linux-sg2042/drivers/net/cris/eth_v10.c

1743 lines
48 KiB
C

/*
* e100net.c: A network driver for the ETRAX 100LX network controller.
*
* Copyright (c) 1998-2002 Axis Communications AB.
*
* The outline of this driver comes from skeleton.c.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <linux/if.h>
#include <linux/mii.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <asm/arch/svinto.h>/* DMA and register descriptions */
#include <asm/io.h> /* CRIS_LED_* I/O functions */
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/system.h>
#include <asm/ethernet.h>
#include <asm/cache.h>
#include <asm/arch/io_interface_mux.h>
//#define ETHDEBUG
#define D(x)
/*
* The name of the card. Is used for messages and in the requests for
* io regions, irqs and dma channels
*/
static const char* cardname = "ETRAX 100LX built-in ethernet controller";
/* A default ethernet address. Highlevel SW will set the real one later */
static struct sockaddr default_mac = {
0,
{ 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
};
/* Information that need to be kept for each board. */
struct net_local {
struct net_device_stats stats;
struct mii_if_info mii_if;
/* Tx control lock. This protects the transmit buffer ring
* state along with the "tx full" state of the driver. This
* means all netif_queue flow control actions are protected
* by this lock as well.
*/
spinlock_t lock;
spinlock_t led_lock; /* Protect LED state */
spinlock_t transceiver_lock; /* Protect transceiver state. */
};
typedef struct etrax_eth_descr
{
etrax_dma_descr descr;
struct sk_buff* skb;
} etrax_eth_descr;
/* Some transceivers requires special handling */
struct transceiver_ops
{
unsigned int oui;
void (*check_speed)(struct net_device* dev);
void (*check_duplex)(struct net_device* dev);
};
/* Duplex settings */
enum duplex
{
half,
full,
autoneg
};
/* Dma descriptors etc. */
#define MAX_MEDIA_DATA_SIZE 1522
#define MIN_PACKET_LEN 46
#define ETHER_HEAD_LEN 14
/*
** MDIO constants.
*/
#define MDIO_START 0x1
#define MDIO_READ 0x2
#define MDIO_WRITE 0x1
#define MDIO_PREAMBLE 0xfffffffful
/* Broadcom specific */
#define MDIO_AUX_CTRL_STATUS_REG 0x18
#define MDIO_BC_FULL_DUPLEX_IND 0x1
#define MDIO_BC_SPEED 0x2
/* TDK specific */
#define MDIO_TDK_DIAGNOSTIC_REG 18
#define MDIO_TDK_DIAGNOSTIC_RATE 0x400
#define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
/*Intel LXT972A specific*/
#define MDIO_INT_STATUS_REG_2 0x0011
#define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
#define MDIO_INT_SPEED (1 << 14)
/* Network flash constants */
#define NET_FLASH_TIME (HZ/50) /* 20 ms */
#define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
#define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
#define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
#define NO_NETWORK_ACTIVITY 0
#define NETWORK_ACTIVITY 1
#define NBR_OF_RX_DESC 32
#define NBR_OF_TX_DESC 16
/* Large packets are sent directly to upper layers while small packets are */
/* copied (to reduce memory waste). The following constant decides the breakpoint */
#define RX_COPYBREAK 256
/* Due to a chip bug we need to flush the cache when descriptors are returned */
/* to the DMA. To decrease performance impact we return descriptors in chunks. */
/* The following constant determines the number of descriptors to return. */
#define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
#define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
/* Define some macros to access ETRAX 100 registers */
#define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
IO_FIELD_(reg##_, field##_, val)
#define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
IO_STATE_(reg##_, field##_, _##val)
static etrax_eth_descr *myNextRxDesc; /* Points to the next descriptor to
to be processed */
static etrax_eth_descr *myLastRxDesc; /* The last processed descriptor */
static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
static etrax_eth_descr* myLastTxDesc; /* End of send queue */
static etrax_eth_descr* myNextTxDesc; /* Next descriptor to use */
static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
static unsigned int network_rec_config_shadow = 0;
static unsigned int network_tr_ctrl_shadow = 0;
/* Network speed indication. */
static DEFINE_TIMER(speed_timer, NULL, 0, 0);
static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
static int current_speed; /* Speed read from transceiver */
static int current_speed_selection; /* Speed selected by user */
static unsigned long led_next_time;
static int led_active;
static int rx_queue_len;
/* Duplex */
static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
static int full_duplex;
static enum duplex current_duplex;
/* Index to functions, as function prototypes. */
static int etrax_ethernet_init(void);
static int e100_open(struct net_device *dev);
static int e100_set_mac_address(struct net_device *dev, void *addr);
static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
static void e100_rx(struct net_device *dev);
static int e100_close(struct net_device *dev);
static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static int e100_set_config(struct net_device* dev, struct ifmap* map);
static void e100_tx_timeout(struct net_device *dev);
static struct net_device_stats *e100_get_stats(struct net_device *dev);
