linux-sg2042/kernel/debug/debug_core.c

986 lines
23 KiB
C

/*
* Kernel Debug Core
*
* Maintainer: Jason Wessel <jason.wessel@windriver.com>
*
* Copyright (C) 2000-2001 VERITAS Software Corporation.
* Copyright (C) 2002-2004 Timesys Corporation
* Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
* Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
* Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
* Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
* Copyright (C) 2005-2009 Wind River Systems, Inc.
* Copyright (C) 2007 MontaVista Software, Inc.
* Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
* Contributors at various stages not listed above:
* Jason Wessel ( jason.wessel@windriver.com )
* George Anzinger <george@mvista.com>
* Anurekh Saxena (anurekh.saxena@timesys.com)
* Lake Stevens Instrument Division (Glenn Engel)
* Jim Kingdon, Cygnus Support.
*
* Original KGDB stub: David Grothe <dave@gcom.com>,
* Tigran Aivazian <tigran@sco.com>
*
* This file is licensed under the terms of the GNU General Public License
* version 2. This program is licensed "as is" without any warranty of any
* kind, whether express or implied.
*/
#include <linux/pid_namespace.h>
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/console.h>
#include <linux/threads.h>
#include <linux/uaccess.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/sysrq.h>
#include <linux/init.h>
#include <linux/kgdb.h>
#include <linux/kdb.h>
#include <linux/pid.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <asm/cacheflush.h>
#include <asm/byteorder.h>
#include <asm/atomic.h>
#include <asm/system.h>
#include "debug_core.h"
static int kgdb_break_asap;
struct debuggerinfo_struct kgdb_info[NR_CPUS];
/**
* kgdb_connected - Is a host GDB connected to us?
*/
int kgdb_connected;
EXPORT_SYMBOL_GPL(kgdb_connected);
/* All the KGDB handlers are installed */
int kgdb_io_module_registered;
/* Guard for recursive entry */
static int exception_level;
struct kgdb_io *dbg_io_ops;
static DEFINE_SPINLOCK(kgdb_registration_lock);
/* kgdb console driver is loaded */
static int kgdb_con_registered;
/* determine if kgdb console output should be used */
static int kgdb_use_con;
/* Flag for alternate operations for early debugging */
bool dbg_is_early = true;
/* Next cpu to become the master debug core */
int dbg_switch_cpu;
/* Use kdb or gdbserver mode */
int dbg_kdb_mode = 1;
static int __init opt_kgdb_con(char *str)
{
kgdb_use_con = 1;
return 0;
}
early_param("kgdbcon", opt_kgdb_con);
module_param(kgdb_use_con, int, 0644);
/*
* Holds information about breakpoints in a kernel. These breakpoints are
* added and removed by gdb.
*/
static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
[0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
};
/*
* The CPU# of the active CPU, or -1 if none:
*/
atomic_t kgdb_active = ATOMIC_INIT(-1);
EXPORT_SYMBOL_GPL(kgdb_active);
/*
* We use NR_CPUs not PERCPU, in case kgdb is used to debug early
* bootup code (which might not have percpu set up yet):
*/
static atomic_t passive_cpu_wait[NR_CPUS];
static atomic_t cpu_in_kgdb[NR_CPUS];
static atomic_t kgdb_break_tasklet_var;
atomic_t kgdb_setting_breakpoint;
struct task_struct *kgdb_usethread;
struct task_struct *kgdb_contthread;
int kgdb_single_step;
static pid_t kgdb_sstep_pid;
/* to keep track of the CPU which is doing the single stepping*/
atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
/*
* If you are debugging a problem where roundup (the collection of
* all other CPUs) is a problem [this should be extremely rare],
* then use the nokgdbroundup option to avoid roundup. In that case
* the other CPUs might interfere with your debugging context, so
* use this with care:
*/
static int kgdb_do_roundup = 1;
static int __init opt_nokgdbroundup(char *str)
{
kgdb_do_roundup = 0;
return 0;
}
early_param("nokgdbroundup", opt_nokgdbroundup);
/*
* Finally, some KGDB code :-)
*/
/*
* Weak aliases for breakpoint management,
* can be overriden by architectures when needed:
*/
int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
{
int err;
err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
if (err)
return err;
return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
BREAK_INSTR_SIZE);
}
int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
{
return probe_kernel_write((char *)addr,
(char *)bundle, BREAK_INSTR_SIZE);
}
int __weak kgdb_validate_break_address(unsigned long addr)
{
char tmp_variable[BREAK_INSTR_SIZE];
int err;
/* Validate setting the breakpoint and then removing it. In the
* remove fails, the kernel needs to emit a bad message because we
* are deep trouble not being able to put things back the way we
* found them.
