943 lines
25 KiB
C
943 lines
25 KiB
C
/*
|
|
* Copyright 2012-15 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: AMD
|
|
*
|
|
*/
|
|
|
|
#include "dm_services.h"
|
|
#include "dce_aux.h"
|
|
#include "dce/dce_11_0_sh_mask.h"
|
|
|
|
#define CTX \
|
|
aux110->base.base.ctx
|
|
#define REG(reg_name)\
|
|
(aux110->regs->reg_name)
|
|
|
|
#define DC_LOGGER \
|
|
engine->base.ctx->logger
|
|
|
|
#include "reg_helper.h"
|
|
|
|
#define FROM_AUX_ENGINE(ptr) \
|
|
container_of((ptr), struct aux_engine_dce110, base)
|
|
|
|
#define FROM_ENGINE(ptr) \
|
|
FROM_AUX_ENGINE(container_of((ptr), struct aux_engine, base))
|
|
|
|
#define FROM_AUX_ENGINE_ENGINE(ptr) \
|
|
container_of((ptr), struct aux_engine, base)
|
|
enum {
|
|
AUX_INVALID_REPLY_RETRY_COUNTER = 1,
|
|
AUX_TIMED_OUT_RETRY_COUNTER = 2,
|
|
AUX_DEFER_RETRY_COUNTER = 6
|
|
};
|
|
static void release_engine(
|
|
struct engine *engine)
|
|
{
|
|
struct aux_engine_dce110 *aux110 = FROM_ENGINE(engine);
|
|
|
|
dal_ddc_close(engine->ddc);
|
|
|
|
engine->ddc = NULL;
|
|
|
|
REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_DONE_USING_AUX_REG, 1);
|
|
}
|
|
|
|
#define SW_CAN_ACCESS_AUX 1
|
|
#define DMCU_CAN_ACCESS_AUX 2
|
|
|
|
static bool is_engine_available(
|
|
struct aux_engine *engine)
|
|
{
|
|
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
|
|
|
|
uint32_t value = REG_READ(AUX_ARB_CONTROL);
|
|
uint32_t field = get_reg_field_value(
|
|
value,
|
|
AUX_ARB_CONTROL,
|
|
AUX_REG_RW_CNTL_STATUS);
|
|
|
|
return (field != DMCU_CAN_ACCESS_AUX);
|
|
}
|
|
static bool acquire_engine(
|
|
struct aux_engine *engine)
|
|
{
|
|
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
|
|
|
|
uint32_t value = REG_READ(AUX_ARB_CONTROL);
|
|
uint32_t field = get_reg_field_value(
|
|
value,
|
|
AUX_ARB_CONTROL,
|
|
AUX_REG_RW_CNTL_STATUS);
|
|
if (field == DMCU_CAN_ACCESS_AUX)
|
|
return false;
|
|
/* enable AUX before request SW to access AUX */
|
|
value = REG_READ(AUX_CONTROL);
|
|
field = get_reg_field_value(value,
|
|
AUX_CONTROL,
|
|
AUX_EN);
|
|
|
|
if (field == 0) {
|
|
set_reg_field_value(
|
|
value,
|
|
1,
|
|
AUX_CONTROL,
|
|
AUX_EN);
|
|
|
|
if (REG(AUX_RESET_MASK)) {
|
|
/*DP_AUX block as part of the enable sequence*/
|
|
set_reg_field_value(
|
|
value,
|
|
1,
|
|
AUX_CONTROL,
|
|
AUX_RESET);
|
|
}
|
|
|
|
REG_WRITE(AUX_CONTROL, value);
|
|
|
|
if (REG(AUX_RESET_MASK)) {
|
|
/*poll HW to make sure reset it done*/
|
|
|
|
REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 1,
|
|
1, 11);
|
|
|
|
set_reg_field_value(
|
|
value,
|
|
0,
|
|
AUX_CONTROL,
|
|
AUX_RESET);
|
|
|
|
REG_WRITE(AUX_CONTROL, value);
|
|
|
|
REG_WAIT(AUX_CONTROL, AUX_RESET_DONE, 0,
|
|
1, 11);
|
|
}
|
|
} /*if (field)*/
|
|
|
|
/* request SW to access AUX */
|
|
REG_UPDATE(AUX_ARB_CONTROL, AUX_SW_USE_AUX_REG_REQ, 1);
|
|
|
|