static void set_multicast_list(struct net_device *dev);
static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
static void update_rx_stats(struct net_device_stats *);
static void update_tx_stats(struct net_device_stats *);
static int e100_probe_transceiver(struct net_device* dev);
static void e100_check_speed(unsigned long priv);
static void e100_set_speed(struct net_device* dev, unsigned long speed);
static void e100_check_duplex(unsigned long priv);
static void e100_set_duplex(struct net_device* dev, enum duplex);
static void e100_negotiate(struct net_device* dev);
static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
static void e100_send_mdio_bit(unsigned char bit);
static unsigned char e100_receive_mdio_bit(void);
static void e100_reset_transceiver(struct net_device* net);
static void e100_clear_network_leds(unsigned long dummy);
static void e100_set_network_leds(int active);
static const struct ethtool_ops e100_ethtool_ops;
#if defined(CONFIG_ETRAX_NO_PHY)
static void dummy_check_speed(struct net_device* dev);
static void dummy_check_duplex(struct net_device* dev);
#else
static void broadcom_check_speed(struct net_device* dev);
static void broadcom_check_duplex(struct net_device* dev);
static void tdk_check_speed(struct net_device* dev);
static void tdk_check_duplex(struct net_device* dev);
static void intel_check_speed(struct net_device* dev);
static void intel_check_duplex(struct net_device* dev);
static void generic_check_speed(struct net_device* dev);
static void generic_check_duplex(struct net_device* dev);
#endif
#ifdef CONFIG_NET_POLL_CONTROLLER
static void e100_netpoll(struct net_device* dev);
#endif
static int autoneg_normal = 1;
struct transceiver_ops transceivers[] =
{
#if defined(CONFIG_ETRAX_NO_PHY)
{0x0000, dummy_check_speed, dummy_check_duplex} /* Dummy */
#else
{0x1018, broadcom_check_speed, broadcom_check_duplex}, /* Broadcom */
{0xC039, tdk_check_speed, tdk_check_duplex}, /* TDK 2120 */
{0x039C, tdk_check_speed, tdk_check_duplex}, /* TDK 2120C */
{0x04de, intel_check_speed, intel_check_duplex}, /* Intel LXT972A*/
{0x0000, generic_check_speed, generic_check_duplex} /* Generic, must be last */
#endif
};
struct transceiver_ops* transceiver = &transceivers[0];
#define tx_done(dev) (*R_DMA_CH0_CMD == 0)
/*
* Check for a network adaptor of this type, and return '0' if one exists.
* If dev->base_addr == 0, probe all likely locations.
* If dev->base_addr == 1, always return failure.
* If dev->base_addr == 2, allocate space for the device and return success
* (detachable devices only).
*/
static int __init
etrax_ethernet_init(void)
{
struct net_device *dev;
struct net_local* np;
int i, err;
printk(KERN_INFO
"ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
if (cris_request_io_interface(if_eth, cardname)) {
printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
return -EBUSY;
}
dev = alloc_etherdev(sizeof(struct net_local));
if (!dev)
return -ENOMEM;
np = netdev_priv(dev);
/* we do our own locking */
dev->features |= NETIF_F_LLTX;
dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
/* now setup our etrax specific stuff */
dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
dev->dma = NETWORK_RX_DMA_NBR;
/* fill in our handlers so the network layer can talk to us in the future */
dev->open = e100_open;
dev->hard_start_xmit = e100_send_packet;
dev->stop = e100_close;
dev->get_stats = e100_get_stats;
dev->set_multicast_list = set_multicast_list;
dev->set_mac_address = e100_set_mac_address;
dev->ethtool_ops = &e100_ethtool_ops;
dev->do_ioctl = e100_ioctl;
dev->set_config = e100_set_config;
dev->tx_timeout = e100_tx_timeout;
#ifdef CONFIG_NET_POLL_CONTROLLER
dev->poll_controller = e100_netpoll;
#endif
spin_lock_init(&np->lock);
spin_lock_init(&np->led_lock);
spin_lock_init(&np->transceiver_lock);
/* Initialise the list of Etrax DMA-descriptors */
/* Initialise receive descriptors */
for (i = 0; i < NBR_OF_RX_DESC; i++) {
/* Allocate two extra cachelines to make sure that buffer used
* by DMA does not share cacheline with any other data (to
* avoid cache bug)
*/
RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
if (!RxDescList[i].skb)
return -ENOMEM;
RxDescList[i].descr.ctrl = 0;
RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
RxDescList[i].descr.next = virt_to_phys(&RxDescList[i + 1]);
RxDescList[i].descr.buf = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
RxDescList[i].descr.status = 0;
RxDescList[i].descr.hw_len = 0;
prepare_rx_descriptor(&RxDescList[i].descr);
}
RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl = d_eol;
RxDescList[NBR_OF_RX_DESC - 1].descr.next = virt_to_phys(&RxDescList[0]);
rx_queue_len = 0;
/* Initialize transmit descriptors */
for (i = 0; i < NBR_OF_TX_DESC; i++) {
TxDescList[i].descr.ctrl = 0;
TxDescList[i].descr.sw_len = 0;
TxDescList[i].descr.next = virt_to_phys(&TxDescList[i + 1].descr);
TxDescList[i].descr.buf = 0;
TxDescList[i].descr.status = 0;
TxDescList[i].descr.hw_len = 0;
TxDescList[i].skb = 0;
}
TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl = d_eol;
TxDescList[NBR_OF_TX_DESC - 1].descr.next = virt_to_phys(&TxDescList[0].descr);
/* Initialise initial pointers */
myNextRxDesc = &RxDescList[0];
myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