*/
err = kgdb_arch_set_breakpoint(addr, tmp_variable);
if (err)
return err;
err = kgdb_arch_remove_breakpoint(addr, tmp_variable);
if (err)
printk(KERN_ERR "KGDB: Critical breakpoint error, kernel "
"memory destroyed at: %lx", addr);
return err;
}
unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
{
return instruction_pointer(regs);
}
int __weak kgdb_arch_init(void)
{
return 0;
}
int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
{
return 0;
}
/**
* kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
* @regs: Current &struct pt_regs.
*
* This function will be called if the particular architecture must
* disable hardware debugging while it is processing gdb packets or
* handling exception.
*/
void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
{
}
/*
* Some architectures need cache flushes when we set/clear a
* breakpoint:
*/
static void kgdb_flush_swbreak_addr(unsigned long addr)
{
if (!CACHE_FLUSH_IS_SAFE)
return;
if (current->mm && current->mm->mmap_cache) {
flush_cache_range(current->mm->mmap_cache,
addr, addr + BREAK_INSTR_SIZE);
}
/* Force flush instruction cache if it was outside the mm */
flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
}
/*
* SW breakpoint management:
*/
int dbg_activate_sw_breakpoints(void)
{
unsigned long addr;
int error;
int ret = 0;
int i;
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if (kgdb_break[i].state != BP_SET)
continue;
addr = kgdb_break[i].bpt_addr;
error = kgdb_arch_set_breakpoint(addr,
kgdb_break[i].saved_instr);
if (error) {
ret = error;
printk(KERN_INFO "KGDB: BP install failed: %lx", addr);
continue;
}
kgdb_flush_swbreak_addr(addr);
kgdb_break[i].state = BP_ACTIVE;
}
return ret;
}
int dbg_set_sw_break(unsigned long addr)
{
int err = kgdb_validate_break_address(addr);
int breakno = -1;
int i;
if (err)
return err;
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if ((kgdb_break[i].state == BP_SET) &&
(kgdb_break[i].bpt_addr == addr))
return -EEXIST;
}
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if (kgdb_break[i].state == BP_REMOVED &&
kgdb_break[i].bpt_addr == addr) {
breakno = i;
break;
}
}
if (breakno == -1) {
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if (kgdb_break[i].state == BP_UNDEFINED) {
breakno = i;
break;
}
}
}
if (breakno == -1)
return -E2BIG;
kgdb_break[breakno].state = BP_SET;
kgdb_break[breakno].type = BP_BREAKPOINT;
kgdb_break[breakno].bpt_addr = addr;
return 0;
}
int dbg_deactivate_sw_breakpoints(void)
{
unsigned long addr;
int error;
int ret = 0;
int i;
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if (kgdb_break[i].state != BP_ACTIVE)
continue;
addr = kgdb_break[i].bpt_addr;
error = kgdb_arch_remove_breakpoint(addr,
kgdb_break[i].saved_instr);
if (error) {
printk(KERN_INFO "KGDB: BP remove failed: %lx\n", addr);
ret = error;
}
kgdb_flush_swbreak_addr(addr);
kgdb_break[i].state = BP_SET;
}
return ret;
}
int dbg_remove_sw_break(unsigned long addr)
{
int i;
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if ((kgdb_break[i].state == BP_SET) &&
(kgdb_break[i].bpt_addr == addr)) {
kgdb_break[i].state = BP_REMOVED;
return 0;
}
}
return -ENOENT;
}
int kgdb_isremovedbreak(unsigned long addr)
{
int i;
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if ((kgdb_break[i].state == BP_REMOVED) &&
(kgdb_break[i].bpt_addr == addr))
return 1;
}
return 0;
}
int dbg_remove_all_break(void)
{
unsigned long addr;
int error;
int i;
/* Clear memory breakpoints. */
for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
if (kgdb_break[i].state != BP_ACTIVE)
goto setundefined;
addr = kgdb_break[i].bpt_addr;
error = kgdb_arch_remove_breakpoint(addr,
kgdb_break[i].saved_instr);
if (error)
printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n",
addr);
setundefined:
kgdb_break[i].state = BP_UNDEFINED;
}
/* Clear hardware breakpoints. */
if (arch_kgdb_ops.remove_all_hw_break)
arch_kgdb_ops.remove_all_hw_break();
return 0;
}
/*
* Return true if there is a valid kgdb I/O module. Also if no
* debugger is attached a message can be printed to the console about
* waiting for the debugger to attach.