value = REG_READ(AUX_ARB_CONTROL);
|
|
field = get_reg_field_value(
|
|
value,
|
|
AUX_ARB_CONTROL,
|
|
AUX_REG_RW_CNTL_STATUS);
|
|
|
|
return (field == SW_CAN_ACCESS_AUX);
|
|
}
|
|
|
|
#define COMPOSE_AUX_SW_DATA_16_20(command, address) \
|
|
((command) | ((0xF0000 & (address)) >> 16))
|
|
|
|
#define COMPOSE_AUX_SW_DATA_8_15(address) \
|
|
((0xFF00 & (address)) >> 8)
|
|
|
|
#define COMPOSE_AUX_SW_DATA_0_7(address) \
|
|
(0xFF & (address))
|
|
|
|
static void submit_channel_request(
|
|
struct aux_engine *engine,
|
|
struct aux_request_transaction_data *request)
|
|
{
|
|
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
|
|
uint32_t value;
|
|
uint32_t length;
|
|
|
|
bool is_write =
|
|
((request->type == AUX_TRANSACTION_TYPE_DP) &&
|
|
(request->action == I2CAUX_TRANSACTION_ACTION_DP_WRITE)) ||
|
|
((request->type == AUX_TRANSACTION_TYPE_I2C) &&
|
|
((request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) ||
|
|
(request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT)));
|
|
if (REG(AUXN_IMPCAL)) {
|
|
/* clear_aux_error */
|
|
REG_UPDATE_SEQ(AUXN_IMPCAL, AUXN_CALOUT_ERROR_AK,
|
|
1,
|
|
0);
|
|
|
|
REG_UPDATE_SEQ(AUXP_IMPCAL, AUXP_CALOUT_ERROR_AK,
|
|
1,
|
|
0);
|
|
|
|
/* force_default_calibrate */
|
|
REG_UPDATE_1BY1_2(AUXN_IMPCAL,
|
|
AUXN_IMPCAL_ENABLE, 1,
|
|
AUXN_IMPCAL_OVERRIDE_ENABLE, 0);
|
|
|
|
/* bug? why AUXN update EN and OVERRIDE_EN 1 by 1 while AUX P toggles OVERRIDE? */
|
|
|
|
REG_UPDATE_SEQ(AUXP_IMPCAL, AUXP_IMPCAL_OVERRIDE_ENABLE,
|
|
1,
|
|
0);
|
|
}
|
|
/* set the delay and the number of bytes to write */
|
|
|
|
/* The length include
|
|
* the 4 bit header and the 20 bit address
|
|
* (that is 3 byte).
|
|
* If the requested length is non zero this means
|
|
* an addition byte specifying the length is required.
|
|
*/
|
|
|
|
length = request->length ? 4 : 3;
|
|
if (is_write)
|
|
length += request->length;
|
|
|
|
REG_UPDATE_2(AUX_SW_CONTROL,
|
|
AUX_SW_START_DELAY, request->delay,
|
|
AUX_SW_WR_BYTES, length);
|
|
|
|
/* program action and address and payload data (if 'is_write') */
|
|
value = REG_UPDATE_4(AUX_SW_DATA,
|
|
AUX_SW_INDEX, 0,
|
|
AUX_SW_DATA_RW, 0,
|
|
AUX_SW_AUTOINCREMENT_DISABLE, 1,
|
|
AUX_SW_DATA, COMPOSE_AUX_SW_DATA_16_20(request->action, request->address));
|
|
|
|
value = REG_SET_2(AUX_SW_DATA, value,
|
|
AUX_SW_AUTOINCREMENT_DISABLE, 0,
|
|
AUX_SW_DATA, COMPOSE_AUX_SW_DATA_8_15(request->address));
|
|
|
|
value = REG_SET(AUX_SW_DATA, value,
|
|
AUX_SW_DATA, COMPOSE_AUX_SW_DATA_0_7(request->address));
|
|
|
|
if (request->length) {
|
|
value = REG_SET(AUX_SW_DATA, value,
|
|
AUX_SW_DATA, request->length - 1);
|
|
}
|
|
|
|
if (is_write) {
|
|
/* Load the HW buffer with the Data to be sent.
|
|
* This is relevant for write operation.
|
|
* For read, the data recived data will be
|
|
* processed in process_channel_reply().
