linux-sg2042/drivers/scsi/hisi_sas/hisi_sas_v2_hw.c

3693 lines
108 KiB
C

/*
* Copyright (c) 2016 Linaro Ltd.
* Copyright (c) 2016 Hisilicon Limited.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include "hisi_sas.h"
#define DRV_NAME "hisi_sas_v2_hw"
/* global registers need init*/
#define DLVRY_QUEUE_ENABLE 0x0
#define IOST_BASE_ADDR_LO 0x8
#define IOST_BASE_ADDR_HI 0xc
#define ITCT_BASE_ADDR_LO 0x10
#define ITCT_BASE_ADDR_HI 0x14
#define IO_BROKEN_MSG_ADDR_LO 0x18
#define IO_BROKEN_MSG_ADDR_HI 0x1c
#define PHY_CONTEXT 0x20
#define PHY_STATE 0x24
#define PHY_PORT_NUM_MA 0x28
#define PORT_STATE 0x2c
#define PORT_STATE_PHY8_PORT_NUM_OFF 16
#define PORT_STATE_PHY8_PORT_NUM_MSK (0xf << PORT_STATE_PHY8_PORT_NUM_OFF)
#define PORT_STATE_PHY8_CONN_RATE_OFF 20
#define PORT_STATE_PHY8_CONN_RATE_MSK (0xf << PORT_STATE_PHY8_CONN_RATE_OFF)
#define PHY_CONN_RATE 0x30
#define HGC_TRANS_TASK_CNT_LIMIT 0x38
#define AXI_AHB_CLK_CFG 0x3c
#define ITCT_CLR 0x44
#define ITCT_CLR_EN_OFF 16
#define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF)
#define ITCT_DEV_OFF 0
#define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF)
#define AXI_USER1 0x48
#define AXI_USER2 0x4c
#define IO_SATA_BROKEN_MSG_ADDR_LO 0x58
#define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c
#define SATA_INITI_D2H_STORE_ADDR_LO 0x60
#define SATA_INITI_D2H_STORE_ADDR_HI 0x64
#define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84
#define HGC_SAS_TXFAIL_RETRY_CTRL 0x88
#define HGC_GET_ITV_TIME 0x90
#define DEVICE_MSG_WORK_MODE 0x94
#define OPENA_WT_CONTI_TIME 0x9c
#define I_T_NEXUS_LOSS_TIME 0xa0
#define MAX_CON_TIME_LIMIT_TIME 0xa4
#define BUS_INACTIVE_LIMIT_TIME 0xa8
#define REJECT_TO_OPEN_LIMIT_TIME 0xac
#define CFG_AGING_TIME 0xbc
#define HGC_DFX_CFG2 0xc0
#define HGC_IOMB_PROC1_STATUS 0x104
#define CFG_1US_TIMER_TRSH 0xcc
#define HGC_LM_DFX_STATUS2 0x128
#define HGC_LM_DFX_STATUS2_IOSTLIST_OFF 0
#define HGC_LM_DFX_STATUS2_IOSTLIST_MSK (0xfff << \
HGC_LM_DFX_STATUS2_IOSTLIST_OFF)
#define HGC_LM_DFX_STATUS2_ITCTLIST_OFF 12
#define HGC_LM_DFX_STATUS2_ITCTLIST_MSK (0x7ff << \
HGC_LM_DFX_STATUS2_ITCTLIST_OFF)
#define HGC_CQE_ECC_ADDR 0x13c
#define HGC_CQE_ECC_1B_ADDR_OFF 0
#define HGC_CQE_ECC_1B_ADDR_MSK (0x3f << HGC_CQE_ECC_1B_ADDR_OFF)
#define HGC_CQE_ECC_MB_ADDR_OFF 8
#define HGC_CQE_ECC_MB_ADDR_MSK (0x3f << HGC_CQE_ECC_MB_ADDR_OFF)
#define HGC_IOST_ECC_ADDR 0x140
#define HGC_IOST_ECC_1B_ADDR_OFF 0
#define HGC_IOST_ECC_1B_ADDR_MSK (0x3ff << HGC_IOST_ECC_1B_ADDR_OFF)
#define HGC_IOST_ECC_MB_ADDR_OFF 16
#define HGC_IOST_ECC_MB_ADDR_MSK (0x3ff << HGC_IOST_ECC_MB_ADDR_OFF)
#define HGC_DQE_ECC_ADDR 0x144
#define HGC_DQE_ECC_1B_ADDR_OFF 0
#define HGC_DQE_ECC_1B_ADDR_MSK (0xfff << HGC_DQE_ECC_1B_ADDR_OFF)
#define HGC_DQE_ECC_MB_ADDR_OFF 16
#define HGC_DQE_ECC_MB_ADDR_MSK (0xfff << HGC_DQE_ECC_MB_ADDR_OFF)
#define HGC_INVLD_DQE_INFO 0x148
#define HGC_INVLD_DQE_INFO_FB_CH0_OFF 9
#define HGC_INVLD_DQE_INFO_FB_CH0_MSK (0x1 << HGC_INVLD_DQE_INFO_FB_CH0_OFF)
#define HGC_INVLD_DQE_INFO_FB_CH3_OFF 18
#define HGC_ITCT_ECC_ADDR 0x150
#define HGC_ITCT_ECC_1B_ADDR_OFF 0
#define HGC_ITCT_ECC_1B_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_1B_ADDR_OFF)
#define HGC_ITCT_ECC_MB_ADDR_OFF 16
#define HGC_ITCT_ECC_MB_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_MB_ADDR_OFF)
#define HGC_AXI_FIFO_ERR_INFO 0x154
#define AXI_ERR_INFO_OFF 0
#define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF)
#define FIFO_ERR_INFO_OFF 8
#define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF)
#define INT_COAL_EN 0x19c
#define OQ_INT_COAL_TIME 0x1a0
#define OQ_INT_COAL_CNT 0x1a4
#define ENT_INT_COAL_TIME 0x1a8
#define ENT_INT_COAL_CNT 0x1ac
#define OQ_INT_SRC 0x1b0
#define OQ_INT_SRC_MSK 0x1b4
#define ENT_INT_SRC1 0x1b8
#define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0
#define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF)
#define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8
#define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF)
#define ENT_INT_SRC2 0x1bc
#define ENT_INT_SRC3 0x1c0
#define ENT_INT_SRC3_WP_DEPTH_OFF 8
#define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9
#define ENT_INT_SRC3_RP_DEPTH_OFF 10
#define ENT_INT_SRC3_AXI_OFF 11
#define ENT_INT_SRC3_FIFO_OFF 12
#define ENT_INT_SRC3_LM_OFF 14
#define ENT_INT_SRC3_ITC_INT_OFF 15
#define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF)
#define ENT_INT_SRC3_ABT_OFF 16
#define ENT_INT_SRC_MSK1 0x1c4
#define ENT_INT_SRC_MSK2 0x1c8
#define ENT_INT_SRC_MSK3 0x1cc
#define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31
#define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF)
#define SAS_ECC_INTR 0x1e8
#define SAS_ECC_INTR_DQE_ECC_1B_OFF 0
#define SAS_ECC_INTR_DQE_ECC_MB_OFF 1
#define SAS_ECC_INTR_IOST_ECC_1B_OFF 2
#define SAS_ECC_INTR_IOST_ECC_MB_OFF 3
#define SAS_ECC_INTR_ITCT_ECC_MB_OFF 4
#define SAS_ECC_INTR_ITCT_ECC_1B_OFF 5
#define SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF 6
#define SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF 7
#define SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF 8
#define SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF 9
#define SAS_ECC_INTR_CQE_ECC_1B_OFF 10
#define SAS_ECC_INTR_CQE_ECC_MB_OFF 11
#define SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF 12
#define SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF 13
#define SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF 14
#define SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF 15
#define SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF 16
#define SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF 17
#define SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF 18
#define SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF 19
#define SAS_ECC_INTR_MSK 0x1ec
#define HGC_ERR_STAT_EN 0x238
#define CQE_SEND_CNT 0x248
#define DLVRY_Q_0_BASE_ADDR_LO 0x260
#define DLVRY_Q_0_BASE_ADDR_HI 0x264
#define DLVRY_Q_0_DEPTH 0x268
#define DLVRY_Q_0_WR_PTR 0x26c
#define DLVRY_Q_0_RD_PTR 0x270
#define HYPER_STREAM_ID_EN_CFG 0xc80
#define OQ0_INT_SRC_MSK 0xc90
#define COMPL_Q_0_BASE_ADDR_LO 0x4e0
#define COMPL_Q_0_BASE_ADDR_HI 0x4e4
#define COMPL_Q_0_DEPTH 0x4e8
#define COMPL_Q_0_WR_PTR 0x4ec
#define COMPL_Q_0_RD_PTR 0x4f0
#define HGC_RXM_DFX_STATUS14 0xae8
#define HGC_RXM_DFX_STATUS14_MEM0_OFF 0
#define HGC_RXM_DFX_STATUS14_MEM0_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM0_OFF)
#define HGC_RXM_DFX_STATUS14_MEM1_OFF 9
#define HGC_RXM_DFX_STATUS14_MEM1_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM1_OFF)
#define HGC_RXM_DFX_STATUS14_MEM2_OFF 18
#define HGC_RXM_DFX_STATUS14_MEM2_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM2_OFF)
#define HGC_RXM_DFX_STATUS15 0xaec
#define HGC_RXM_DFX_STATUS15_MEM3_OFF 0
#define HGC_RXM_DFX_STATUS15_MEM3_MSK (0x1ff << \
HGC_RXM_DFX_STATUS15_MEM3_OFF)
/* phy registers need init */
#define PORT_BASE (0x2000)
#define PHY_CFG (PORT_BASE + 0x0)
#define HARD_PHY_LINKRATE (PORT_BASE + 0x4)
#define PHY_CFG_ENA_OFF 0
#define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF)
#define PHY_CFG_DC_OPT_OFF 2
#define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF)
#define PROG_PHY_LINK_RATE (PORT_BASE + 0x8)
#define PROG_PHY_LINK_RATE_MAX_OFF 0
#define PROG_PHY_LINK_RATE_MAX_MSK (0xff << PROG_PHY_LINK_RATE_MAX_OFF)
#define PHY_CTRL (PORT_BASE + 0x14)
#define PHY_CTRL_RESET_OFF 0
#define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF)
#define SAS_PHY_CTRL (PORT_BASE + 0x20)
#define SL_CFG (PORT_BASE + 0x84)
#define PHY_PCN (PORT_BASE + 0x44)
#define SL_TOUT_CFG (PORT_BASE + 0x8c)
#define SL_CONTROL (PORT_BASE + 0x94)
#define SL_CONTROL_NOTIFY_EN_OFF 0
#define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF)
#define SL_CONTROL_CTA_OFF 17
#define SL_CONTROL_CTA_MSK (0x1 << SL_CONTROL_CTA_OFF)
#define RX_PRIMS_STATUS (PORT_BASE + 0x98)
#define RX_BCAST_CHG_OFF 1
#define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF)
#define TX_ID_DWORD0 (PORT_BASE + 0x9c)
#define TX_ID_DWORD1 (PORT_BASE + 0xa0)
#define TX_ID_DWORD2 (PORT_BASE + 0xa4)
#define TX_ID_DWORD3 (PORT_BASE + 0xa8)
#define TX_ID_DWORD4 (PORT_BASE + 0xaC)
#define TX_ID_DWORD5 (PORT_BASE + 0xb0)
#define TX_ID_DWORD6 (PORT_BASE + 0xb4)
#define TXID_AUTO (PORT_BASE + 0xb8)
#define TXID_AUTO_CT3_OFF 1