myFirstTxDesc = &TxDescList[0];
myNextTxDesc = &TxDescList[0];
myLastTxDesc = &TxDescList[NBR_OF_TX_DESC - 1];
/* Register device */
err = register_netdev(dev);
if (err) {
free_netdev(dev);
return err;
}
/* set the default MAC address */
e100_set_mac_address(dev, &default_mac);
/* Initialize speed indicator stuff. */
current_speed = 10;
current_speed_selection = 0; /* Auto */
speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
speed_timer.data = (unsigned long)dev;
speed_timer.function = e100_check_speed;
clear_led_timer.function = e100_clear_network_leds;
clear_led_timer.data = (unsigned long)dev;
full_duplex = 0;
current_duplex = autoneg;
duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
duplex_timer.data = (unsigned long)dev;
duplex_timer.function = e100_check_duplex;
/* Initialize mii interface */
np->mii_if.phy_id_mask = 0x1f;
np->mii_if.reg_num_mask = 0x1f;
np->mii_if.dev = dev;
np->mii_if.mdio_read = e100_get_mdio_reg;
np->mii_if.mdio_write = e100_set_mdio_reg;
/* Initialize group address registers to make sure that no */
/* unwanted addresses are matched */
*R_NETWORK_GA_0 = 0x00000000;
*R_NETWORK_GA_1 = 0x00000000;
/* Initialize next time the led can flash */
led_next_time = jiffies;
return 0;
}
/* set MAC address of the interface. called from the core after a
* SIOCSIFADDR ioctl, and from the bootup above.
*/
static int
e100_set_mac_address(struct net_device *dev, void *p)
{
struct net_local *np = netdev_priv(dev);
struct sockaddr *addr = p;
DECLARE_MAC_BUF(mac);
spin_lock(&np->lock); /* preemption protection */
/* remember it */
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
/* Write it to the hardware.
* Note the way the address is wrapped:
* *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
* *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
*/
*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
*R_NETWORK_SA_2 = 0;
/* show it in the log as well */
printk(KERN_INFO "%s: changed MAC to %s\n",
dev->name, print_mac(mac, dev->dev_addr));
spin_unlock(&np->lock);
return 0;
}
/*
* Open/initialize the board. This is called (in the current kernel)
* sometime after booting when the 'ifconfig' program is run.
*
* This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.
*/
static int
e100_open(struct net_device *dev)
{
unsigned long flags;
/* enable the MDIO output pin */
*R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
*R_IRQ_MASK0_CLR =
IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
/* clear dma0 and 1 eop and descr irq masks */
*R_IRQ_MASK2_CLR =
IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
/* Reset and wait for the DMA channels */
RESET_DMA(NETWORK_TX_DMA_NBR);
RESET_DMA(NETWORK_RX_DMA_NBR);
WAIT_DMA(NETWORK_TX_DMA_NBR);
WAIT_DMA(NETWORK_RX_DMA_NBR);
/* Initialise the etrax network controller */
/* allocate the irq corresponding to the receiving DMA */
if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt,
IRQF_SAMPLE_RANDOM, cardname, (void *)dev)) {
goto grace_exit0;
}
/* allocate the irq corresponding to the transmitting DMA */
if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
cardname, (void *)dev)) {
goto grace_exit1;
}
/* allocate the irq corresponding to the network errors etc */
if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
cardname, (void *)dev)) {
goto grace_exit2;
}
/*
* Always allocate the DMA channels after the IRQ,
* and clean up on failure.
*/
if (cris_request_dma(NETWORK_TX_DMA_NBR,
cardname,
DMA_VERBOSE_ON_ERROR,
dma_eth)) {
goto grace_exit3;
}
if (cris_request_dma(NETWORK_RX_DMA_NBR,
cardname,
DMA_VERBOSE_ON_ERROR,
dma_eth)) {
goto grace_exit4;
}
/* give the HW an idea of what MAC address we want */
*R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
(dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
*R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
*R_NETWORK_SA_2 = 0;
#if 0
/* use promiscuous mode for testing */
*R_NETWORK_GA_0 = 0xffffffff;
*R_NETWORK_GA_1 = 0xffffffff;
*R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
#else
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
#endif
*R_NETWORK_GEN_CONFIG =
IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
local_irq_save(flags);
/* enable the irq's for ethernet DMA */
*R_IRQ_MASK2_SET =
IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
*R_IRQ_MASK0_SET =
IO_STATE(R_IRQ_MASK0_SET, overrun, set) |
IO_STATE(R_IRQ_MASK0_SET, underrun, set) |
IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
/* make sure the irqs are cleared */
*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
/* make sure the rec and transmit error counters are cleared */
(void)*R_REC_COUNTERS; /* dummy read */
(void)*R_TR_COUNTERS; /* dummy read */
/* start the receiving DMA channel so we can receive packets from now on */
*R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
/* Set up transmit DMA channel so it can be restarted later */
*R_DMA_CH0_FIRST = 0;
*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
netif_start_queue(dev);
local_irq_restore(flags);
/* Probe for transceiver */
if (e100_probe_transceiver(dev))
goto grace_exit5;
/* Start duplex/speed timers */
add_timer(&speed_timer);
add_timer(&duplex_timer);
/* We are now ready to accept transmit requeusts from
* the queueing layer of the networking.