|
|
*/
|
|
uint32_t i = 0;
|
|
|
|
while (i < request->length) {
|
|
value = REG_SET(AUX_SW_DATA, value,
|
|
AUX_SW_DATA, request->data[i]);
|
|
|
|
++i;
|
|
}
|
|
}
|
|
|
|
REG_UPDATE(AUX_INTERRUPT_CONTROL, AUX_SW_DONE_ACK, 1);
|
|
REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 0,
|
|
10, aux110->timeout_period/10);
|
|
REG_UPDATE(AUX_SW_CONTROL, AUX_SW_GO, 1);
|
|
}
|
|
|
|
static int read_channel_reply(struct aux_engine *engine, uint32_t size,
|
|
uint8_t *buffer, uint8_t *reply_result,
|
|
uint32_t *sw_status)
|
|
{
|
|
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
|
|
uint32_t bytes_replied;
|
|
uint32_t reply_result_32;
|
|
|
|
*sw_status = REG_GET(AUX_SW_STATUS, AUX_SW_REPLY_BYTE_COUNT,
|
|
&bytes_replied);
|
|
|
|
/* In case HPD is LOW, exit AUX transaction */
|
|
if ((*sw_status & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
|
|
return -1;
|
|
|
|
/* Need at least the status byte */
|
|
if (!bytes_replied)
|
|
return -1;
|
|
|
|
REG_UPDATE_1BY1_3(AUX_SW_DATA,
|
|
AUX_SW_INDEX, 0,
|
|
AUX_SW_AUTOINCREMENT_DISABLE, 1,
|
|
AUX_SW_DATA_RW, 1);
|
|
|
|
REG_GET(AUX_SW_DATA, AUX_SW_DATA, &reply_result_32);
|
|
reply_result_32 = reply_result_32 >> 4;
|
|
*reply_result = (uint8_t)reply_result_32;
|
|
|
|
if (reply_result_32 == 0) { /* ACK */
|
|
uint32_t i = 0;
|
|
|
|
/* First byte was already used to get the command status */
|
|
--bytes_replied;
|
|
|
|
/* Do not overflow buffer */
|
|
if (bytes_replied > size)
|
|
return -1;
|
|
|
|
while (i < bytes_replied) {
|
|
uint32_t aux_sw_data_val;
|
|
|
|
REG_GET(AUX_SW_DATA, AUX_SW_DATA, &aux_sw_data_val);
|
|
buffer[i] = aux_sw_data_val;
|
|
++i;
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void process_channel_reply(
|
|
struct aux_engine *engine,
|
|
struct aux_reply_transaction_data *reply)
|
|
{
|
|
int bytes_replied;
|
|
uint8_t reply_result;
|
|
uint32_t sw_status;
|
|
|
|
bytes_replied = read_channel_reply(engine, reply->length, reply->data,
|
|
&reply_result, &sw_status);
|
|
|
|
/* in case HPD is LOW, exit AUX transaction */
|
|
if ((sw_status & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK)) {
|
|
reply->status = AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON;
|
|
return;
|
|
}
|
|
|
|
if (bytes_replied < 0) {
|
|
/* Need to handle an error case...
|
|
* Hopefully, upper layer function won't call this function if
|
|
* the number of bytes in the reply was 0, because there was
|
|
* surely an error that was asserted that should have been
|
|
* handled for hot plug case, this could happens
|
|
*/
|
|
if (!(sw_status & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK)) {
|
|
reply->status = AUX_TRANSACTION_REPLY_INVALID;
|
|
ASSERT_CRITICAL(false);
|
|
return;
|
|
}
|
|
} else {
|
|
|
|
switch (reply_result) {
|
|
case 0: /* ACK */
|
|
reply->status = AUX_TRANSACTION_REPLY_AUX_ACK;
|
|
break;
|
|
case 1: /* NACK */
|
|
reply->status = AUX_TRANSACTION_REPLY_AUX_NACK;
|
|
break;
|
|
case 2: /* DEFER */
|
|
reply->status = AUX_TRANSACTION_REPLY_AUX_DEFER;
|
|
break;
|
|
case 4: /* AUX ACK / I2C NACK */
|
|
reply->status = AUX_TRANSACTION_REPLY_I2C_NACK;
|
|
break;
|
|
case 8: /* AUX ACK / I2C DEFER */
|
|
reply->status = AUX_TRANSACTION_REPLY_I2C_DEFER;
|
|
break;
|
|
default:
|
|
reply->status = AUX_TRANSACTION_REPLY_INVALID;
|
|
}
|
|
}
|
|
}
|
|
|
|
static enum aux_channel_operation_result get_channel_status(
|
|
struct aux_engine *engine,
|
|
uint8_t *returned_bytes)
|
|
{
|
|
struct aux_engine_dce110 *aux110 = FROM_AUX_ENGINE(engine);
|
|
|
|
uint32_t value;
|
|
|
|
if (returned_bytes == NULL) {
|
|
/*caller pass NULL pointer*/
|
|
ASSERT_CRITICAL(false);
|
|
return AUX_CHANNEL_OPERATION_FAILED_REASON_UNKNOWN;
|
|
}
|
|
*returned_bytes = 0;
|
|
|
|
/* poll to make sure that SW_DONE is asserted */
|
|
value = REG_WAIT(AUX_SW_STATUS, AUX_SW_DONE, 1,
|
|
10, aux110->timeout_period/10);
|
|
|
|
/* in case HPD is LOW, exit AUX transaction */
|
|
if ((value & AUX_SW_STATUS__AUX_SW_HPD_DISCON_MASK))
|
|
return AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON;
|
|
|
|
/* Note that the following bits are set in 'status.bits'
|
|
* during CTS 4.2.1.2 (FW 3.3.1):
|
|
* AUX_SW_RX_MIN_COUNT_VIOL, AUX_SW_RX_INVALID_STOP,
|
|
* AUX_SW_RX_RECV_NO_DET, AUX_SW_RX_RECV_INVALID_H.
