn);
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
return;
pgd = pgd_offset(vma->vm_mm, address);
pud = pud_offset(pgd, address);
pmd = pmd_offset(pud, address);
pte = pte_offset_kernel(pmd, address);
/* If the page isn't present, there is nothing to do here. */
if (!(pte_val(*pte) & _PAGE_PRESENT))
return;
if ((vma->vm_mm == current->active_mm))
vaddr = NULL;
else {
/*
* Use kmap_coherent or kmap_atomic to do flushes for
* another ASID than the current one.
*/
map_coherent = (current_cpu_data.dcache.n_aliases &&
test_bit(PG_dcache_clean, &page->flags) &&
page_mapped(page));
if (map_coherent)
vaddr = kmap_coherent(page, address);
else
vaddr = kmap_atomic(page);
address = (unsigned long)vaddr;
}
flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
(address & shm_align_mask), phys);
if (vma->vm_flags & VM_EXEC)
flush_icache_all();
if (vaddr) {
if (map_coherent)
kunmap_coherent(vaddr);
else
kunmap_atomic(vaddr);
}
}
/*
* Write back and invalidate D-caches.
*
* START, END: Virtual Address (U0 address)
*
* NOTE: We need to flush the _physical_ page entry.
* Flushing the cache lines for U0 only isn't enough.
* We need to flush for P1 too, which may contain aliases.
*/
static void sh4_flush_cache_range(void *args)
{
struct flusher_data *data = args;
struct vm_area_struct *vma;
unsigned long start, end;
vma = data->vma;
start = data->addr1;
end = data->addr2;
if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
return;
/*
* If cache is only 4k-per-way, there are never any 'aliases'. Since
* the cache is physically tagged, the data can just be left in there.
*/
if (boot_cpu_data.dcache.n_aliases == 0)
return;
flush_dcache_all();
if (vma->vm_flags & VM_EXEC)
flush_icache_all();
}
/**
* __flush_cache_one
*
* @addr: address in memory mapped cache array
* @phys: P1 address to flush (has to match tags if addr has 'A' bit
* set i.e. associative write)
* @exec_offset: set to 0x20000000 if flush has to be executed from P2
* region else 0x0
*
* The offset into the cache array implied by 'addr' selects the
* 'colour' of the virtual address range that will be flushed. The
* operation (purge/write-back) is selected by the lower 2 bits of
* 'phys'.
*/
static void __flush_cache_one(unsigned long addr, unsigned long phys,
unsigned long exec_offset)
{
int way_count;
unsigned long base_addr = addr;
struct cache_info *dcache;
unsigned long way_incr;
unsigned long a, ea, p;
unsigned long temp_pc;
dcache = &boot_cpu_data.dcache;
/* Write this way for better assembly. */
way_count = dcache->ways;
way_incr = dcache->way_incr;
/*
* Apply exec_offset (i.e. branch to P2 if required.).
*
* FIXME:
*
* If I write "=r" for the (temp_pc), it puts this in r6 hence
* trashing exec_offset before it's been added on - why? Hence
* "=&r" as a 'workaround'
*/
asm volatile("mov.l 1f, %0\n\t"
"add %1, %0\n\t"
"jmp @%0\n\t"
"nop\n\t"
".balign 4\n\t"
"1: .long 2f\n\t"
"2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
/*
* We know there will be >=1 iteration, so write as do-while to avoid
* pointless nead-of-loop check for 0 iterations.
*/
do {
ea = base_addr + PAGE_SIZE;
a = base_addr;
p = phys;
do {
*(volatile unsigned long *)a = p;
/*
* Next line: intentionally not p+32, saves an add, p
* will do since only the cache tag bits need to
* match.
*/
*(volatile unsigned long *)(a+32) = p;
a += 64;
p += 64;
} while (a < ea);
base_addr += way_incr;
} while (--way_count != 0);
}
extern void __weak sh4__flush_region_init(void);
/*
* SH-4 has virtually indexed and physically tagged cache.
*/
void __init sh4_cache_init(void)
{
printk("PVR=%08x CVR=%08x PRR=%08x\n",
__raw_readl(CCN_PVR),
__raw_readl(CCN_CVR),
__raw_readl(CCN_PRR));
local_flush_icache_range = sh4_flush_icache_range;
local_flush_dcache_page = sh4_flush_dcache_page;
local_flush_cache_all = sh4_flush_cache_all;
local_flush_cache_mm = sh4_flush_cache_mm;
local_flush_cache_dup_mm = sh4_flush_cache_mm;
local_flush_cache_page = sh4_flush_cache_page;
local_flush_cache_range = sh4_flush_cache_range;
sh4__flush_region_init();
}