*
* The print_wait argument is only to be true when called from inside
* the core kgdb_handle_exception, because it will wait for the
* debugger to attach.
*/
static int kgdb_io_ready(int print_wait)
{
if (!dbg_io_ops)
return 0;
if (kgdb_connected)
return 1;
if (atomic_read(&kgdb_setting_breakpoint))
return 1;
if (print_wait) {
#ifdef CONFIG_KGDB_KDB
if (!dbg_kdb_mode)
printk(KERN_CRIT "KGDB: waiting... or $3#33 for KDB\n");
#else
printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
#endif
}
return 1;
}
static int kgdb_reenter_check(struct kgdb_state *ks)
{
unsigned long addr;
if (atomic_read(&kgdb_active) != raw_smp_processor_id())
return 0;
/* Panic on recursive debugger calls: */
exception_level++;
addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
dbg_deactivate_sw_breakpoints();
/*
* If the break point removed ok at the place exception
* occurred, try to recover and print a warning to the end
* user because the user planted a breakpoint in a place that
* KGDB needs in order to function.
*/
if (dbg_remove_sw_break(addr) == 0) {
exception_level = 0;
kgdb_skipexception(ks->ex_vector, ks->linux_regs);
dbg_activate_sw_breakpoints();
printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n",
addr);
WARN_ON_ONCE(1);
return 1;
}
dbg_remove_all_break();
kgdb_skipexception(ks->ex_vector, ks->linux_regs);
if (exception_level > 1) {
dump_stack();
panic("Recursive entry to debugger");
}
printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
#ifdef CONFIG_KGDB_KDB
/* Allow kdb to debug itself one level */
return 0;
#endif
dump_stack();
panic("Recursive entry to debugger");
return 1;
}
static void dbg_cpu_switch(int cpu, int next_cpu)
{
/* Mark the cpu we are switching away from as a slave when it
* holds the kgdb_active token. This must be done so that the
* that all the cpus wait in for the debug core will not enter
* again as the master. */
if (cpu == atomic_read(&kgdb_active)) {
kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE;
kgdb_info[cpu].exception_state &= ~DCPU_WANT_MASTER;
}
kgdb_info[next_cpu].exception_state |= DCPU_NEXT_MASTER;
}
static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs)
{
unsigned long flags;
int sstep_tries = 100;
int error;
int i, cpu;
int trace_on = 0;
acquirelock:
/*
* Interrupts will be restored by the 'trap return' code, except when
* single stepping.
*/
local_irq_save(flags);
cpu = ks->cpu;
kgdb_info[cpu].debuggerinfo = regs;
kgdb_info[cpu].task = current;
kgdb_info[cpu].ret_state = 0;
kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
/*
* Make sure the above info reaches the primary CPU before
* our cpu_in_kgdb[] flag setting does:
*/
atomic_inc(&cpu_in_kgdb[cpu]);
if (exception_level == 1)
goto cpu_master_loop;
/*
* CPU will loop if it is a slave or request to become a kgdb
* master cpu and acquire the kgdb_active lock:
*/
while (1) {
cpu_loop:
if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
goto cpu_master_loop;
} else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
if (atomic_cmpxchg(&kgdb_active, -1, cpu) == cpu)
break;
} else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
if (!atomic_read(&passive_cpu_wait[cpu]))
goto return_normal;
} else {
return_normal:
/* Return to normal operation by executing any
* hw breakpoint fixup.