|
|
*
|
|
* AUX_SW_RX_MIN_COUNT_VIOL is an internal,
|
|
* HW debugging bit and should be ignored.
|
|
*/
|
|
if (value & AUX_SW_STATUS__AUX_SW_DONE_MASK) {
|
|
if ((value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_STATE_MASK) ||
|
|
(value & AUX_SW_STATUS__AUX_SW_RX_TIMEOUT_MASK))
|
|
return AUX_CHANNEL_OPERATION_FAILED_TIMEOUT;
|
|
|
|
else if ((value & AUX_SW_STATUS__AUX_SW_RX_INVALID_STOP_MASK) ||
|
|
(value & AUX_SW_STATUS__AUX_SW_RX_RECV_NO_DET_MASK) ||
|
|
(value &
|
|
AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_H_MASK) ||
|
|
(value & AUX_SW_STATUS__AUX_SW_RX_RECV_INVALID_L_MASK))
|
|
return AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY;
|
|
|
|
*returned_bytes = get_reg_field_value(value,
|
|
AUX_SW_STATUS,
|
|
AUX_SW_REPLY_BYTE_COUNT);
|
|
|
|
if (*returned_bytes == 0)
|
|
return
|
|
AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY;
|
|
else {
|
|
*returned_bytes -= 1;
|
|
return AUX_CHANNEL_OPERATION_SUCCEEDED;
|
|
}
|
|
} else {
|
|
/*time_elapsed >= aux_engine->timeout_period
|
|
* AUX_SW_STATUS__AUX_SW_HPD_DISCON = at this point
|
|
*/
|
|
ASSERT_CRITICAL(false);
|
|
return AUX_CHANNEL_OPERATION_FAILED_TIMEOUT;
|
|
}
|
|
}
|
|
static void process_read_reply(
|
|
struct aux_engine *engine,
|
|
struct read_command_context *ctx)
|
|
{
|
|
engine->funcs->process_channel_reply(engine, &ctx->reply);
|
|
|
|
switch (ctx->reply.status) {
|
|
case AUX_TRANSACTION_REPLY_AUX_ACK:
|
|
ctx->defer_retry_aux = 0;
|
|
if (ctx->returned_byte > ctx->current_read_length) {
|
|
ctx->status =
|
|
I2CAUX_TRANSACTION_STATUS_FAILED_PROTOCOL_ERROR;
|
|
ctx->operation_succeeded = false;
|
|
} else if (ctx->returned_byte < ctx->current_read_length) {
|
|
ctx->current_read_length -= ctx->returned_byte;
|
|
|
|
ctx->offset += ctx->returned_byte;
|
|
|
|
++ctx->invalid_reply_retry_aux_on_ack;
|
|
|
|
if (ctx->invalid_reply_retry_aux_on_ack >
|
|
AUX_INVALID_REPLY_RETRY_COUNTER) {
|
|
ctx->status =
|
|
I2CAUX_TRANSACTION_STATUS_FAILED_PROTOCOL_ERROR;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
} else {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_SUCCEEDED;
|
|
ctx->transaction_complete = true;
|
|
ctx->operation_succeeded = true;
|
|
}
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_AUX_NACK:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_NACK;
|
|
ctx->operation_succeeded = false;
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_AUX_DEFER:
|
|
++ctx->defer_retry_aux;
|
|
|
|
if (ctx->defer_retry_aux > AUX_DEFER_RETRY_COUNTER) {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_I2C_DEFER:
|
|
ctx->defer_retry_aux = 0;
|
|
|
|
++ctx->defer_retry_i2c;
|
|
|
|
if (ctx->defer_retry_i2c > AUX_DEFER_RETRY_COUNTER) {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_HPD_DISCON:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_HPD_DISCON;
|
|
ctx->operation_succeeded = false;
|
|
break;
|
|
default:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_UNKNOWN;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
}
|
|
static void process_read_request(
|
|
struct aux_engine *engine,
|
|
struct read_command_context *ctx)
|
|
{
|
|
enum aux_channel_operation_result operation_result;
|
|
|
|
engine->funcs->submit_channel_request(engine, &ctx->request);
|
|
|
|
operation_result = engine->funcs->get_channel_status(
|
|
engine, &ctx->returned_byte);
|
|
|
|
switch (operation_result) {
|
|
case AUX_CHANNEL_OPERATION_SUCCEEDED:
|
|
if (ctx->returned_byte > ctx->current_read_length) {
|
|
ctx->status =
|
|
I2CAUX_TRANSACTION_STATUS_FAILED_PROTOCOL_ERROR;
|
|
ctx->operation_succeeded = false;
|
|
} else {
|
|
ctx->timed_out_retry_aux = 0;
|
|
ctx->invalid_reply_retry_aux = 0;
|
|
|
|
ctx->reply.length = ctx->returned_byte;
|
|
ctx->reply.data = ctx->buffer;
|
|
|
|
process_read_reply(engine, ctx);
|
|
}
|
|
break;
|
|
case AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY:
|
|
++ctx->invalid_reply_retry_aux;
|
|
|
|
if (ctx->invalid_reply_retry_aux >
|
|
AUX_INVALID_REPLY_RETRY_COUNTER) {
|
|
ctx->status =
|
|
I2CAUX_TRANSACTION_STATUS_FAILED_PROTOCOL_ERROR;
|
|
ctx->operation_succeeded = false;
|
|
} else
|
|
udelay(400);
|
|
break;
|
|
case AUX_CHANNEL_OPERATION_FAILED_TIMEOUT:
|
|
++ctx->timed_out_retry_aux;
|
|
|
|
if (ctx->timed_out_retry_aux > AUX_TIMED_OUT_RETRY_COUNTER) {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
|
ctx->operation_succeeded = false;
|
|
} else {
|
|
/* DP 1.2a, table 2-58:
|
|
* "S3: AUX Request CMD PENDING:
|
|
* retry 3 times, with 400usec wait on each"
|
|
* The HW timeout is set to 550usec,
|
|
* so we should not wait here
|
|
*/
|
|
}
|
|
break;
|
|
case AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_HPD_DISCON;
|
|
ctx->operation_succeeded = false;
|
|
break;
|
|
default:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_UNKNOWN;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
}
|
|
static bool read_command(
|
|
struct aux_engine *engine,
|
|
struct i2caux_transaction_request *request,
|
|
bool middle_of_transaction)
|
|
{
|
|
struct read_command_context ctx;
|
|
|
|
ctx.buffer = request->payload.data;
|
|
ctx.current_read_length = request->payload.length;
|
|
ctx.offset = 0;
|
|
ctx.timed_out_retry_aux = 0;
|
|
ctx.invalid_reply_retry_aux = 0;
|
|
ctx.defer_retry_aux = 0;
|
|
ctx.defer_retry_i2c = 0;
|
|
ctx.invalid_reply_retry_aux_on_ack = 0;
|
|
ctx.transaction_complete = false;
|
|
ctx.operation_succeeded = true;
|
|
|
|
if (request->payload.address_space ==
|
|
I2CAUX_TRANSACTION_ADDRESS_SPACE_DPCD) {
|
|
ctx.request.type = AUX_TRANSACTION_TYPE_DP;
|
|
ctx.request.action = I2CAUX_TRANSACTION_ACTION_DP_READ;
|
|
ctx.request.address = request->payload.address;
|
|
} else if (request->payload.address_space ==
|
|
I2CAUX_TRANSACTION_ADDRESS_SPACE_I2C) {
|
|
ctx.request.type = AUX_TRANSACTION_TYPE_I2C;
|
|
ctx.request.action = middle_of_transaction ?