#define TXID_AUTO_CT3_MSK (0x1 << TXID_AUTO_CT3_OFF)
#define TXID_AUTO_CTB_OFF 11
#define TXID_AUTO_CTB_MSK (0x1 << TXID_AUTO_CTB_OFF)
#define TX_HARDRST_OFF 2
#define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF)
#define RX_IDAF_DWORD0 (PORT_BASE + 0xc4)
#define RX_IDAF_DWORD1 (PORT_BASE + 0xc8)
#define RX_IDAF_DWORD2 (PORT_BASE + 0xcc)
#define RX_IDAF_DWORD3 (PORT_BASE + 0xd0)
#define RX_IDAF_DWORD4 (PORT_BASE + 0xd4)
#define RX_IDAF_DWORD5 (PORT_BASE + 0xd8)
#define RX_IDAF_DWORD6 (PORT_BASE + 0xdc)
#define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc)
#define CON_CONTROL (PORT_BASE + 0x118)
#define CON_CONTROL_CFG_OPEN_ACC_STP_OFF 0
#define CON_CONTROL_CFG_OPEN_ACC_STP_MSK \
(0x01 << CON_CONTROL_CFG_OPEN_ACC_STP_OFF)
#define DONE_RECEIVED_TIME (PORT_BASE + 0x11c)
#define CHL_INT0 (PORT_BASE + 0x1b4)
#define CHL_INT0_HOTPLUG_TOUT_OFF 0
#define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF)
#define CHL_INT0_SL_RX_BCST_ACK_OFF 1
#define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF)
#define CHL_INT0_SL_PHY_ENABLE_OFF 2
#define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF)
#define CHL_INT0_NOT_RDY_OFF 4
#define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF)
#define CHL_INT0_PHY_RDY_OFF 5
#define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF)
#define CHL_INT1 (PORT_BASE + 0x1b8)
#define CHL_INT1_DMAC_TX_ECC_ERR_OFF 15
#define CHL_INT1_DMAC_TX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_TX_ECC_ERR_OFF)
#define CHL_INT1_DMAC_RX_ECC_ERR_OFF 17
#define CHL_INT1_DMAC_RX_ECC_ERR_MSK (0x1 << CHL_INT1_DMAC_RX_ECC_ERR_OFF)
#define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19
#define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20
#define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21
#define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22
#define CHL_INT2 (PORT_BASE + 0x1bc)
#define CHL_INT2_SL_IDAF_TOUT_CONF_OFF 0
#define CHL_INT0_MSK (PORT_BASE + 0x1c0)
#define CHL_INT1_MSK (PORT_BASE + 0x1c4)
#define CHL_INT2_MSK (PORT_BASE + 0x1c8)
#define CHL_INT_COAL_EN (PORT_BASE + 0x1d0)
#define DMA_TX_DFX0 (PORT_BASE + 0x200)
#define DMA_TX_DFX1 (PORT_BASE + 0x204)
#define DMA_TX_DFX1_IPTT_OFF 0
#define DMA_TX_DFX1_IPTT_MSK (0xffff << DMA_TX_DFX1_IPTT_OFF)
#define DMA_TX_FIFO_DFX0 (PORT_BASE + 0x240)
#define PORT_DFX0 (PORT_BASE + 0x258)
#define LINK_DFX2 (PORT_BASE + 0X264)
#define LINK_DFX2_RCVR_HOLD_STS_OFF 9
#define LINK_DFX2_RCVR_HOLD_STS_MSK (0x1 << LINK_DFX2_RCVR_HOLD_STS_OFF)
#define LINK_DFX2_SEND_HOLD_STS_OFF 10
#define LINK_DFX2_SEND_HOLD_STS_MSK (0x1 << LINK_DFX2_SEND_HOLD_STS_OFF)
#define SAS_ERR_CNT4_REG (PORT_BASE + 0x290)
#define SAS_ERR_CNT6_REG (PORT_BASE + 0x298)
#define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0)
#define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4)
#define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8)
#define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc)
#define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0)
#define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4)
#define DMA_TX_STATUS (PORT_BASE + 0x2d0)
#define DMA_TX_STATUS_BUSY_OFF 0
#define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF)
#define DMA_RX_STATUS (PORT_BASE + 0x2e8)
#define DMA_RX_STATUS_BUSY_OFF 0
#define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF)
#define AXI_CFG (0x5100)
#define AM_CFG_MAX_TRANS (0x5010)
#define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014)
#define AXI_MASTER_CFG_BASE (0x5000)
#define AM_CTRL_GLOBAL (0x0)
#define AM_CURR_TRANS_RETURN (0x150)
/* HW dma structures */
/* Delivery queue header */
/* dw0 */
#define CMD_HDR_ABORT_FLAG_OFF 0
#define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF)
#define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2
#define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF)
#define CMD_HDR_RESP_REPORT_OFF 5
#define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF)
#define CMD_HDR_TLR_CTRL_OFF 6
#define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF)
#define CMD_HDR_PHY_ID_OFF 8
#define CMD_HDR_PHY_ID_MSK (0x1ff << CMD_HDR_PHY_ID_OFF)
#define CMD_HDR_FORCE_PHY_OFF 17
#define CMD_HDR_FORCE_PHY_MSK (0x1 << CMD_HDR_FORCE_PHY_OFF)
#define CMD_HDR_PORT_OFF 18
#define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF)
#define CMD_HDR_PRIORITY_OFF 27
#define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF)
#define CMD_HDR_CMD_OFF 29
#define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF)
/* dw1 */
#define CMD_HDR_DIR_OFF 5
#define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF)
#define CMD_HDR_RESET_OFF 7
#define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF)
#define CMD_HDR_VDTL_OFF 10
#define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF)
#define CMD_HDR_FRAME_TYPE_OFF 11
#define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF)
#define CMD_HDR_DEV_ID_OFF 16
#define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF)
/* dw2 */
#define CMD_HDR_CFL_OFF 0
#define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF)
#define CMD_HDR_NCQ_TAG_OFF 10
#define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF)
#define CMD_HDR_MRFL_OFF 15
#define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF)
#define CMD_HDR_SG_MOD_OFF 24
#define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF)
#define CMD_HDR_FIRST_BURST_OFF 26
#define CMD_HDR_FIRST_BURST_MSK (0x1 << CMD_HDR_SG_MOD_OFF)
/* dw3 */
#define CMD_HDR_IPTT_OFF 0
#define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF)
/* dw6 */
#define CMD_HDR_DIF_SGL_LEN_OFF 0
#define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF)
#define CMD_HDR_DATA_SGL_LEN_OFF 16
#define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF)
#define CMD_HDR_ABORT_IPTT_OFF 16
#define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF)
/* Completion header */
/* dw0 */
#define CMPLT_HDR_ERR_PHASE_OFF 2
#define CMPLT_HDR_ERR_PHASE_MSK (0xff << CMPLT_HDR_ERR_PHASE_OFF)
#define CMPLT_HDR_RSPNS_XFRD_OFF 10
#define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF)
#define CMPLT_HDR_ERX_OFF 12
#define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF)
#define CMPLT_HDR_ABORT_STAT_OFF 13
#define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF)
/* abort_stat */
#define STAT_IO_NOT_VALID 0x1
#define STAT_IO_NO_DEVICE 0x2
#define STAT_IO_COMPLETE 0x3
#define STAT_IO_ABORTED 0x4
/* dw1 */
#define CMPLT_HDR_IPTT_OFF 0
#define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF)
#define CMPLT_HDR_DEV_ID_OFF 16
#define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF)
/* ITCT header */
/* qw0 */
#define ITCT_HDR_DEV_TYPE_OFF 0
#define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF)
#define ITCT_HDR_VALID_OFF 2
#define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF)
#define ITCT_HDR_MCR_OFF 5
#define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF)
#define ITCT_HDR_VLN_OFF 9
#define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF)
#define ITCT_HDR_SMP_TIMEOUT_OFF 16
#define ITCT_HDR_SMP_TIMEOUT_8US 1
#define ITCT_HDR_SMP_TIMEOUT (ITCT_HDR_SMP_TIMEOUT_8US * \
250) /* 2ms */
#define ITCT_HDR_AWT_CONTINUE_OFF 25
#define ITCT_HDR_PORT_ID_OFF 28
#define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF)
/* qw2 */
#define ITCT_HDR_INLT_OFF 0
#define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF)
#define ITCT_HDR_BITLT_OFF 16
#define ITCT_HDR_BITLT_MSK (0xffffULL << ITCT_HDR_BITLT_OFF)
#define ITCT_HDR_MCTLT_OFF 32
#define ITCT_HDR_MCTLT_MSK (0xffffULL << ITCT_HDR_MCTLT_OFF)
#define ITCT_HDR_RTOLT_OFF 48
#define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF)
#define HISI_SAS_FATAL_INT_NR 2
struct hisi_sas_complete_v2_hdr {
__le32 dw0;
__le32 dw1;
__le32 act;
__le32 dw3;
};
struct hisi_sas_err_record_v2 {
/* dw0 */
__le32 trans_tx_fail_type;
/* dw1 */
__le32 trans_rx_fail_type;
/* dw2 */
__le16 dma_tx_err_type;
__le16 sipc_rx_err_type;
/* dw3 */
__le32 dma_rx_err_type;
};
struct signal_attenuation_s {
u32 de_emphasis;
u32 preshoot;
u32 boost;
};
struct sig_atten_lu_s {
const struct signal_attenuation_s *att;
u32 sas_phy_ctrl;
};
static const struct hisi_sas_hw_error one_bit_ecc_errors[] = {
{
.irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_1B_OFF),