*/
if (arch_kgdb_ops.correct_hw_break)
arch_kgdb_ops.correct_hw_break();
if (trace_on)
tracing_on();
atomic_dec(&cpu_in_kgdb[cpu]);
touch_softlockup_watchdog_sync();
clocksource_touch_watchdog();
local_irq_restore(flags);
return 0;
}
cpu_relax();
}
/*
* For single stepping, try to only enter on the processor
* that was single stepping. To gaurd against a deadlock, the
* kernel will only try for the value of sstep_tries before
* giving up and continuing on.
*/
if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
(kgdb_info[cpu].task &&
kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
atomic_set(&kgdb_active, -1);
touch_softlockup_watchdog_sync();
clocksource_touch_watchdog();
local_irq_restore(flags);
goto acquirelock;
}
if (!kgdb_io_ready(1)) {
kgdb_info[cpu].ret_state = 1;
goto kgdb_restore; /* No I/O connection, resume the system */
}
/*
* Don't enter if we have hit a removed breakpoint.
*/
if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
goto kgdb_restore;
/* Call the I/O driver's pre_exception routine */
if (dbg_io_ops->pre_exception)
dbg_io_ops->pre_exception();
kgdb_disable_hw_debug(ks->linux_regs);
/*
* Get the passive CPU lock which will hold all the non-primary
* CPU in a spin state while the debugger is active
*/
if (!kgdb_single_step) {
for (i = 0; i < NR_CPUS; i++)
atomic_inc(&passive_cpu_wait[i]);
}
#ifdef CONFIG_SMP
/* Signal the other CPUs to enter kgdb_wait() */
if ((!kgdb_single_step) && kgdb_do_roundup)
kgdb_roundup_cpus(flags);
#endif
/*
* Wait for the other CPUs to be notified and be waiting for us:
*/
for_each_online_cpu(i) {
while (kgdb_do_roundup && !atomic_read(&cpu_in_kgdb[i]))
cpu_relax();
}
/*
* At this point the primary processor is completely
* in the debugger and all secondary CPUs are quiescent
*/
dbg_deactivate_sw_breakpoints();
kgdb_single_step = 0;
kgdb_contthread = current;
exception_level = 0;
trace_on = tracing_is_on();
if (trace_on)
tracing_off();
while (1) {
cpu_master_loop:
if (dbg_kdb_mode) {
kgdb_connected = 1;
error = kdb_stub(ks);
if (error == -1)
continue;
kgdb_connected = 0;
} else {
error = gdb_serial_stub(ks);
}
if (error == DBG_PASS_EVENT) {
dbg_kdb_mode = !dbg_kdb_mode;
} else if (error == DBG_SWITCH_CPU_EVENT) {
dbg_cpu_switch(cpu, dbg_switch_cpu);
goto cpu_loop;
} else {
kgdb_info[cpu].ret_state = error;
break;
}
}
/* Call the I/O driver's post_exception routine */
if (dbg_io_ops->post_exception)
dbg_io_ops->post_exception();
atomic_dec(&cpu_in_kgdb[ks->cpu]);
if (!kgdb_single_step) {
for (i = NR_CPUS-1; i >= 0; i--)
atomic_dec(&passive_cpu_wait[i]);
/*
* Wait till all the CPUs have quit from the debugger,
* but allow a CPU that hit an exception and is
* waiting to become the master to remain in the debug
* core.