*/
netif_carrier_on(dev);
return 0;
grace_exit5:
cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
grace_exit4:
cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
grace_exit3:
free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
grace_exit2:
free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
grace_exit1:
free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
grace_exit0:
return -EAGAIN;
}
#if defined(CONFIG_ETRAX_NO_PHY)
static void
dummy_check_speed(struct net_device* dev)
{
current_speed = 100;
}
#else
static void
generic_check_speed(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
if ((data & ADVERTISE_100FULL) ||
(data & ADVERTISE_100HALF))
current_speed = 100;
else
current_speed = 10;
}
static void
tdk_check_speed(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
MDIO_TDK_DIAGNOSTIC_REG);
current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
}
static void
broadcom_check_speed(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
MDIO_AUX_CTRL_STATUS_REG);
current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
}
static void
intel_check_speed(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
MDIO_INT_STATUS_REG_2);
current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
}
#endif
static void
e100_check_speed(unsigned long priv)
{
struct net_device* dev = (struct net_device*)priv;
struct net_local *np = netdev_priv(dev);
static int led_initiated = 0;
unsigned long data;
int old_speed = current_speed;
spin_lock(&np->transceiver_lock);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
if (!(data & BMSR_LSTATUS)) {
current_speed = 0;
} else {
transceiver->check_speed(dev);
}
spin_lock(&np->led_lock);
if ((old_speed != current_speed) || !led_initiated) {
led_initiated = 1;
e100_set_network_leds(NO_NETWORK_ACTIVITY);
if (current_speed)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
}
spin_unlock(&np->led_lock);
/* Reinitialize the timer. */
speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
add_timer(&speed_timer);
spin_unlock(&np->transceiver_lock);
}
static void
e100_negotiate(struct net_device* dev)
{
struct net_local *np = netdev_priv(dev);
unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
MII_ADVERTISE);
/* Discard old speed and duplex settings */
data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
ADVERTISE_10HALF | ADVERTISE_10FULL);
switch (current_speed_selection) {
case 10:
if (current_duplex == full)
data |= ADVERTISE_10FULL;
else if (current_duplex == half)
data |= ADVERTISE_10HALF;
else
data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
break;
case 100:
if (current_duplex == full)
data |= ADVERTISE_100FULL;
else if (current_duplex == half)
data |= ADVERTISE_100HALF;
else
data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
break;
case 0: /* Auto */
if (current_duplex == full)
data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
else if (current_duplex == half)
data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
else
data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL;
break;
default: /* assume autoneg speed and duplex */
data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
ADVERTISE_100HALF | ADVERTISE_100FULL;
break;
}
e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
/* Renegotiate with link partner */
if (autoneg_normal) {
data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
data |= BMCR_ANENABLE | BMCR_ANRESTART;
}
e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
}
static void
e100_set_speed(struct net_device* dev, unsigned long speed)
{
struct net_local *np = netdev_priv(dev);
spin_lock(&np->transceiver_lock);
if (speed != current_speed_selection) {
current_speed_selection = speed;
e100_negotiate(dev);
}
spin_unlock(&np->transceiver_lock);
}
static void
e100_check_duplex(unsigned long priv)
{
struct net_device *dev = (struct net_device *)priv;
struct net_local *np = netdev_priv(dev);
int old_duplex;
spin_lock(&np->transceiver_lock);
old_duplex = full_duplex;
transceiver->check_duplex(dev);
if (old_duplex != full_duplex) {
/* Duplex changed */
SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
}
/* Reinitialize the timer. */
duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
add_timer(&duplex_timer);
np->mii_if.full_duplex = full_duplex;
spin_unlock(&np->transceiver_lock);
}
#if defined(CONFIG_ETRAX_NO_PHY)
static void
dummy_check_duplex(struct net_device* dev)
{
full_duplex = 1;
}
#else
static void
generic_check_duplex(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
if ((data & ADVERTISE_10FULL) ||
(data & ADVERTISE_100FULL))
full_duplex = 1;
else
full_duplex = 0;
}
static void
tdk_check_duplex(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
MDIO_TDK_DIAGNOSTIC_REG);
full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
}
static void
broadcom_check_duplex(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
MDIO_AUX_CTRL_STATUS_REG);
full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
}
static void
intel_check_duplex(struct net_device* dev)
{
unsigned long data;
struct net_local *np = netdev_priv(dev);
data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
MDIO_INT_STATUS_REG_2);
full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
}
#endif
static void