.msk = HGC_DQE_ECC_1B_ADDR_MSK,
.shift = HGC_DQE_ECC_1B_ADDR_OFF,
.msg = "hgc_dqe_acc1b_intr found: Ram address is 0x%08X\n",
.reg = HGC_DQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_1B_OFF),
.msk = HGC_IOST_ECC_1B_ADDR_MSK,
.shift = HGC_IOST_ECC_1B_ADDR_OFF,
.msg = "hgc_iost_acc1b_intr found: Ram address is 0x%08X\n",
.reg = HGC_IOST_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_1B_OFF),
.msk = HGC_ITCT_ECC_1B_ADDR_MSK,
.shift = HGC_ITCT_ECC_1B_ADDR_OFF,
.msg = "hgc_itct_acc1b_intr found: am address is 0x%08X\n",
.reg = HGC_ITCT_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF),
.msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF,
.msg = "hgc_iostl_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF),
.msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF,
.msg = "hgc_itctl_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_1B_OFF),
.msk = HGC_CQE_ECC_1B_ADDR_MSK,
.shift = HGC_CQE_ECC_1B_ADDR_OFF,
.msg = "hgc_cqe_acc1b_intr found: Ram address is 0x%08X\n",
.reg = HGC_CQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM0_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM0_OFF,
.msg = "rxm_mem0_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM1_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM1_OFF,
.msg = "rxm_mem1_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM2_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM2_OFF,
.msg = "rxm_mem2_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF),
.msk = HGC_RXM_DFX_STATUS15_MEM3_MSK,
.shift = HGC_RXM_DFX_STATUS15_MEM3_OFF,
.msg = "rxm_mem3_acc1b_intr found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS15,
},
};
static const struct hisi_sas_hw_error multi_bit_ecc_errors[] = {
{
.irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_MB_OFF),
.msk = HGC_DQE_ECC_MB_ADDR_MSK,
.shift = HGC_DQE_ECC_MB_ADDR_OFF,
.msg = "hgc_dqe_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_DQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_MB_OFF),
.msk = HGC_IOST_ECC_MB_ADDR_MSK,
.shift = HGC_IOST_ECC_MB_ADDR_OFF,
.msg = "hgc_iost_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_IOST_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_MB_OFF),
.msk = HGC_ITCT_ECC_MB_ADDR_MSK,
.shift = HGC_ITCT_ECC_MB_ADDR_OFF,
.msg = "hgc_itct_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_ITCT_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF,
.msg = "hgc_iostl_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF,
.msg = "hgc_itctl_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_MB_OFF),
.msk = HGC_CQE_ECC_MB_ADDR_MSK,
.shift = HGC_CQE_ECC_MB_ADDR_OFF,
.msg = "hgc_cqe_accbad_intr (0x%x) found: Ram address is 0x%08X\n",
.reg = HGC_CQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM0_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM0_OFF,
.msg = "rxm_mem0_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM1_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM1_OFF,
.msg = "rxm_mem1_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM2_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM2_OFF,
.msg = "rxm_mem2_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS15_MEM3_MSK,
.shift = HGC_RXM_DFX_STATUS15_MEM3_OFF,
.msg = "rxm_mem3_accbad_intr (0x%x) found: memory address is 0x%08X\n",
.reg = HGC_RXM_DFX_STATUS15,
},
};
enum {
HISI_SAS_PHY_PHY_UPDOWN,
HISI_SAS_PHY_CHNL_INT,
HISI_SAS_PHY_INT_NR
};
enum {
TRANS_TX_FAIL_BASE = 0x0, /* dw0 */
TRANS_RX_FAIL_BASE = 0x20, /* dw1 */
DMA_TX_ERR_BASE = 0x40, /* dw2 bit 15-0 */
SIPC_RX_ERR_BASE = 0x50, /* dw2 bit 31-16*/
DMA_RX_ERR_BASE = 0x60, /* dw3 */
/* trans tx*/
TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS = TRANS_TX_FAIL_BASE, /* 0x0 */
TRANS_TX_ERR_PHY_NOT_ENABLE, /* 0x1 */
TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION, /* 0x2 */
TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION, /* 0x3 */
TRANS_TX_OPEN_CNX_ERR_BY_OTHER, /* 0x4 */
RESERVED0, /* 0x5 */
TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT, /* 0x6 */
TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY, /* 0x7 */
TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED, /* 0x8 */
TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED, /* 0x9 */
TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION, /* 0xa */
TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD, /* 0xb */
TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER, /* 0xc */
TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED, /* 0xd */
TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT, /* 0xe */
TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION, /* 0xf */
TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED, /* 0x10 */
TRANS_TX_ERR_FRAME_TXED, /* 0x11 */
TRANS_TX_ERR_WITH_BREAK_TIMEOUT, /* 0x12 */
TRANS_TX_ERR_WITH_BREAK_REQUEST, /* 0x13 */
TRANS_TX_ERR_WITH_BREAK_RECEVIED, /* 0x14 */
TRANS_TX_ERR_WITH_CLOSE_TIMEOUT, /* 0x15 */
TRANS_TX_ERR_WITH_CLOSE_NORMAL, /* 0x16 for ssp*/
TRANS_TX_ERR_WITH_CLOSE_PHYDISALE, /* 0x17 */
TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x18 */
TRANS_TX_ERR_WITH_CLOSE_COMINIT, /* 0x19 */
TRANS_TX_ERR_WITH_NAK_RECEVIED, /* 0x1a for ssp*/
TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT, /* 0x1b for ssp*/
/*IO_TX_ERR_WITH_R_ERR_RECEVIED, [> 0x1b for sata/stp<] */
TRANS_TX_ERR_WITH_CREDIT_TIMEOUT, /* 0x1c for ssp */
/*IO_RX_ERR_WITH_SATA_DEVICE_LOST 0x1c for sata/stp */
TRANS_TX_ERR_WITH_IPTT_CONFLICT, /* 0x1d for ssp/smp */
TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS, /* 0x1e */
/*IO_TX_ERR_WITH_SYNC_RXD, [> 0x1e <] for sata/stp */
TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT, /* 0x1f for sata/stp */
/* trans rx */
TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR = TRANS_RX_FAIL_BASE, /* 0x20 */
TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR, /* 0x21 for sata/stp */
TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM, /* 0x22 for ssp/smp */
/*IO_ERR_WITH_RXFIS_8B10B_CODE_ERR, [> 0x22 <] for sata/stp */
TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR, /* 0x23 for sata/stp */
TRANS_RX_ERR_WITH_RXFIS_CRC_ERR, /* 0x24 for sata/stp */
TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN, /* 0x25 for smp */
/*IO_ERR_WITH_RXFIS_TX SYNCP, [> 0x25 <] for sata/stp */
TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP, /* 0x26 for sata/stp*/
TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN, /* 0x27 */
TRANS_RX_ERR_WITH_BREAK_TIMEOUT, /* 0x28 */
TRANS_RX_ERR_WITH_BREAK_REQUEST, /* 0x29 */
TRANS_RX_ERR_WITH_BREAK_RECEVIED, /* 0x2a */
RESERVED1, /* 0x2b */
TRANS_RX_ERR_WITH_CLOSE_NORMAL, /* 0x2c */
TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE, /* 0x2d */
TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT, /* 0x2e */
TRANS_RX_ERR_WITH_CLOSE_COMINIT, /* 0x2f */
TRANS_RX_ERR_WITH_DATA_LEN0, /* 0x30 for ssp/smp */
TRANS_RX_ERR_WITH_BAD_HASH, /* 0x31 for ssp */
/*IO_RX_ERR_WITH_FIS_TOO_SHORT, [> 0x31 <] for sata/stp */
TRANS_RX_XRDY_WLEN_ZERO_ERR, /* 0x32 for ssp*/
/*IO_RX_ERR_WITH_FIS_TOO_LONG, [> 0x32 <] for sata/stp */
TRANS_RX_SSP_FRM_LEN_ERR, /* 0x33 for ssp */
/*IO_RX_ERR_WITH_SATA_DEVICE_LOST, [> 0x33 <] for sata */
RESERVED2, /* 0x34 */
RESERVED3, /* 0x35 */
RESERVED4, /* 0x36 */
RESERVED5, /* 0x37 */
TRANS_RX_ERR_WITH_BAD_FRM_TYPE, /* 0x38 */
TRANS_RX_SMP_FRM_LEN_ERR, /* 0x39 */
TRANS_RX_SMP_RESP_TIMEOUT_ERR, /* 0x3a */
RESERVED6, /* 0x3b */
RESERVED7, /* 0x3c */
RESERVED8, /* 0x3d */
RESERVED9, /* 0x3e */
TRANS_RX_R_ERR, /* 0x3f */
/* dma tx */
DMA_TX_DIF_CRC_ERR = DMA_TX_ERR_BASE, /* 0x40 */
DMA_TX_DIF_APP_ERR, /* 0x41 */
DMA_TX_DIF_RPP_ERR, /* 0x42 */
DMA_TX_DATA_SGL_OVERFLOW, /* 0x43 */
DMA_TX_DIF_SGL_OVERFLOW, /* 0x44 */
DMA_TX_UNEXP_XFER_ERR, /* 0x45 */
DMA_TX_UNEXP_RETRANS_ERR, /* 0x46 */
DMA_TX_XFER_LEN_OVERFLOW, /* 0x47 */
DMA_TX_XFER_OFFSET_ERR, /* 0x48 */
DMA_TX_RAM_ECC_ERR, /* 0x49 */
DMA_TX_DIF_LEN_ALIGN_ERR, /* 0x4a */
DMA_TX_MAX_ERR_CODE,
/* sipc rx */
SIPC_RX_FIS_STATUS_ERR_BIT_VLD = SIPC_RX_ERR_BASE, /* 0x50 */
SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR, /* 0x51 */
SIPC_RX_FIS_STATUS_BSY_BIT_ERR, /* 0x52 */
SIPC_RX_WRSETUP_LEN_ODD_ERR, /* 0x53 */
SIPC_RX_WRSETUP_LEN_ZERO_ERR, /* 0x54 */
SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR, /* 0x55 */
SIPC_RX_NCQ_WRSETUP_OFFSET_ERR, /* 0x56 */
SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR, /* 0x57 */
SIPC_RX_SATA_UNEXP_FIS_ERR, /* 0x58 */
SIPC_RX_WRSETUP_ESTATUS_ERR, /* 0x59 */
SIPC_RX_DATA_UNDERFLOW_ERR, /* 0x5a */
SIPC_RX_MAX_ERR_CODE,
/* dma rx */
DMA_RX_DIF_CRC_ERR = DMA_RX_ERR_BASE, /* 0x60 */
DMA_RX_DIF_APP_ERR, /* 0x61 */
DMA_RX_DIF_RPP_ERR, /* 0x62 */
DMA_RX_DATA_SGL_OVERFLOW, /* 0x63 */
DMA_RX_DIF_SGL_OVERFLOW, /* 0x64 */
DMA_RX_DATA_LEN_OVERFLOW, /* 0x65 */
DMA_RX_DATA_LEN_UNDERFLOW, /* 0x66 */
DMA_RX_DATA_OFFSET_ERR, /* 0x67 */
RESERVED10, /* 0x68 */
DMA_RX_SATA_FRAME_TYPE_ERR, /* 0x69 */
DMA_RX_RESP_BUF_OVERFLOW, /* 0x6a */
DMA_RX_UNEXP_RETRANS_RESP_ERR, /* 0x6b */
DMA_RX_UNEXP_NORM_RESP_ERR, /* 0x6c */
DMA_RX_UNEXP_RDFRAME_ERR, /* 0x6d */
DMA_RX_PIO_DATA_LEN_ERR, /* 0x6e */
DMA_RX_RDSETUP_STATUS_ERR, /* 0x6f */
DMA_RX_RDSETUP_STATUS_DRQ_ERR, /* 0x70 */
DMA_RX_RDSETUP_STATUS_BSY_ERR, /* 0x71 */
DMA_RX_RDSETUP_LEN_ODD_ERR, /* 0x72 */
DMA_RX_RDSETUP_LEN_ZERO_ERR, /* 0x73 */
DMA_RX_RDSETUP_LEN_OVER_ERR, /* 0x74 */
DMA_RX_RDSETUP_OFFSET_ERR, /* 0x75 */
DMA_RX_RDSETUP_ACTIVE_ERR, /* 0x76 */
DMA_RX_RDSETUP_ESTATUS_ERR, /* 0x77 */
DMA_RX_RAM_ECC_ERR, /* 0x78 */
DMA_RX_UNKNOWN_FRM_ERR, /* 0x79 */
DMA_RX_MAX_ERR_CODE,
};
#define HISI_SAS_COMMAND_ENTRIES_V2_HW 4096
#define HISI_MAX_SATA_SUPPORT_V2_HW (HISI_SAS_COMMAND_ENTRIES_V2_HW/64 - 1)
#define DIR_NO_DATA 0
#define DIR_TO_INI 1
#define DIR_TO_DEVICE 2
#define DIR_RESERVED 3
#define ERR_ON_TX_PHASE(err_phase) (err_phase == 0x2 || \
err_phase == 0x4 || err_phase == 0x8 ||\
err_phase == 0x6 || err_phase == 0xa)
#define ERR_ON_RX_PHASE(err_phase) (err_phase == 0x10 || \
err_phase == 0x20 || err_phase == 0x40)
static void link_timeout_disable_link(struct timer_list *t);
static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl(regs);
}
static u32 hisi_sas_read32_relaxed(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl_relaxed(regs);
}
static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + off;
writel(val, regs);
}
static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no,
u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
writel(val, regs);
}
static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba,
int phy_no, u32 off)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
return readl(regs);
}
/* This function needs to be protected from pre-emption. */
static int
slot_index_alloc_quirk_v2_hw(struct hisi_hba *hisi_hba,
struct domain_device *device)
{
int sata_dev = dev_is_sata(device);
void *bitmap = hisi_hba->slot_index_tags;
struct hisi_sas_device *sas_dev = device->lldd_dev;
int sata_idx = sas_dev->sata_idx;
int start, end;
unsigned long flags;
if (!sata_dev) {
/*
* STP link SoC bug workaround: index starts from 1.
* additionally, we can only allocate odd IPTT(1~4095)
* for SAS/SMP device.
*/
start = 1;
end = hisi_hba->slot_index_count;
} else {
if (sata_idx >= HISI_MAX_SATA_SUPPORT_V2_HW)
return -EINVAL;
/*
* For SATA device: allocate even IPTT in this interval
* [64*(sata_idx+1), 64*(sata_idx+2)], then each SATA device
* own 32 IPTTs. IPTT 0 shall not be used duing to STP link
* SoC bug workaround. So we ignore the first 32 even IPTTs.
*/
start = 64 * (sata_idx + 1);
end = 64 * (sata_idx + 2);
}
spin_lock_irqsave(&hisi_hba->lock, flags);
while (1) {
start = find_next_zero_bit(bitmap,
hisi_hba->slot_index_count, start);
if (start >= end) {
spin_unlock_irqrestore(&hisi_hba->lock, flags);
return -SAS_QUEUE_FULL;
}
/*
* SAS IPTT bit0 should be 1, and SATA IPTT bit0 should be 0.
*/
if (sata_dev ^ (start & 1))
break;
start++;
}
set_bit(start, bitmap);
spin_unlock_irqrestore(&hisi_hba->lock, flags);
return start;
}
static bool sata_index_alloc_v2_hw(struct hisi_hba *hisi_hba, int *idx)
{
unsigned int index;
struct device *dev = hisi_hba->dev;
void *bitmap = hisi_hba->sata_dev_bitmap;
index = find_first_zero_bit(bitmap, HISI_MAX_SATA_SUPPORT_V2_HW);
if (index >= HISI_MAX_SATA_SUPPORT_V2_HW) {
dev_warn(dev, "alloc sata index failed, index=%d\n", index);
return false;
}
set_bit(index, bitmap);
*idx = index;
return true;
}
static struct
hisi_sas_device *alloc_dev_quirk_v2_hw(struct domain_device *device)
{
struct hisi_hba *hisi_hba = device->port->ha->lldd_ha;
struct hisi_sas_device *sas_dev = NULL;
int i, sata_dev = dev_is_sata(device);
int sata_idx = -1;
unsigned long flags;
spin_lock_irqsave(&hisi_hba->lock, flags);
if (sata_dev)
if (!sata_index_alloc_v2_hw(hisi_hba, &sata_idx))
goto out;
for (i = 0; i < HISI_SAS_MAX_DEVICES; i++) {
/*
* SATA device id bit0 should be 0
*/
if (sata_dev && (i & 1))
continue;
if (hisi_hba->devices[i].dev_type == SAS_PHY_UNUSED) {
int queue = i % hisi_hba->queue_count;
struct hisi_sas_dq *dq = &hisi_hba->dq[queue];
hisi_hba->devices[i].device_id = i;
sas_dev = &hisi_hba->devices[i];
sas_dev->dev_status = HISI_SAS_DEV_INIT;
sas_dev->dev_type = device->dev_type;
sas_dev->hisi_hba = hisi_hba;
sas_dev->sas_device = device;
sas_dev->sata_idx = sata_idx;
sas_dev->dq = dq;
spin_lock_init(&sas_dev->lock);
INIT_LIST_HEAD(&hisi_hba->devices[i].list);
break;
}
}
out:
spin_unlock_irqrestore(&hisi_hba->lock, flags);
return sas_dev;
}
static void config_phy_opt_mode_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_DC_OPT_MSK;
cfg |= 1 << PHY_CFG_DC_OPT_OFF;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void config_id_frame_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct sas_identify_frame identify_frame;
u32 *identify_buffer;
memset(&identify_frame, 0, sizeof(identify_frame));
identify_frame.dev_type = SAS_END_DEVICE;
identify_frame.frame_type = 0;
identify_frame._un1 = 1;
identify_frame.initiator_bits = SAS_PROTOCOL_ALL;
identify_frame.target_bits = SAS_PROTOCOL_NONE;
memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
identify_frame.phy_id = phy_no;
identify_buffer = (u32 *)(&identify_frame);
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0,
__swab32(identify_buffer[0]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1,
__swab32(identify_buffer[1]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2,
__swab32(identify_buffer[2]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3,
__swab32(identify_buffer[3]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4,
__swab32(identify_buffer[4]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5,
__swab32(identify_buffer[5]));
}
static void setup_itct_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
struct domain_device *device = sas_dev->sas_device;
struct device *dev = hisi_hba->dev;
u64 qw0, device_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[device_id];
struct domain_device *parent_dev = device->parent;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
u64 sas_addr;
memset(itct, 0, sizeof(*itct));
/* qw0 */
qw0 = 0;
switch (sas_dev->dev_type) {
case SAS_END_DEVICE:
case SAS_EDGE_EXPANDER_DEVICE:
case SAS_FANOUT_EXPANDER_DEVICE:
qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF;
break;
case SAS_SATA_DEV:
case SAS_SATA_PENDING:
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF;
else
qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF;
break;
default:
dev_warn(dev, "setup itct: unsupported dev type (%d)\n",
sas_dev->dev_type);
}
qw0 |= ((1 << ITCT_HDR_VALID_OFF) |
(device->linkrate << ITCT_HDR_MCR_OFF) |
(1 << ITCT_HDR_VLN_OFF) |
(ITCT_HDR_SMP_TIMEOUT << ITCT_HDR_SMP_TIMEOUT_OFF) |
(1 << ITCT_HDR_AWT_CONTINUE_OFF) |
(port->id << ITCT_HDR_PORT_ID_OFF));
itct->qw0 = cpu_to_le64(qw0);
/* qw1 */
memcpy(&sas_addr, device->sas_addr, SAS_ADDR_SIZE);
itct->sas_addr = cpu_to_le64(__swab64(sas_addr));
/* qw2 */
if (!dev_is_sata(device))
itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) |
(0x1ULL << ITCT_HDR_BITLT_OFF) |
(0x32ULL << ITCT_HDR_MCTLT_OFF) |
(0x1ULL << ITCT_HDR_RTOLT_OFF));
}
static void clear_itct_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
DECLARE_COMPLETION_ONSTACK(completion);
u64 dev_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id];
u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
int i;
sas_dev->completion = &completion;
/* clear the itct interrupt state */
if (ENT_INT_SRC3_ITC_INT_MSK & reg_val)
hisi_sas_write32(hisi_hba, ENT_INT_SRC3,
ENT_INT_SRC3_ITC_INT_MSK);
for (i = 0; i < 2; i++) {
reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK);
hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val);
wait_for_completion(sas_dev->completion);