*/
for_each_online_cpu(i) {
while (kgdb_do_roundup &&
atomic_read(&cpu_in_kgdb[i]) &&
!(kgdb_info[i].exception_state &
DCPU_WANT_MASTER))
cpu_relax();
}
}
kgdb_restore:
if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
if (kgdb_info[sstep_cpu].task)
kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
else
kgdb_sstep_pid = 0;
}
if (trace_on)
tracing_on();
/* Free kgdb_active */
atomic_set(&kgdb_active, -1);
touch_softlockup_watchdog_sync();
clocksource_touch_watchdog();
local_irq_restore(flags);
return kgdb_info[cpu].ret_state;
}
/*
* kgdb_handle_exception() - main entry point from a kernel exception
*
* Locking hierarchy:
* interface locks, if any (begin_session)
* kgdb lock (kgdb_active)
*/
int
kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
{
struct kgdb_state kgdb_var;
struct kgdb_state *ks = &kgdb_var;
int ret;
ks->cpu = raw_smp_processor_id();
ks->ex_vector = evector;
ks->signo = signo;
ks->err_code = ecode;
ks->kgdb_usethreadid = 0;
ks->linux_regs = regs;
if (kgdb_reenter_check(ks))
return 0; /* Ouch, double exception ! */
kgdb_info[ks->cpu].exception_state |= DCPU_WANT_MASTER;
ret = kgdb_cpu_enter(ks, regs);
kgdb_info[ks->cpu].exception_state &= ~(DCPU_WANT_MASTER |
DCPU_IS_SLAVE);
return ret;
}
int kgdb_nmicallback(int cpu, void *regs)
{
#ifdef CONFIG_SMP
struct kgdb_state kgdb_var;
struct kgdb_state *ks = &kgdb_var;
memset(ks, 0, sizeof(struct kgdb_state));
ks->cpu = cpu;
ks->linux_regs = regs;
if (!atomic_read(&cpu_in_kgdb[cpu]) &&
atomic_read(&kgdb_active) != -1 &&
atomic_read(&kgdb_active) != cpu) {
kgdb_info[cpu].exception_state |= DCPU_IS_SLAVE;
kgdb_cpu_enter(ks, regs);
kgdb_info[cpu].exception_state &= ~DCPU_IS_SLAVE;
return 0;
}
#endif
return 1;
}
static void kgdb_console_write(struct console *co, const char *s,
unsigned count)
{
unsigned long flags;
/* If we're debugging, or KGDB has not connected, don't try
* and print. */
if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
return;
local_irq_save(flags);
gdbstub_msg_write(s, count);
local_irq_restore(flags);
}
static struct console kgdbcons = {
.name = "kgdb",
.write = kgdb_console_write,
.flags = CON_PRINTBUFFER | CON_ENABLED,
.index = -1,
};
#ifdef CONFIG_MAGIC_SYSRQ
static void sysrq_handle_dbg(int key)
{
if (!dbg_io_ops) {
printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
return;
}
if (!kgdb_connected) {
#ifdef CONFIG_KGDB_KDB
if (!dbg_kdb_mode)
printk(KERN_CRIT "KGDB or $3#33 for KDB\n");
#else
printk(KERN_CRIT "Entering KGDB\n");
#endif
}
kgdb_breakpoint();
}
static struct sysrq_key_op sysrq_dbg_op = {
.handler = sysrq_handle_dbg,
.help_msg = "debug(G)",
.action_msg = "DEBUG",
};
#endif
static int kgdb_panic_event(struct notifier_block *self,
unsigned long val,
void *data)
{
if (dbg_kdb_mode)
kdb_printf("PANIC: %s\n", (char *)data);
kgdb_breakpoint();
return NOTIFY_DONE;
}
static struct notifier_block kgdb_panic_event_nb = {
.notifier_call = kgdb_panic_event,
.priority = INT_MAX,
};
void __weak kgdb_arch_late(void)
{
}
void __init dbg_late_init(void)
{
dbg_is_early = false;
if (kgdb_io_module_registered)
kgdb_arch_late();
kdb_init(KDB_INIT_FULL);
}
static void kgdb_register_callbacks(void)
{
if (!kgdb_io_module_registered) {
kgdb_io_module_registered = 1;
kgdb_arch_init();
if (!dbg_is_early)
kgdb_arch_late();
atomic_notifier_chain_register(&panic_notifier_list,
&kgdb_panic_event_nb);
#ifdef CONFIG_MAGIC_SYSRQ
register_sysrq_key('g', &sysrq_dbg_op);
#endif
if (kgdb_use_con && !kgdb_con_registered) {
register_console(&kgdbcons);
kgdb_con_registered = 1;
}
}
}
static void kgdb_unregister_callbacks(void)
{
/*
* When this routine is called KGDB should unregister from the
* panic handler and clean up, making sure it is not handling any
* break exceptions at the time.