|
|
I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT :
|
|
I2CAUX_TRANSACTION_ACTION_I2C_READ;
|
|
ctx.request.address = request->payload.address >> 1;
|
|
} else {
|
|
/* in DAL2, there was no return in such case */
|
|
BREAK_TO_DEBUGGER();
|
|
return false;
|
|
}
|
|
|
|
ctx.request.delay = 0;
|
|
|
|
do {
|
|
memset(ctx.buffer + ctx.offset, 0, ctx.current_read_length);
|
|
|
|
ctx.request.data = ctx.buffer + ctx.offset;
|
|
ctx.request.length = ctx.current_read_length;
|
|
|
|
process_read_request(engine, &ctx);
|
|
|
|
request->status = ctx.status;
|
|
|
|
if (ctx.operation_succeeded && !ctx.transaction_complete)
|
|
if (ctx.request.type == AUX_TRANSACTION_TYPE_I2C)
|
|
msleep(engine->delay);
|
|
} while (ctx.operation_succeeded && !ctx.transaction_complete);
|
|
|
|
if (request->payload.address_space ==
|
|
I2CAUX_TRANSACTION_ADDRESS_SPACE_DPCD) {
|
|
DC_LOG_I2C_AUX("READ: addr:0x%x value:0x%x Result:%d",
|
|
request->payload.address,
|
|
request->payload.data[0],
|
|
ctx.operation_succeeded);
|
|
}
|
|
|
|
return ctx.operation_succeeded;
|
|
}
|
|
|
|
static void process_write_reply(
|
|
struct aux_engine *engine,
|
|
struct write_command_context *ctx)
|
|
{
|
|
engine->funcs->process_channel_reply(engine, &ctx->reply);
|
|
|
|
switch (ctx->reply.status) {
|
|
case AUX_TRANSACTION_REPLY_AUX_ACK:
|
|
ctx->operation_succeeded = true;
|
|
|
|
if (ctx->returned_byte) {
|
|
ctx->request.action = ctx->mot ?
|
|
I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST_MOT :
|
|
I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST;
|
|
|
|
ctx->current_write_length = 0;
|
|
|
|
++ctx->ack_m_retry;
|
|
|
|
if (ctx->ack_m_retry > AUX_DEFER_RETRY_COUNTER) {
|
|
ctx->status =
|
|
I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
|
ctx->operation_succeeded = false;
|
|
} else
|
|
udelay(300);
|
|
} else {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_SUCCEEDED;
|
|
ctx->defer_retry_aux = 0;
|
|
ctx->ack_m_retry = 0;
|
|
ctx->transaction_complete = true;
|
|
}
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_AUX_NACK:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_NACK;
|
|
ctx->operation_succeeded = false;
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_AUX_DEFER:
|
|
++ctx->defer_retry_aux;
|
|
|
|
if (ctx->defer_retry_aux > ctx->max_defer_retry) {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_I2C_DEFER:
|
|
ctx->defer_retry_aux = 0;
|
|
ctx->current_write_length = 0;
|
|
|
|
ctx->request.action = ctx->mot ?
|
|
I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST_MOT :
|
|
I2CAUX_TRANSACTION_ACTION_I2C_STATUS_REQUEST;
|
|
|
|
++ctx->defer_retry_i2c;
|
|
|
|
if (ctx->defer_retry_i2c > ctx->max_defer_retry) {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
break;
|
|
case AUX_TRANSACTION_REPLY_HPD_DISCON:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_HPD_DISCON;
|
|
ctx->operation_succeeded = false;
|
|
break;
|
|
default:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_UNKNOWN;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
}
|
|
static void process_write_request(
|
|
struct aux_engine *engine,
|
|
struct write_command_context *ctx)
|
|
{
|
|
enum aux_channel_operation_result operation_result;
|
|
|
|
engine->funcs->submit_channel_request(engine, &ctx->request);
|
|
|
|
operation_result = engine->funcs->get_channel_status(
|
|
engine, &ctx->returned_byte);
|
|
|
|
switch (operation_result) {
|
|
case AUX_CHANNEL_OPERATION_SUCCEEDED:
|
|
ctx->timed_out_retry_aux = 0;
|
|
ctx->invalid_reply_retry_aux = 0;
|
|
|
|
ctx->reply.length = ctx->returned_byte;
|
|
ctx->reply.data = ctx->reply_data;
|
|
|
|
process_write_reply(engine, ctx);
|
|
break;
|
|
case AUX_CHANNEL_OPERATION_FAILED_INVALID_REPLY:
|
|
++ctx->invalid_reply_retry_aux;
|
|
|
|
if (ctx->invalid_reply_retry_aux >
|
|