memset(itct, 0, sizeof(struct hisi_sas_itct));
}
}
static void free_device_v2_hw(struct hisi_sas_device *sas_dev)
{
struct hisi_hba *hisi_hba = sas_dev->hisi_hba;
/* SoC bug workaround */
if (dev_is_sata(sas_dev->sas_device))
clear_bit(sas_dev->sata_idx, hisi_hba->sata_dev_bitmap);
}
static int reset_hw_v2_hw(struct hisi_hba *hisi_hba)
{
int i, reset_val;
u32 val;
unsigned long end_time;
struct device *dev = hisi_hba->dev;
/* The mask needs to be set depending on the number of phys */
if (hisi_hba->n_phy == 9)
reset_val = 0x1fffff;
else
reset_val = 0x7ffff;
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0);
/* Disable all of the PHYs */
for (i = 0; i < hisi_hba->n_phy; i++) {
u32 phy_cfg = hisi_sas_phy_read32(hisi_hba, i, PHY_CFG);
phy_cfg &= ~PHY_CTRL_RESET_MSK;
hisi_sas_phy_write32(hisi_hba, i, PHY_CFG, phy_cfg);
}
udelay(50);
/* Ensure DMA tx & rx idle */
for (i = 0; i < hisi_hba->n_phy; i++) {
u32 dma_tx_status, dma_rx_status;
end_time = jiffies + msecs_to_jiffies(1000);
while (1) {
dma_tx_status = hisi_sas_phy_read32(hisi_hba, i,
DMA_TX_STATUS);
dma_rx_status = hisi_sas_phy_read32(hisi_hba, i,
DMA_RX_STATUS);
if (!(dma_tx_status & DMA_TX_STATUS_BUSY_MSK) &&
!(dma_rx_status & DMA_RX_STATUS_BUSY_MSK))
break;
msleep(20);
if (time_after(jiffies, end_time))
return -EIO;
}
}
/* Ensure axi bus idle */
end_time = jiffies + msecs_to_jiffies(1000);
while (1) {
u32 axi_status =
hisi_sas_read32(hisi_hba, AXI_CFG);
if (axi_status == 0)
break;
msleep(20);
if (time_after(jiffies, end_time))
return -EIO;
}
if (ACPI_HANDLE(dev)) {
acpi_status s;
s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL);
if (ACPI_FAILURE(s)) {
dev_err(dev, "Reset failed\n");
return -EIO;
}
} else if (hisi_hba->ctrl) {
/* reset and disable clock*/
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg,
reset_val);
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg + 4,
reset_val);
msleep(1);
regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg, &val);
if (reset_val != (val & reset_val)) {
dev_err(dev, "SAS reset fail.\n");
return -EIO;
}
/* De-reset and enable clock*/
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_reset_reg + 4,
reset_val);
regmap_write(hisi_hba->ctrl, hisi_hba->ctrl_clock_ena_reg,
reset_val);
msleep(1);
regmap_read(hisi_hba->ctrl, hisi_hba->ctrl_reset_sts_reg,
&val);
if (val & reset_val) {
dev_err(dev, "SAS de-reset fail.\n");
return -EIO;
}
} else {
dev_err(dev, "no reset method\n");
return -EINVAL;
}
return 0;
}
/* This function needs to be called after resetting SAS controller. */
static void phys_reject_stp_links_v2_hw(struct hisi_hba *hisi_hba)
{
u32 cfg;
int phy_no;
hisi_hba->reject_stp_links_msk = (1 << hisi_hba->n_phy) - 1;
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
cfg = hisi_sas_phy_read32(hisi_hba, phy_no, CON_CONTROL);
if (!(cfg & CON_CONTROL_CFG_OPEN_ACC_STP_MSK))
continue;
cfg &= ~CON_CONTROL_CFG_OPEN_ACC_STP_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, CON_CONTROL, cfg);
}
}
static void phys_try_accept_stp_links_v2_hw(struct hisi_hba *hisi_hba)
{
int phy_no;
u32 dma_tx_dfx1;
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
if (!(hisi_hba->reject_stp_links_msk & BIT(phy_no)))
continue;
dma_tx_dfx1 = hisi_sas_phy_read32(hisi_hba, phy_no,
DMA_TX_DFX1);
if (dma_tx_dfx1 & DMA_TX_DFX1_IPTT_MSK) {
u32 cfg = hisi_sas_phy_read32(hisi_hba,
phy_no, CON_CONTROL);
cfg |= CON_CONTROL_CFG_OPEN_ACC_STP_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no,
CON_CONTROL, cfg);
clear_bit(phy_no, &hisi_hba->reject_stp_links_msk);
}
}
}
static const struct signal_attenuation_s x6000 = {9200, 0, 10476};
static const struct sig_atten_lu_s sig_atten_lu[] = {
{ &x6000, 0x3016a68 },
};
static void init_reg_v2_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
u32 sas_phy_ctrl = 0x30b9908;
u32 signal[3];
int i;
/* Global registers init */
/* Deal with am-max-transmissions quirk */
if (device_property_present(dev, "hip06-sas-v2-quirk-amt")) {
hisi_sas_write32(hisi_hba, AM_CFG_MAX_TRANS, 0x2020);
hisi_sas_write32(hisi_hba, AM_CFG_SINGLE_PORT_MAX_TRANS,
0x2020);
} /* Else, use defaults -> do nothing */
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE,
(u32)((1ULL << hisi_hba->queue_count) - 1));
hisi_sas_write32(hisi_hba, AXI_USER1, 0xc0000000);
hisi_sas_write32(hisi_hba, AXI_USER2, 0x10000);
hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x0);
hisi_sas_write32(hisi_hba, HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL, 0x7FF);
hisi_sas_write32(hisi_hba, OPENA_WT_CONTI_TIME, 0x1);
hisi_sas_write32(hisi_hba, I_T_NEXUS_LOSS_TIME, 0x1F4);
hisi_sas_write32(hisi_hba, MAX_CON_TIME_LIMIT_TIME, 0x32);
hisi_sas_write32(hisi_hba, BUS_INACTIVE_LIMIT_TIME, 0x1);
hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1);
hisi_sas_write32(hisi_hba, HGC_ERR_STAT_EN, 0x1);
hisi_sas_write32(hisi_hba, HGC_GET_ITV_TIME, 0x1);
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0xc);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x60);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x3);
hisi_sas_write32(hisi_hba, ENT_INT_COAL_TIME, 0x1);
hisi_sas_write32(hisi_hba, ENT_INT_COAL_CNT, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0x0);
hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0x7efefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0x7efefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0x7ffe20fe);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xfff00c30);
for (i = 0; i < hisi_hba->queue_count; i++)
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0);
hisi_sas_write32(hisi_hba, AXI_AHB_CLK_CFG, 1);
hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1);
/* Get sas_phy_ctrl value to deal with TX FFE issue. */
if (!device_property_read_u32_array(dev, "hisilicon,signal-attenuation",
signal, ARRAY_SIZE(signal))) {
for (i = 0; i < ARRAY_SIZE(sig_atten_lu); i++) {
const struct sig_atten_lu_s *lookup = &sig_atten_lu[i];
const struct signal_attenuation_s *att = lookup->att;
if ((signal[0] == att->de_emphasis) &&
(signal[1] == att->preshoot) &&
(signal[2] == att->boost)) {
sas_phy_ctrl = lookup->sas_phy_ctrl;
break;
}
}
if (i == ARRAY_SIZE(sig_atten_lu))
dev_warn(dev, "unknown signal attenuation values, using default PHY ctrl config\n");
}
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
u32 prog_phy_link_rate = 0x800;
if (!sas_phy->phy || (sas_phy->phy->maximum_linkrate <
SAS_LINK_RATE_1_5_GBPS)) {
prog_phy_link_rate = 0x855;
} else {
enum sas_linkrate max = sas_phy->phy->maximum_linkrate;
prog_phy_link_rate =
hisi_sas_get_prog_phy_linkrate_mask(max) |
0x800;
}
hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
hisi_sas_phy_write32(hisi_hba, i, SAS_PHY_CTRL, sas_phy_ctrl);
hisi_sas_phy_write32(hisi_hba, i, SL_TOUT_CFG, 0x7d7d7d7d);
hisi_sas_phy_write32(hisi_hba, i, SL_CONTROL, 0x0);
hisi_sas_phy_write32(hisi_hba, i, TXID_AUTO, 0x2);
hisi_sas_phy_write32(hisi_hba, i, DONE_RECEIVED_TIME, 0x8);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xfff87fff);
hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xff857fff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0x8ffffbfe);
hisi_sas_phy_write32(hisi_hba, i, SL_CFG, 0x13f801fc);
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT_COAL_EN, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x0);
if (hisi_hba->refclk_frequency_mhz == 66)
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL, 0x199B694);
/* else, do nothing -> leave it how you found it */
}
for (i = 0; i < hisi_hba->queue_count; i++) {
/* Delivery queue */
hisi_sas_write32(hisi_hba,
DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
/* Completion queue */
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
}
/* itct */
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO,
lower_32_bits(hisi_hba->itct_dma));
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI,
upper_32_bits(hisi_hba->itct_dma));
/* iost */
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO,
lower_32_bits(hisi_hba->iost_dma));
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI,
upper_32_bits(hisi_hba->iost_dma));
/* breakpoint */
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->breakpoint_dma));
/* SATA broken msg */
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->sata_breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->sata_breakpoint_dma));
/* SATA initial fis */