e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
{
struct net_local *np = netdev_priv(dev);
spin_lock(&np->transceiver_lock);
if (new_duplex != current_duplex) {
current_duplex = new_duplex;
e100_negotiate(dev);
}
spin_unlock(&np->transceiver_lock);
}
static int
e100_probe_transceiver(struct net_device* dev)
{
int ret = 0;
#if !defined(CONFIG_ETRAX_NO_PHY)
unsigned int phyid_high;
unsigned int phyid_low;
unsigned int oui;
struct transceiver_ops* ops = NULL;
struct net_local *np = netdev_priv(dev);
spin_lock(&np->transceiver_lock);
/* Probe MDIO physical address */
for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
np->mii_if.phy_id++) {
if (e100_get_mdio_reg(dev,
np->mii_if.phy_id, MII_BMSR) != 0xffff)
break;
}
if (np->mii_if.phy_id == 32) {
ret = -ENODEV;
goto out;
}
/* Get manufacturer */
phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
oui = (phyid_high << 6) | (phyid_low >> 10);
for (ops = &transceivers[0]; ops->oui; ops++) {
if (ops->oui == oui)
break;
}
transceiver = ops;
out:
spin_unlock(&np->transceiver_lock);
#endif
return ret;
}
static int
e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
{
unsigned short cmd; /* Data to be sent on MDIO port */
int data; /* Data read from MDIO */
int bitCounter;
/* Start of frame, OP Code, Physical Address, Register Address */
cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
(location << 2);
e100_send_mdio_cmd(cmd, 0);
data = 0;
/* Data... */
for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
data |= (e100_receive_mdio_bit() << bitCounter);
}
return data;
}
static void
e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
{
int bitCounter;
unsigned short cmd;
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
(location << 2);
e100_send_mdio_cmd(cmd, 1);
/* Data... */
for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
e100_send_mdio_bit(GET_BIT(bitCounter, value));
}
}
static void
e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
{
int bitCounter;
unsigned char data = 0x2;
/* Preamble */
for (bitCounter = 31; bitCounter>= 0; bitCounter--)
e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
for (bitCounter = 15; bitCounter >= 2; bitCounter--)
e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
/* Turnaround */
for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
if (write_cmd)
e100_send_mdio_bit(GET_BIT(bitCounter, data));
else
e100_receive_mdio_bit();
}
static void
e100_send_mdio_bit(unsigned char bit)
{
*R_NETWORK_MGM_CTRL =
IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
udelay(1);
*R_NETWORK_MGM_CTRL =
IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
udelay(1);
}
static unsigned char
e100_receive_mdio_bit()
{
unsigned char bit;
*R_NETWORK_MGM_CTRL = 0;
bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
udelay(1);
*R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
udelay(1);
return bit;
}
static void
e100_reset_transceiver(struct net_device* dev)
{
struct net_local *np = netdev_priv(dev);
unsigned short cmd;
unsigned short data;
int bitCounter;
data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
e100_send_mdio_cmd(cmd, 1);
data |= 0x8000;
for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
e100_send_mdio_bit(GET_BIT(bitCounter, data));
}
}
/* Called by upper layers if they decide it took too long to complete
* sending a packet - we need to reset and stuff.
*/
static void
e100_tx_timeout(struct net_device *dev)
{
struct net_local *np = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&np->lock, flags);
printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
tx_done(dev) ? "IRQ problem" : "network cable problem");
/* remember we got an error */
np->stats.tx_errors++;
/* reset the TX DMA in case it has hung on something */
RESET_DMA(NETWORK_TX_DMA_NBR);
WAIT_DMA(NETWORK_TX_DMA_NBR);
/* Reset the transceiver. */
e100_reset_transceiver(dev);
/* and get rid of the packets that never got an interrupt */
while (myFirstTxDesc != myNextTxDesc) {
dev_kfree_skb(myFirstTxDesc->skb);
myFirstTxDesc->skb = 0;
myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
}
/* Set up transmit DMA channel so it can be restarted later */
*R_DMA_CH0_FIRST = 0;
*R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
/* tell the upper layers we're ok again */
netif_wake_queue(dev);
spin_unlock_irqrestore(&np->lock, flags);
}
/* This will only be invoked if the driver is _not_ in XOFF state.
* What this means is that we need not check it, and that this
* invariant will hold if we make sure that the netif_*_queue()
* calls are done at the proper times.
*/
static int
e100_send_packet(struct sk_buff *skb, struct net_device *dev)
{
struct net_local *np = netdev_priv(dev);
unsigned char *buf = skb->data;
unsigned long flags;
#ifdef ETHDEBUG
printk("send packet len %d\n", length);
#endif
spin_lock_irqsave(&np->lock, flags); /* protect from tx_interrupt and ourself */
myNextTxDesc->skb = skb;
dev->trans_start = jiffies;
e100_hardware_send_packet(np, buf, skb->len);
myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
/* Stop queue if full */
if (myNextTxDesc == myFirstTxDesc) {
netif_stop_queue(dev);
}
spin_unlock_irqrestore(&np->lock, flags);
return 0;
}
/*
* The typical workload of the driver:
* Handle the network interface interrupts.