AUX_INVALID_REPLY_RETRY_COUNTER) {
|
|
ctx->status =
|
|
I2CAUX_TRANSACTION_STATUS_FAILED_PROTOCOL_ERROR;
|
|
ctx->operation_succeeded = false;
|
|
} else
|
|
udelay(400);
|
|
break;
|
|
case AUX_CHANNEL_OPERATION_FAILED_TIMEOUT:
|
|
++ctx->timed_out_retry_aux;
|
|
|
|
if (ctx->timed_out_retry_aux > AUX_TIMED_OUT_RETRY_COUNTER) {
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
|
|
ctx->operation_succeeded = false;
|
|
} else {
|
|
/* DP 1.2a, table 2-58:
|
|
* "S3: AUX Request CMD PENDING:
|
|
* retry 3 times, with 400usec wait on each"
|
|
* The HW timeout is set to 550usec,
|
|
* so we should not wait here
|
|
*/
|
|
}
|
|
break;
|
|
case AUX_CHANNEL_OPERATION_FAILED_HPD_DISCON:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_FAILED_HPD_DISCON;
|
|
ctx->operation_succeeded = false;
|
|
break;
|
|
default:
|
|
ctx->status = I2CAUX_TRANSACTION_STATUS_UNKNOWN;
|
|
ctx->operation_succeeded = false;
|
|
}
|
|
}
|
|
static bool write_command(
|
|
struct aux_engine *engine,
|
|
struct i2caux_transaction_request *request,
|
|
bool middle_of_transaction)
|
|
{
|
|
struct write_command_context ctx;
|
|
|
|
ctx.mot = middle_of_transaction;
|
|
ctx.buffer = request->payload.data;
|
|
ctx.current_write_length = request->payload.length;
|
|
ctx.timed_out_retry_aux = 0;
|
|
ctx.invalid_reply_retry_aux = 0;
|
|
ctx.defer_retry_aux = 0;
|
|
ctx.defer_retry_i2c = 0;
|
|
ctx.ack_m_retry = 0;
|
|
ctx.transaction_complete = false;
|
|
ctx.operation_succeeded = true;
|
|
|
|
if (request->payload.address_space ==
|
|
I2CAUX_TRANSACTION_ADDRESS_SPACE_DPCD) {
|
|
ctx.request.type = AUX_TRANSACTION_TYPE_DP;
|
|
ctx.request.action = I2CAUX_TRANSACTION_ACTION_DP_WRITE;
|
|
ctx.request.address = request->payload.address;
|
|
} else if (request->payload.address_space ==
|
|
I2CAUX_TRANSACTION_ADDRESS_SPACE_I2C) {
|
|
ctx.request.type = AUX_TRANSACTION_TYPE_I2C;
|
|
ctx.request.action = middle_of_transaction ?
|
|
I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT :
|
|
I2CAUX_TRANSACTION_ACTION_I2C_WRITE;
|
|
ctx.request.address = request->payload.address >> 1;
|
|
} else {
|
|
/* in DAL2, there was no return in such case */
|
|
BREAK_TO_DEBUGGER();
|
|
return false;
|
|
}
|
|
|
|
ctx.request.delay = 0;
|
|
|
|
ctx.max_defer_retry =
|
|
(engine->max_defer_write_retry > AUX_DEFER_RETRY_COUNTER) ?
|
|
engine->max_defer_write_retry : AUX_DEFER_RETRY_COUNTER;
|
|
|
|
do {
|
|
ctx.request.data = ctx.buffer;
|
|
ctx.request.length = ctx.current_write_length;
|
|
|
|
process_write_request(engine, &ctx);
|
|
|
|
request->status = ctx.status;
|
|
|
|
if (ctx.operation_succeeded && !ctx.transaction_complete)
|
|
if (ctx.request.type == AUX_TRANSACTION_TYPE_I2C)
|
|
msleep(engine->delay);
|
|
} while (ctx.operation_succeeded && !ctx.transaction_complete);
|
|
|
|
if (request->payload.address_space ==
|
|
I2CAUX_TRANSACTION_ADDRESS_SPACE_DPCD) {
|
|
DC_LOG_I2C_AUX("WRITE: addr:0x%x value:0x%x Result:%d",
|
|
request->payload.address,
|
|
request->payload.data[0],
|
|
ctx.operation_succeeded);
|
|
}
|
|
|
|
return ctx.operation_succeeded;
|
|
}
|
|
static bool end_of_transaction_command(
|
|
struct aux_engine *engine,
|
|
struct i2caux_transaction_request *request)
|
|
{
|
|
struct i2caux_transaction_request dummy_request;
|
|
uint8_t dummy_data;
|
|
|
|
/* [tcheng] We only need to send the stop (read with MOT = 0)
|
|
* for I2C-over-Aux, not native AUX
|
|
*/
|
|
|
|
if (request->payload.address_space !=
|
|
I2CAUX_TRANSACTION_ADDRESS_SPACE_I2C)
|
|
return false;
|
|
|
|
dummy_request.operation = request->operation;
|
|
dummy_request.payload.address_space = request->payload.address_space;
|
|
dummy_request.payload.address = request->payload.address;
|
|
|
|
/*
|
|
* Add a dummy byte due to some receiver quirk
|
|
* where one byte is sent along with MOT = 0.
|
|
* Ideally this should be 0.