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO,
lower_32_bits(hisi_hba->initial_fis_dma));
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI,
upper_32_bits(hisi_hba->initial_fis_dma));
}
static void link_timeout_enable_link(struct timer_list *t)
{
struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer);
int i, reg_val;
for (i = 0; i < hisi_hba->n_phy; i++) {
if (hisi_hba->reject_stp_links_msk & BIT(i))
continue;
reg_val = hisi_sas_phy_read32(hisi_hba, i, CON_CONTROL);
if (!(reg_val & BIT(0))) {
hisi_sas_phy_write32(hisi_hba, i,
CON_CONTROL, 0x7);
break;
}
}
hisi_hba->timer.function = link_timeout_disable_link;
mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(900));
}
static void link_timeout_disable_link(struct timer_list *t)
{
struct hisi_hba *hisi_hba = from_timer(hisi_hba, t, timer);
int i, reg_val;
reg_val = hisi_sas_read32(hisi_hba, PHY_STATE);
for (i = 0; i < hisi_hba->n_phy && reg_val; i++) {
if (hisi_hba->reject_stp_links_msk & BIT(i))
continue;
if (reg_val & BIT(i)) {
hisi_sas_phy_write32(hisi_hba, i,
CON_CONTROL, 0x6);
break;
}
}
hisi_hba->timer.function = link_timeout_enable_link;
mod_timer(&hisi_hba->timer, jiffies + msecs_to_jiffies(100));
}
static void set_link_timer_quirk(struct hisi_hba *hisi_hba)
{
hisi_hba->timer.function = link_timeout_disable_link;
hisi_hba->timer.expires = jiffies + msecs_to_jiffies(1000);
add_timer(&hisi_hba->timer);
}
static int hw_init_v2_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc;
rc = reset_hw_v2_hw(hisi_hba);
if (rc) {
dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc);
return rc;
}
msleep(100);
init_reg_v2_hw(hisi_hba);
return 0;
}
static void enable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg |= PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static bool is_sata_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 context;
context = hisi_sas_read32(hisi_hba, PHY_CONTEXT);
if (context & (1 << phy_no))
return true;
return false;
}
static bool tx_fifo_is_empty_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 dfx_val;
dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1);
if (dfx_val & BIT(16))
return false;
return true;
}
static bool axi_bus_is_idle_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
int i, max_loop = 1000;
struct device *dev = hisi_hba->dev;
u32 status, axi_status, dfx_val, dfx_tx_val;
for (i = 0; i < max_loop; i++) {
status = hisi_sas_read32_relaxed(hisi_hba,
AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN);
axi_status = hisi_sas_read32(hisi_hba, AXI_CFG);
dfx_val = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX1);
dfx_tx_val = hisi_sas_phy_read32(hisi_hba,
phy_no, DMA_TX_FIFO_DFX0);
if ((status == 0x3) && (axi_status == 0x0) &&
(dfx_val & BIT(20)) && (dfx_tx_val & BIT(10)))
return true;
udelay(10);
}
dev_err(dev, "bus is not idle phy%d, axi150:0x%x axi100:0x%x port204:0x%x port240:0x%x\n",
phy_no, status, axi_status,
dfx_val, dfx_tx_val);
return false;
}
static bool wait_io_done_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
int i, max_loop = 1000;
struct device *dev = hisi_hba->dev;
u32 status, tx_dfx0;
for (i = 0; i < max_loop; i++) {
status = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2);
status = (status & 0x3fc0) >> 6;
if (status != 0x1)
return true;
tx_dfx0 = hisi_sas_phy_read32(hisi_hba, phy_no, DMA_TX_DFX0);
if ((tx_dfx0 & 0x1ff) == 0x2)
return true;
udelay(10);
}
dev_err(dev, "IO not done phy%d, port264:0x%x port200:0x%x\n",
phy_no, status, tx_dfx0);
return false;
}
static bool allowed_disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
if (tx_fifo_is_empty_v2_hw(hisi_hba, phy_no))
return true;
if (!axi_bus_is_idle_v2_hw(hisi_hba, phy_no))
return false;
if (!wait_io_done_v2_hw(hisi_hba, phy_no))
return false;
return true;
}
static void disable_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg, axi_val, dfx0_val, txid_auto;
struct device *dev = hisi_hba->dev;
/* Close axi bus. */
axi_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL);
axi_val |= 0x1;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, axi_val);
if (is_sata_phy_v2_hw(hisi_hba, phy_no)) {
if (allowed_disable_phy_v2_hw(hisi_hba, phy_no))
goto do_disable;
/* Reset host controller. */
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
return;
}
dfx0_val = hisi_sas_phy_read32(hisi_hba, phy_no, PORT_DFX0);
dfx0_val = (dfx0_val & 0x1fc0) >> 6;
if (dfx0_val != 0x4)
goto do_disable;
if (!tx_fifo_is_empty_v2_hw(hisi_hba, phy_no)) {
dev_warn(dev, "phy%d, wait tx fifo need send break\n",
phy_no);
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no,
TXID_AUTO);
txid_auto |= TXID_AUTO_CTB_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto);
}
do_disable:
cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
/* Open axi bus. */
axi_val &= ~0x1;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, axi_val);
}
static void start_phy_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
config_id_frame_v2_hw(hisi_hba, phy_no);
config_phy_opt_mode_v2_hw(hisi_hba, phy_no);
enable_phy_v2_hw(hisi_hba, phy_no);
}
static void phy_hard_reset_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
u32 txid_auto;
disable_phy_v2_hw(hisi_hba, phy_no);
if (phy->identify.device_type == SAS_END_DEVICE) {
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | TX_HARDRST_MSK);
}
msleep(100);
start_phy_v2_hw(hisi_hba, phy_no);
}
static void phy_get_events_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
u32 err4_reg_val, err6_reg_val;
/* loss dword syn, phy reset problem */
err4_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT4_REG);
/* disparity err, invalid dword */
err6_reg_val = hisi_sas_phy_read32(hisi_hba, phy_no, SAS_ERR_CNT6_REG);
sphy->loss_of_dword_sync_count += (err4_reg_val >> 16) & 0xFFFF;
sphy->phy_reset_problem_count += err4_reg_val & 0xFFFF;
sphy->invalid_dword_count += (err6_reg_val & 0xFF0000) >> 16;
sphy->running_disparity_error_count += err6_reg_val & 0xFF;
}
static void phys_init_v2_hw(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
if (!sas_phy->phy->enabled)
continue;
start_phy_v2_hw(hisi_hba, i);
}
}
static void sl_notify_ssp_v2_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 sl_control;
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control |= SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
msleep(1);
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
}
static enum sas_linkrate phy_get_max_linkrate_v2_hw(void)
{
return SAS_LINK_RATE_12_0_GBPS;
}
static void phy_set_linkrate_v2_hw(struct hisi_hba *hisi_hba, int phy_no,
struct sas_phy_linkrates *r)
{
enum sas_linkrate max = r->maximum_linkrate;
u32 prog_phy_link_rate = 0x800;
prog_phy_link_rate |= hisi_sas_get_prog_phy_linkrate_mask(max);
hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
}
static int get_wideport_bitmap_v2_hw(struct hisi_hba *hisi_hba, int port_id)
{
int i, bitmap = 0;
u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
for (i = 0; i < (hisi_hba->n_phy < 9 ? hisi_hba->n_phy : 8); i++)
if (phy_state & 1 << i)
if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id)
bitmap |= 1 << i;
if (hisi_hba->n_phy == 9) {
u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
if (phy_state & 1 << 8)
if (((port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >>
PORT_STATE_PHY8_PORT_NUM_OFF) == port_id)
bitmap |= 1 << 9;
}
return bitmap;
}
/*
* The callpath to this function and upto writing the write
* queue pointer should be safe from interruption.
*/
static int
get_free_slot_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_dq *dq)
{
struct device *dev = hisi_hba->dev;
int queue = dq->id;
u32 r, w;
w = dq->wr_point;
r = hisi_sas_read32_relaxed(hisi_hba,
DLVRY_Q_0_RD_PTR + (queue * 0x14));
if (r == (w+1) % HISI_SAS_QUEUE_SLOTS) {
dev_warn(dev, "full queue=%d r=%d w=%d\n",
queue, r, w);
return -EAGAIN;
}
dq->wr_point = (dq->wr_point + 1) % HISI_SAS_QUEUE_SLOTS;
return w;
}
/* DQ lock must be taken here */
static void start_delivery_v2_hw(struct hisi_sas_dq *dq)
{
struct hisi_hba *hisi_hba = dq->hisi_hba;
struct hisi_sas_slot *s, *s1, *s2 = NULL;
int dlvry_queue = dq->id;
int wp;
list_for_each_entry_safe(s, s1, &dq->list, delivery) {
if (!s->ready)
break;
s2 = s;
list_del(&s->delivery);
}
if (!s2)
return;
/*
* Ensure that memories for slots built on other CPUs is observed.