*/
static irqreturn_t
e100rxtx_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct net_local *np = netdev_priv(dev);
unsigned long irqbits;
/*
* Note that both rx and tx interrupts are blocked at this point,
* regardless of which got us here.
*/
irqbits = *R_IRQ_MASK2_RD;
/* Handle received packets */
if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
/* acknowledge the eop interrupt */
*R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
/* check if one or more complete packets were indeed received */
while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
(myNextRxDesc != myLastRxDesc)) {
/* Take out the buffer and give it to the OS, then
* allocate a new buffer to put a packet in.
*/
e100_rx(dev);
np->stats.rx_packets++;
/* restart/continue on the channel, for safety */
*R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
/* clear dma channel 1 eop/descr irq bits */
*R_DMA_CH1_CLR_INTR =
IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
/* now, we might have gotten another packet
so we have to loop back and check if so */
}
}
/* Report any packets that have been sent */
while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
(netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
np->stats.tx_bytes += myFirstTxDesc->skb->len;
np->stats.tx_packets++;
/* dma is ready with the transmission of the data in tx_skb, so now
we can release the skb memory */
dev_kfree_skb_irq(myFirstTxDesc->skb);
myFirstTxDesc->skb = 0;
myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
/* Wake up queue. */
netif_wake_queue(dev);
}
if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
/* acknowledge the eop interrupt. */
*R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
}
return IRQ_HANDLED;
}
static irqreturn_t
e100nw_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct net_local *np = netdev_priv(dev);
unsigned long irqbits = *R_IRQ_MASK0_RD;
/* check for underrun irq */
if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
np->stats.tx_errors++;
D(printk("ethernet receiver underrun!\n"));
}
/* check for overrun irq */
if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
update_rx_stats(&np->stats); /* this will ack the irq */
D(printk("ethernet receiver overrun!\n"));
}
/* check for excessive collision irq */
if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
*R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
np->stats.tx_errors++;
D(printk("ethernet excessive collisions!\n"));
}
return IRQ_HANDLED;
}
/* We have a good packet(s), get it/them out of the buffers. */
static void
e100_rx(struct net_device *dev)
{
struct sk_buff *skb;
int length = 0;
struct net_local *np = netdev_priv(dev);
unsigned char *skb_data_ptr;
#ifdef ETHDEBUG
int i;
#endif
etrax_eth_descr *prevRxDesc; /* The descriptor right before myNextRxDesc */
spin_lock(&np->led_lock);
if (!led_active && time_after(jiffies, led_next_time)) {
/* light the network leds depending on the current speed. */
e100_set_network_leds(NETWORK_ACTIVITY);
/* Set the earliest time we may clear the LED */
led_next_time = jiffies + NET_FLASH_TIME;
led_active = 1;
mod_timer(&clear_led_timer, jiffies + HZ/10);
}
spin_unlock(&np->led_lock);
length = myNextRxDesc->descr.hw_len - 4;
np->stats.rx_bytes += length;
#ifdef ETHDEBUG
printk("Got a packet of length %d:\n", length);
/* dump the first bytes in the packet */
skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
for (i = 0; i < 8; i++) {
printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
skb_data_ptr += 8;
}
#endif
if (length < RX_COPYBREAK) {
/* Small packet, copy data */
skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
if (!skb) {
np->stats.rx_errors++;
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
goto update_nextrxdesc;
}
skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */
skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
#ifdef ETHDEBUG
printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
skb->head, skb->data, skb_tail_pointer(skb),
skb_end_pointer(skb));
printk("copying packet to 0x%x.\n", skb_data_ptr);
#endif
memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
}
else {
/* Large packet, send directly to upper layers and allocate new
* memory (aligned to cache line boundary to avoid bug).
* Before sending the skb to upper layers we must make sure
* that skb->data points to the aligned start of the packet.