|
|
*/
|
|
|
|
dummy_request.payload.length = 0;
|
|
dummy_request.payload.data = &dummy_data;
|
|
|
|
if (request->operation == I2CAUX_TRANSACTION_READ)
|
|
return read_command(engine, &dummy_request, false);
|
|
else
|
|
return write_command(engine, &dummy_request, false);
|
|
|
|
/* according Syed, it does not need now DoDummyMOT */
|
|
}
|
|
bool submit_request(
|
|
struct engine *engine,
|
|
struct i2caux_transaction_request *request,
|
|
bool middle_of_transaction)
|
|
{
|
|
struct aux_engine *aux_engine = FROM_AUX_ENGINE_ENGINE(engine);
|
|
|
|
bool result;
|
|
bool mot_used = true;
|
|
|
|
switch (request->operation) {
|
|
case I2CAUX_TRANSACTION_READ:
|
|
result = read_command(aux_engine, request, mot_used);
|
|
break;
|
|
case I2CAUX_TRANSACTION_WRITE:
|
|
result = write_command(aux_engine, request, mot_used);
|
|
break;
|
|
default:
|
|
result = false;
|
|
}
|
|
|
|
/* [tcheng]
|
|
* need to send stop for the last transaction to free up the AUX
|
|
* if the above command fails, this would be the last transaction
|
|
*/
|
|
|
|
if (!middle_of_transaction || !result)
|
|
end_of_transaction_command(aux_engine, request);
|
|
|
|
/* mask AUX interrupt */
|
|
|
|
return result;
|
|
}
|
|
enum i2caux_engine_type get_engine_type(
|
|
const struct engine *engine)
|
|
{
|
|
return I2CAUX_ENGINE_TYPE_AUX;
|
|
}
|
|
|
|
static struct aux_engine *acquire(
|
|
struct engine *engine,
|
|
struct ddc *ddc)
|
|
{
|
|
struct aux_engine *aux_engine = FROM_AUX_ENGINE_ENGINE(engine);
|
|
enum gpio_result result;
|
|
|
|
if (aux_engine->funcs->is_engine_available) {
|
|
/*check whether SW could use the engine*/
|
|
if (!aux_engine->funcs->is_engine_available(aux_engine))
|
|
return NULL;
|
|
}
|
|
|
|
result = dal_ddc_open(ddc, GPIO_MODE_HARDWARE,
|
|
GPIO_DDC_CONFIG_TYPE_MODE_AUX);
|
|
|
|
if (result != GPIO_RESULT_OK)
|
|
return NULL;
|
|
|
|
if (!aux_engine->funcs->acquire_engine(aux_engine)) {
|
|
dal_ddc_close(ddc);
|
|
return NULL;
|
|
}
|
|
|
|
engine->ddc = ddc;
|
|
|
|
return aux_engine;
|
|
}
|
|
|
|
static const struct aux_engine_funcs aux_engine_funcs = {
|
|
.acquire_engine = acquire_engine,
|
|
.submit_channel_request = submit_channel_request,
|
|
.process_channel_reply = process_channel_reply,
|
|
.read_channel_reply = read_channel_reply,
|
|
.get_channel_status = get_channel_status,
|
|
.is_engine_available = is_engine_available,
|
|
};
|
|
|
|
static const struct engine_funcs engine_funcs = {
|
|
.release_engine = release_engine,
|
|
.destroy_engine = dce110_engine_destroy,
|
|
.submit_request = submit_request,
|
|
.get_engine_type = get_engine_type,
|
|
.acquire = acquire,
|
|
};
|
|
|
|
void dce110_engine_destroy(struct engine **engine)
|
|
{
|
|
|
|
struct aux_engine_dce110 *engine110 = FROM_ENGINE(*engine);
|
|
|
|
kfree(engine110);
|
|
*engine = NULL;
|
|
|
|
}
|
|
struct aux_engine *dce110_aux_engine_construct(struct aux_engine_dce110 *aux_engine110,
|
|
struct dc_context *ctx,
|
|
uint32_t inst,
|
|
uint32_t timeout_period,
|
|
const struct dce110_aux_registers *regs)
|
|
{
|
|
aux_engine110->base.base.ddc = NULL;
|
|
aux_engine110->base.base.ctx = ctx;
|
|
aux_engine110->base.delay = 0;
|
|
aux_engine110->base.max_defer_write_retry = 0;
|
|
aux_engine110->base.base.funcs = &engine_funcs;
|
|
aux_engine110->base.funcs = &aux_engine_funcs;
|
|
aux_engine110->base.base.inst = inst;
|
|
aux_engine110->timeout_period = timeout_period;
|
|
aux_engine110->regs = regs;
|
|
|
|
return &aux_engine110->base;
|
|
}
|
|
|