*/
smp_rmb();
wp = (s2->dlvry_queue_slot + 1) % HISI_SAS_QUEUE_SLOTS;
hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), wp);
}
static void prep_prd_sge_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_cmd_hdr *hdr,
struct scatterlist *scatter,
int n_elem)
{
struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot);
struct scatterlist *sg;
int i;
for_each_sg(scatter, sg, n_elem, i) {
struct hisi_sas_sge *entry = &sge_page->sge[i];
entry->addr = cpu_to_le64(sg_dma_address(sg));
entry->page_ctrl_0 = entry->page_ctrl_1 = 0;
entry->data_len = cpu_to_le32(sg_dma_len(sg));
entry->data_off = 0;
}
hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot));
hdr->sg_len = cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF);
}
static void prep_smp_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_port *port = slot->port;
struct scatterlist *sg_req;
struct hisi_sas_device *sas_dev = device->lldd_dev;
dma_addr_t req_dma_addr;
unsigned int req_len;
/* req */
sg_req = &task->smp_task.smp_req;
req_dma_addr = sg_dma_address(sg_req);
req_len = sg_dma_len(&task->smp_task.smp_req);
/* create header */
/* dw0 */
hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) |
(1 << CMD_HDR_PRIORITY_OFF) | /* high pri */
(2 << CMD_HDR_CMD_OFF)); /* smp */
/* map itct entry */
hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) |
(1 << CMD_HDR_FRAME_TYPE_OFF) |
(DIR_NO_DATA << CMD_HDR_DIR_OFF));
/* dw2 */
hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) |
(HISI_SAS_MAX_SMP_RESP_SZ / 4 <<
CMD_HDR_MRFL_OFF));
hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF);
hdr->cmd_table_addr = cpu_to_le64(req_dma_addr);
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
}
static void prep_ssp_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_port *port = slot->port;
struct sas_ssp_task *ssp_task = &task->ssp_task;
struct scsi_cmnd *scsi_cmnd = ssp_task->cmd;
struct hisi_sas_tmf_task *tmf = slot->tmf;
int has_data = 0, priority = !!tmf;
u8 *buf_cmd;
u32 dw1 = 0, dw2 = 0;
hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) |
(2 << CMD_HDR_TLR_CTRL_OFF) |
(port->id << CMD_HDR_PORT_OFF) |
(priority << CMD_HDR_PRIORITY_OFF) |
(1 << CMD_HDR_CMD_OFF)); /* ssp */
dw1 = 1 << CMD_HDR_VDTL_OFF;
if (tmf) {
dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF;
dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF;
} else {
dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF;
switch (scsi_cmnd->sc_data_direction) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
}
/* map itct entry */
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
hdr->dw1 = cpu_to_le32(dw1);
dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr)
+ 3) / 4) << CMD_HDR_CFL_OFF) |
((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) |
(2 << CMD_HDR_SG_MOD_OFF);
hdr->dw2 = cpu_to_le32(dw2);
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data)
prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) +
sizeof(struct ssp_frame_hdr);
memcpy(buf_cmd, &task->ssp_task.LUN, 8);
if (!tmf) {
buf_cmd[9] = task->ssp_task.task_attr |
(task->ssp_task.task_prio << 3);
memcpy(buf_cmd + 12, task->ssp_task.cmd->cmnd,
task->ssp_task.cmd->cmd_len);
} else {
buf_cmd[10] = tmf->tmf;
switch (tmf->tmf) {
case TMF_ABORT_TASK:
case TMF_QUERY_TASK:
buf_cmd[12] =
(tmf->tag_of_task_to_be_managed >> 8) & 0xff;
buf_cmd[13] =
tmf->tag_of_task_to_be_managed & 0xff;
break;
default:
break;
}
}
}
#define TRANS_TX_ERR 0
#define TRANS_RX_ERR 1
#define DMA_TX_ERR 2
#define SIPC_RX_ERR 3
#define DMA_RX_ERR 4
#define DMA_TX_ERR_OFF 0
#define DMA_TX_ERR_MSK (0xffff << DMA_TX_ERR_OFF)
#define SIPC_RX_ERR_OFF 16
#define SIPC_RX_ERR_MSK (0xffff << SIPC_RX_ERR_OFF)
static int parse_trans_tx_err_code_v2_hw(u32 err_msk)
{
static const u8 trans_tx_err_code_prio[] = {
TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS,
TRANS_TX_ERR_PHY_NOT_ENABLE,
TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION,
TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION,
TRANS_TX_OPEN_CNX_ERR_BY_OTHER,
RESERVED0,
TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT,
TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY,
TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED,
TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED,
TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION,
TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD,
TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER,
TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED,
TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT,
TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION,
TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED,
TRANS_TX_ERR_WITH_CLOSE_PHYDISALE,
TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT,
TRANS_TX_ERR_WITH_CLOSE_COMINIT,
TRANS_TX_ERR_WITH_BREAK_TIMEOUT,
TRANS_TX_ERR_WITH_BREAK_REQUEST,
TRANS_TX_ERR_WITH_BREAK_RECEVIED,
TRANS_TX_ERR_WITH_CLOSE_TIMEOUT,
TRANS_TX_ERR_WITH_CLOSE_NORMAL,
TRANS_TX_ERR_WITH_NAK_RECEVIED,
TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT,
TRANS_TX_ERR_WITH_CREDIT_TIMEOUT,
TRANS_TX_ERR_WITH_IPTT_CONFLICT,
TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS,
TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(trans_tx_err_code_prio); i++) {
index = trans_tx_err_code_prio[i] - TRANS_TX_FAIL_BASE;
if (err_msk & (1 << index))
return trans_tx_err_code_prio[i];
}
return -1;
}
static int parse_trans_rx_err_code_v2_hw(u32 err_msk)
{
static const u8 trans_rx_err_code_prio[] = {
TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR,
TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR,
TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM,
TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR,
TRANS_RX_ERR_WITH_RXFIS_CRC_ERR,
TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN,
TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP,
TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN,
TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE,
TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT,
TRANS_RX_ERR_WITH_CLOSE_COMINIT,
TRANS_RX_ERR_WITH_BREAK_TIMEOUT,
TRANS_RX_ERR_WITH_BREAK_REQUEST,
TRANS_RX_ERR_WITH_BREAK_RECEVIED,
RESERVED1,
TRANS_RX_ERR_WITH_CLOSE_NORMAL,
TRANS_RX_ERR_WITH_DATA_LEN0,
TRANS_RX_ERR_WITH_BAD_HASH,
TRANS_RX_XRDY_WLEN_ZERO_ERR,
TRANS_RX_SSP_FRM_LEN_ERR,
RESERVED2,
RESERVED3,
RESERVED4,
RESERVED5,
TRANS_RX_ERR_WITH_BAD_FRM_TYPE,
TRANS_RX_SMP_FRM_LEN_ERR,
TRANS_RX_SMP_RESP_TIMEOUT_ERR,
RESERVED6,
RESERVED7,
RESERVED8,
RESERVED9,
TRANS_RX_R_ERR,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(trans_rx_err_code_prio); i++) {
index = trans_rx_err_code_prio[i] - TRANS_RX_FAIL_BASE;
if (err_msk & (1 << index))
return trans_rx_err_code_prio[i];
}
return -1;
}
static int parse_dma_tx_err_code_v2_hw(u32 err_msk)
{
static const u8 dma_tx_err_code_prio[] = {
DMA_TX_UNEXP_XFER_ERR,
DMA_TX_UNEXP_RETRANS_ERR,
DMA_TX_XFER_LEN_OVERFLOW,
DMA_TX_XFER_OFFSET_ERR,
DMA_TX_RAM_ECC_ERR,
DMA_TX_DIF_LEN_ALIGN_ERR,
DMA_TX_DIF_CRC_ERR,
DMA_TX_DIF_APP_ERR,
DMA_TX_DIF_RPP_ERR,
DMA_TX_DATA_SGL_OVERFLOW,
DMA_TX_DIF_SGL_OVERFLOW,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(dma_tx_err_code_prio); i++) {
index = dma_tx_err_code_prio[i] - DMA_TX_ERR_BASE;
err_msk = err_msk & DMA_TX_ERR_MSK;
if (err_msk & (1 << index))
return dma_tx_err_code_prio[i];
}
return -1;
}
static int parse_sipc_rx_err_code_v2_hw(u32 err_msk)
{
static const u8 sipc_rx_err_code_prio[] = {
SIPC_RX_FIS_STATUS_ERR_BIT_VLD,
SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR,
SIPC_RX_FIS_STATUS_BSY_BIT_ERR,
SIPC_RX_WRSETUP_LEN_ODD_ERR,
SIPC_RX_WRSETUP_LEN_ZERO_ERR,
SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR,
SIPC_RX_NCQ_WRSETUP_OFFSET_ERR,
SIPC_RX_NCQ_WRSETUP_AUTO_ACTIVE_ERR,
SIPC_RX_SATA_UNEXP_FIS_ERR,
SIPC_RX_WRSETUP_ESTATUS_ERR,
SIPC_RX_DATA_UNDERFLOW_ERR,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(sipc_rx_err_code_prio); i++) {
index = sipc_rx_err_code_prio[i] - SIPC_RX_ERR_BASE;
err_msk = err_msk & SIPC_RX_ERR_MSK;
if (err_msk & (1 << (index + 0x10)))
return sipc_rx_err_code_prio[i];
}