*/
int align;
struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
if (!new_skb) {
np->stats.rx_errors++;
printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
goto update_nextrxdesc;
}
skb = myNextRxDesc->skb;
align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
skb_put(skb, length + align);
skb_pull(skb, align); /* Remove alignment bytes */
myNextRxDesc->skb = new_skb;
myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
}
skb->protocol = eth_type_trans(skb, dev);
/* Send the packet to the upper layers */
netif_rx(skb);
update_nextrxdesc:
/* Prepare for next packet */
myNextRxDesc->descr.status = 0;
prevRxDesc = myNextRxDesc;
myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
rx_queue_len++;
/* Check if descriptors should be returned */
if (rx_queue_len == RX_QUEUE_THRESHOLD) {
flush_etrax_cache();
prevRxDesc->descr.ctrl |= d_eol;
myLastRxDesc->descr.ctrl &= ~d_eol;
myLastRxDesc = prevRxDesc;
rx_queue_len = 0;
}
}
/* The inverse routine to net_open(). */
static int
e100_close(struct net_device *dev)
{
struct net_local *np = netdev_priv(dev);
printk(KERN_INFO "Closing %s.\n", dev->name);
netif_stop_queue(dev);
*R_IRQ_MASK0_CLR =
IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
*R_IRQ_MASK2_CLR =
IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
/* Stop the receiver and the transmitter */
RESET_DMA(NETWORK_TX_DMA_NBR);
RESET_DMA(NETWORK_RX_DMA_NBR);
/* Flush the Tx and disable Rx here. */
free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
/* Update the statistics here. */
update_rx_stats(&np->stats);
update_tx_stats(&np->stats);
/* Stop speed/duplex timers */
del_timer(&speed_timer);
del_timer(&duplex_timer);
return 0;
}
static int
e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct net_local *np = netdev_priv(dev);
int rc = 0;
int old_autoneg;
spin_lock(&np->lock); /* Preempt protection */
switch (cmd) {
/* The ioctls below should be considered obsolete but are */
/* still present for compatability with old scripts/apps */
case SET_ETH_SPEED_10: /* 10 Mbps */
e100_set_speed(dev, 10);
break;
case SET_ETH_SPEED_100: /* 100 Mbps */
e100_set_speed(dev, 100);
break;
case SET_ETH_SPEED_AUTO: /* Auto-negotiate speed */
e100_set_speed(dev, 0);
break;
case SET_ETH_DUPLEX_HALF: /* Half duplex */
e100_set_duplex(dev, half);
break;
case SET_ETH_DUPLEX_FULL: /* Full duplex */
e100_set_duplex(dev, full);
break;
case SET_ETH_DUPLEX_AUTO: /* Auto-negotiate duplex */
e100_set_duplex(dev, autoneg);
break;
case SET_ETH_AUTONEG:
old_autoneg = autoneg_normal;
autoneg_normal = *(int*)data;
if (autoneg_normal != old_autoneg)
e100_negotiate(dev);
break;
default:
rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
cmd, NULL);
break;
}
spin_unlock(&np->lock);
return rc;
}
static int e100_get_settings(struct net_device *dev,
struct ethtool_cmd *cmd)
{
struct net_local *np = netdev_priv(dev);
int err;
spin_lock_irq(&np->lock);
err = mii_ethtool_gset(&np->mii_if, cmd);
spin_unlock_irq(&np->lock);
/* The PHY may support 1000baseT, but the Etrax100 does not. */
cmd->supported &= ~(SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full);
return err;
}
static int e100_set_settings(struct net_device *dev,
struct ethtool_cmd *ecmd)
{
if (ecmd->autoneg == AUTONEG_ENABLE) {
e100_set_duplex(dev, autoneg);
e100_set_speed(dev, 0);
} else {
e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
}
return 0;
}
static void e100_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
strncpy(info->driver, "ETRAX 100LX", sizeof(info->driver) - 1);
strncpy(info->version, "$Revision: 1.31 $", sizeof(info->version) - 1);
strncpy(info->fw_version, "N/A", sizeof(info->fw_version) - 1);
strncpy(info->bus_info, "N/A", sizeof(info->bus_info) - 1);
}
static int e100_nway_reset(struct net_device *dev)
{
if (current_duplex == autoneg && current_speed_selection == 0)
e100_negotiate(dev);
return 0;
}
static const struct ethtool_ops e100_ethtool_ops = {
.get_settings = e100_get_settings,
.set_settings = e100_set_settings,
.get_drvinfo = e100_get_drvinfo,
.nway_reset = e100_nway_reset,
.get_link = ethtool_op_get_link,
};
static int
e100_set_config(struct net_device *dev, struct ifmap *map)
{
struct net_local *np = netdev_priv(dev);
spin_lock(&np->lock); /* Preempt protection */
switch(map->port) {
case IF_PORT_UNKNOWN:
/* Use autoneg */
e100_set_speed(dev, 0);
e100_set_duplex(dev, autoneg);
break;
case IF_PORT_10BASET:
e100_set_speed(dev, 10);
e100_set_duplex(dev, autoneg);
break;
case IF_PORT_100BASET:
case IF_PORT_100BASETX:
e100_set_speed(dev, 100);
e100_set_duplex(dev, autoneg);
break;
case IF_PORT_100BASEFX:
case IF_PORT_10BASE2:
case IF_PORT_AUI:
spin_unlock(&np->lock);
return -EOPNOTSUPP;
break;
default:
printk(KERN_ERR "%s: Invalid media selected", dev->name);
spin_unlock(&np->lock);
return -EINVAL;
}
spin_unlock(&np->lock);
return 0;
}
static void
update_rx_stats(struct net_device_stats *es)
{
unsigned long r = *R_REC_COUNTERS;
/* update stats relevant to reception errors */
es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
}
static void
update_tx_stats(struct net_device_stats *es)
{
unsigned long r = *R_TR_COUNTERS;
/* update stats relevant to transmission errors */
es->collisions +=
IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
}
/*
* Get the current statistics.
* This may be called with the card open or closed.