*/
if (kgdb_io_module_registered) {
kgdb_io_module_registered = 0;
atomic_notifier_chain_unregister(&panic_notifier_list,
&kgdb_panic_event_nb);
kgdb_arch_exit();
#ifdef CONFIG_MAGIC_SYSRQ
unregister_sysrq_key('g', &sysrq_dbg_op);
#endif
if (kgdb_con_registered) {
unregister_console(&kgdbcons);
kgdb_con_registered = 0;
}
}
}
/*
* There are times a tasklet needs to be used vs a compiled in
* break point so as to cause an exception outside a kgdb I/O module,
* such as is the case with kgdboe, where calling a breakpoint in the
* I/O driver itself would be fatal.
*/
static void kgdb_tasklet_bpt(unsigned long ing)
{
kgdb_breakpoint();
atomic_set(&kgdb_break_tasklet_var, 0);
}
static DECLARE_TASKLET(kgdb_tasklet_breakpoint, kgdb_tasklet_bpt, 0);
void kgdb_schedule_breakpoint(void)
{
if (atomic_read(&kgdb_break_tasklet_var) ||
atomic_read(&kgdb_active) != -1 ||
atomic_read(&kgdb_setting_breakpoint))
return;
atomic_inc(&kgdb_break_tasklet_var);
tasklet_schedule(&kgdb_tasklet_breakpoint);
}
EXPORT_SYMBOL_GPL(kgdb_schedule_breakpoint);
static void kgdb_initial_breakpoint(void)
{
kgdb_break_asap = 0;
printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
kgdb_breakpoint();
}
/**
* kgdb_register_io_module - register KGDB IO module
* @new_dbg_io_ops: the io ops vector
*
* Register it with the KGDB core.
*/
int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
{
int err;
spin_lock(&kgdb_registration_lock);
if (dbg_io_ops) {
spin_unlock(&kgdb_registration_lock);
printk(KERN_ERR "kgdb: Another I/O driver is already "
"registered with KGDB.\n");
return -EBUSY;
}
if (new_dbg_io_ops->init) {
err = new_dbg_io_ops->init();
if (err) {
spin_unlock(&kgdb_registration_lock);
return err;
}
}
dbg_io_ops = new_dbg_io_ops;
spin_unlock(&kgdb_registration_lock);
printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
new_dbg_io_ops->name);
/* Arm KGDB now. */
kgdb_register_callbacks();
if (kgdb_break_asap)
kgdb_initial_breakpoint();
return 0;
}
EXPORT_SYMBOL_GPL(kgdb_register_io_module);
/**
* kkgdb_unregister_io_module - unregister KGDB IO module
* @old_dbg_io_ops: the io ops vector
*
* Unregister it with the KGDB core.
*/
void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
{
BUG_ON(kgdb_connected);
/*
* KGDB is no longer able to communicate out, so
* unregister our callbacks and reset state.
*/
kgdb_unregister_callbacks();
spin_lock(&kgdb_registration_lock);
WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
dbg_io_ops = NULL;
spin_unlock(&kgdb_registration_lock);
printk(KERN_INFO
"kgdb: Unregistered I/O driver %s, debugger disabled.\n",
old_dbg_io_ops->name);
}
EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
int dbg_io_get_char(void)
{
int ret = dbg_io_ops->read_char();
if (ret == NO_POLL_CHAR)
return -1;
if (!dbg_kdb_mode)
return ret;
if (ret == 127)
return 8;
return ret;
}
/**
* kgdb_breakpoint - generate breakpoint exception
*
* This function will generate a breakpoint exception. It is used at the
* beginning of a program to sync up with a debugger and can be used
* otherwise as a quick means to stop program execution and "break" into
* the debugger.
*/
void kgdb_breakpoint(void)
{
atomic_inc(&kgdb_setting_breakpoint);
wmb(); /* Sync point before breakpoint */
arch_kgdb_breakpoint();
wmb(); /* Sync point after breakpoint */
atomic_dec(&kgdb_setting_breakpoint);
}
EXPORT_SYMBOL_GPL(kgdb_breakpoint);
static int __init opt_kgdb_wait(char *str)
{
kgdb_break_asap = 1;
kdb_init(KDB_INIT_EARLY);
if (kgdb_io_module_registered)
kgdb_initial_breakpoint();
return 0;
}
early_param("kgdbwait", opt_kgdb_wait);