*/
static struct net_device_stats *
e100_get_stats(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
unsigned long flags;
spin_lock_irqsave(&lp->lock, flags);
update_rx_stats(&lp->stats);
update_tx_stats(&lp->stats);
spin_unlock_irqrestore(&lp->lock, flags);
return &lp->stats;
}
/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
* num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void
set_multicast_list(struct net_device *dev)
{
struct net_local *lp = netdev_priv(dev);
int num_addr = dev->mc_count;
unsigned long int lo_bits;
unsigned long int hi_bits;
spin_lock(&lp->lock);
if (dev->flags & IFF_PROMISC) {
/* promiscuous mode */
lo_bits = 0xfffffffful;
hi_bits = 0xfffffffful;
/* Enable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
} else if (dev->flags & IFF_ALLMULTI) {
/* enable all multicasts */
lo_bits = 0xfffffffful;
hi_bits = 0xfffffffful;
/* Disable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
} else if (num_addr == 0) {
/* Normal, clear the mc list */
lo_bits = 0x00000000ul;
hi_bits = 0x00000000ul;
/* Disable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
} else {
/* MC mode, receive normal and MC packets */
char hash_ix;
struct dev_mc_list *dmi = dev->mc_list;
int i;
char *baddr;
lo_bits = 0x00000000ul;
hi_bits = 0x00000000ul;
for (i = 0; i < num_addr; i++) {
/* Calculate the hash index for the GA registers */
hash_ix = 0;
baddr = dmi->dmi_addr;
hash_ix ^= (*baddr) & 0x3f;
hash_ix ^= ((*baddr) >> 6) & 0x03;
++baddr;
hash_ix ^= ((*baddr) << 2) & 0x03c;
hash_ix ^= ((*baddr) >> 4) & 0xf;
++baddr;
hash_ix ^= ((*baddr) << 4) & 0x30;
hash_ix ^= ((*baddr) >> 2) & 0x3f;
++baddr;
hash_ix ^= (*baddr) & 0x3f;
hash_ix ^= ((*baddr) >> 6) & 0x03;
++baddr;
hash_ix ^= ((*baddr) << 2) & 0x03c;
hash_ix ^= ((*baddr) >> 4) & 0xf;
++baddr;
hash_ix ^= ((*baddr) << 4) & 0x30;
hash_ix ^= ((*baddr) >> 2) & 0x3f;
hash_ix &= 0x3f;
if (hash_ix >= 32) {
hi_bits |= (1 << (hash_ix-32));
} else {
lo_bits |= (1 << hash_ix);
}
dmi = dmi->next;
}
/* Disable individual receive */
SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
*R_NETWORK_REC_CONFIG = network_rec_config_shadow;
}
*R_NETWORK_GA_0 = lo_bits;
*R_NETWORK_GA_1 = hi_bits;
spin_unlock(&lp->lock);
}
void
e100_hardware_send_packet(struct net_local *np, char *buf, int length)
{
D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
spin_lock(&np->led_lock);
if (!led_active && time_after(jiffies, led_next_time)) {
/* light the network leds depending on the current speed. */
e100_set_network_leds(NETWORK_ACTIVITY);
/* Set the earliest time we may clear the LED */
led_next_time = jiffies + NET_FLASH_TIME;
led_active = 1;
mod_timer(&clear_led_timer, jiffies + HZ/10);
}
spin_unlock(&np->led_lock);
/* configure the tx dma descriptor */
myNextTxDesc->descr.sw_len = length;
myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
myNextTxDesc->descr.buf = virt_to_phys(buf);
/* Move end of list */
myLastTxDesc->descr.ctrl &= ~d_eol;
myLastTxDesc = myNextTxDesc;
/* Restart DMA channel */
*R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
}
static void
e100_clear_network_leds(unsigned long dummy)
{
struct net_device *dev = (struct net_device *)dummy;
struct net_local *np = netdev_priv(dev);
spin_lock(&np->led_lock);
if (led_active && time_after(jiffies, led_next_time)) {
e100_set_network_leds(NO_NETWORK_ACTIVITY);
/* Set the earliest time we may set the LED */
led_next_time = jiffies + NET_FLASH_PAUSE;
led_active = 0;
}
spin_unlock(&np->led_lock);
}
static void
e100_set_network_leds(int active)
{
#if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
int light_leds = (active == NO_NETWORK_ACTIVITY);
#elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
int light_leds = (active == NETWORK_ACTIVITY);
#else
#error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
#endif
if (!current_speed) {
/* Make LED red, link is down */
#if defined(CONFIG_ETRAX_NETWORK_RED_ON_NO_CONNECTION)
CRIS_LED_NETWORK_SET(CRIS_LED_RED);
#else
CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
#endif
} else if (light_leds) {
if (current_speed == 10) {
CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
} else {
CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
}
} else {
CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void
e100_netpoll(struct net_device* netdev)
{
e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev, NULL);
}
#endif
static int
etrax_init_module(void)
{
return etrax_ethernet_init();
}
static int __init
e100_boot_setup(char* str)
{
struct sockaddr sa = {0};
int i;
/* Parse the colon separated Ethernet station address */
for (i = 0; i < ETH_ALEN; i++) {
unsigned int tmp;
if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
printk(KERN_WARNING "Malformed station address");
return 0;
}
sa.sa_data[i] = (char)tmp;
}
default_mac = sa;
return 1;
}
__setup("etrax100_eth=", e100_boot_setup);
module_init(etrax_init_module);