return -1;
}
static int parse_dma_rx_err_code_v2_hw(u32 err_msk)
{
static const u8 dma_rx_err_code_prio[] = {
DMA_RX_UNKNOWN_FRM_ERR,
DMA_RX_DATA_LEN_OVERFLOW,
DMA_RX_DATA_LEN_UNDERFLOW,
DMA_RX_DATA_OFFSET_ERR,
RESERVED10,
DMA_RX_SATA_FRAME_TYPE_ERR,
DMA_RX_RESP_BUF_OVERFLOW,
DMA_RX_UNEXP_RETRANS_RESP_ERR,
DMA_RX_UNEXP_NORM_RESP_ERR,
DMA_RX_UNEXP_RDFRAME_ERR,
DMA_RX_PIO_DATA_LEN_ERR,
DMA_RX_RDSETUP_STATUS_ERR,
DMA_RX_RDSETUP_STATUS_DRQ_ERR,
DMA_RX_RDSETUP_STATUS_BSY_ERR,
DMA_RX_RDSETUP_LEN_ODD_ERR,
DMA_RX_RDSETUP_LEN_ZERO_ERR,
DMA_RX_RDSETUP_LEN_OVER_ERR,
DMA_RX_RDSETUP_OFFSET_ERR,
DMA_RX_RDSETUP_ACTIVE_ERR,
DMA_RX_RDSETUP_ESTATUS_ERR,
DMA_RX_RAM_ECC_ERR,
DMA_RX_DIF_CRC_ERR,
DMA_RX_DIF_APP_ERR,
DMA_RX_DIF_RPP_ERR,
DMA_RX_DATA_SGL_OVERFLOW,
DMA_RX_DIF_SGL_OVERFLOW,
};
int index, i;
for (i = 0; i < ARRAY_SIZE(dma_rx_err_code_prio); i++) {
index = dma_rx_err_code_prio[i] - DMA_RX_ERR_BASE;
if (err_msk & (1 << index))
return dma_rx_err_code_prio[i];
}
return -1;
}
/* by default, task resp is complete */
static void slot_err_v2_hw(struct hisi_hba *hisi_hba,
struct sas_task *task,
struct hisi_sas_slot *slot,
int err_phase)
{
struct task_status_struct *ts = &task->task_status;
struct hisi_sas_err_record_v2 *err_record =
hisi_sas_status_buf_addr_mem(slot);
u32 trans_tx_fail_type = le32_to_cpu(err_record->trans_tx_fail_type);
u32 trans_rx_fail_type = le32_to_cpu(err_record->trans_rx_fail_type);
u16 dma_tx_err_type = le16_to_cpu(err_record->dma_tx_err_type);
u16 sipc_rx_err_type = le16_to_cpu(err_record->sipc_rx_err_type);
u32 dma_rx_err_type = le32_to_cpu(err_record->dma_rx_err_type);
int error = -1;
if (err_phase == 1) {
/* error in TX phase, the priority of error is: DW2 > DW0 */
error = parse_dma_tx_err_code_v2_hw(dma_tx_err_type);
if (error == -1)
error = parse_trans_tx_err_code_v2_hw(
trans_tx_fail_type);
} else if (err_phase == 2) {
/* error in RX phase, the priority is: DW1 > DW3 > DW2 */
error = parse_trans_rx_err_code_v2_hw(trans_rx_fail_type);
if (error == -1) {
error = parse_dma_rx_err_code_v2_hw(
dma_rx_err_type);
if (error == -1)
error = parse_sipc_rx_err_code_v2_hw(
sipc_rx_err_type);
}
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
{
switch (error) {
case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_NO_DEST;
break;
}
case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
}
case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_BAD_DEST;
break;
}
case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
}
case DMA_RX_UNEXP_NORM_RESP_ERR:
case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION:
case DMA_RX_RESP_BUF_OVERFLOW:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
}
case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER:
{
/* not sure */
ts->stat = SAS_DEV_NO_RESPONSE;
break;
}
case DMA_RX_DATA_LEN_OVERFLOW:
{
ts->stat = SAS_DATA_OVERRUN;
ts->residual = 0;
break;
}
case DMA_RX_DATA_LEN_UNDERFLOW:
{
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
break;
}
case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS:
case TRANS_TX_ERR_PHY_NOT_ENABLE:
case TRANS_TX_OPEN_CNX_ERR_BY_OTHER:
case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT:
case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD:
case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED:
case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT:
case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED:
case TRANS_TX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_TX_ERR_WITH_BREAK_REQUEST:
case TRANS_TX_ERR_WITH_BREAK_RECEVIED:
case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_NORMAL:
case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE:
case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_COMINIT:
case TRANS_TX_ERR_WITH_NAK_RECEVIED:
case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT:
case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT:
case TRANS_TX_ERR_WITH_IPTT_CONFLICT:
case TRANS_RX_ERR_WITH_RXFRAME_CRC_ERR:
case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR:
case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM:
case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN:
case TRANS_RX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_RX_ERR_WITH_BREAK_REQUEST:
case TRANS_RX_ERR_WITH_BREAK_RECEVIED:
case TRANS_RX_ERR_WITH_CLOSE_NORMAL:
case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_RX_ERR_WITH_CLOSE_COMINIT:
case TRANS_TX_ERR_FRAME_TXED:
case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE:
case TRANS_RX_ERR_WITH_DATA_LEN0:
case TRANS_RX_ERR_WITH_BAD_HASH:
case TRANS_RX_XRDY_WLEN_ZERO_ERR:
case TRANS_RX_SSP_FRM_LEN_ERR:
case TRANS_RX_ERR_WITH_BAD_FRM_TYPE:
case DMA_TX_DATA_SGL_OVERFLOW:
case DMA_TX_UNEXP_XFER_ERR:
case DMA_TX_UNEXP_RETRANS_ERR:
case DMA_TX_XFER_LEN_OVERFLOW:
case DMA_TX_XFER_OFFSET_ERR:
case SIPC_RX_DATA_UNDERFLOW_ERR:
case DMA_RX_DATA_SGL_OVERFLOW:
case DMA_RX_DATA_OFFSET_ERR:
case DMA_RX_RDSETUP_LEN_ODD_ERR:
case DMA_RX_RDSETUP_LEN_ZERO_ERR:
case DMA_RX_RDSETUP_LEN_OVER_ERR:
case DMA_RX_SATA_FRAME_TYPE_ERR:
case DMA_RX_UNKNOWN_FRM_ERR:
{
/* This will request a retry */
ts->stat = SAS_QUEUE_FULL;
slot->abort = 1;
break;
}
default:
break;
}
}
break;
case SAS_PROTOCOL_SMP:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
{
switch (error) {
case TRANS_TX_OPEN_CNX_ERR_NO_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_NO_DEST;
break;
}
case TRANS_TX_OPEN_CNX_ERR_LOW_PHY_POWER:
{
ts->resp = SAS_TASK_UNDELIVERED;
ts->stat = SAS_DEV_NO_RESPONSE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_PROTOCOL_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_EPROTO;
break;
}
case TRANS_TX_OPEN_CNX_ERR_CONNECTION_RATE_NOT_SUPPORTED:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_BAD_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_CONN_RATE;
break;
}
case TRANS_TX_OPEN_CNX_ERR_WRONG_DESTINATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_WRONG_DEST;
break;
}
case DMA_RX_RESP_BUF_OVERFLOW:
case DMA_RX_UNEXP_NORM_RESP_ERR:
case TRANS_TX_OPEN_CNX_ERR_ZONE_VIOLATION:
{
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_UNKNOWN;
break;
}
case DMA_RX_DATA_LEN_OVERFLOW:
{
ts->stat = SAS_DATA_OVERRUN;
ts->residual = 0;
break;
}
case DMA_RX_DATA_LEN_UNDERFLOW:
{
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
break;
}
case TRANS_TX_OPEN_FAIL_WITH_IT_NEXUS_LOSS:
case TRANS_TX_ERR_PHY_NOT_ENABLE:
case TRANS_TX_OPEN_CNX_ERR_BY_OTHER:
case TRANS_TX_OPEN_CNX_ERR_AIP_TIMEOUT:
case TRANS_TX_OPEN_CNX_ERR_BREAK_RCVD:
case TRANS_TX_OPEN_CNX_ERR_PATHWAY_BLOCKED:
case TRANS_TX_OPEN_CNX_ERR_OPEN_TIMEOUT:
case TRANS_TX_OPEN_RETRY_ERR_THRESHOLD_REACHED:
case TRANS_TX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_TX_ERR_WITH_BREAK_REQUEST:
case TRANS_TX_ERR_WITH_BREAK_RECEVIED:
case TRANS_TX_ERR_WITH_CLOSE_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_NORMAL:
case TRANS_TX_ERR_WITH_CLOSE_PHYDISALE:
case TRANS_TX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_TX_ERR_WITH_CLOSE_COMINIT:
case TRANS_TX_ERR_WITH_ACK_NAK_TIMEOUT:
case TRANS_TX_ERR_WITH_CREDIT_TIMEOUT:
case TRANS_TX_ERR_WITH_OPEN_BY_DES_OR_OTHERS:
case TRANS_TX_ERR_WITH_WAIT_RECV_TIMEOUT:
case TRANS_RX_ERR_WITH_RXFRAME_HAVE_ERRPRM:
case TRANS_RX_ERR_WITH_RXFIS_8B10B_DISP_ERR:
case TRANS_RX_ERR_WITH_RXFIS_DECODE_ERROR:
case TRANS_RX_ERR_WITH_RXFIS_CRC_ERR:
case TRANS_RX_ERR_WITH_RXFRAME_LENGTH_OVERRUN:
case TRANS_RX_ERR_WITH_RXFIS_RX_SYNCP:
case TRANS_RX_ERR_WITH_LINK_BUF_OVERRUN:
case TRANS_RX_ERR_WITH_BREAK_TIMEOUT:
case TRANS_RX_ERR_WITH_BREAK_REQUEST:
case TRANS_RX_ERR_WITH_BREAK_RECEVIED:
case TRANS_RX_ERR_WITH_CLOSE_NORMAL:
case TRANS_RX_ERR_WITH_CLOSE_PHY_DISABLE:
case TRANS_RX_ERR_WITH_CLOSE_DWS_TIMEOUT:
case TRANS_RX_ERR_WITH_CLOSE_COMINIT:
case TRANS_RX_ERR_WITH_DATA_LEN0:
case TRANS_RX_ERR_WITH_BAD_HASH:
case TRANS_RX_XRDY_WLEN_ZERO_ERR:
case TRANS_RX_ERR_WITH_BAD_FRM_TYPE:
case DMA_TX_DATA_SGL_OVERFLOW:
case DMA_TX_UNEXP_XFER_ERR:
case DMA_TX_UNEXP_RETRANS_ERR:
case DMA_TX_XFER_LEN_OVERFLOW:
case DMA_TX_XFER_OFFSET_ERR:
case SIPC_RX_FIS_STATUS_ERR_BIT_VLD:
case SIPC_RX_PIO_WRSETUP_STATUS_DRQ_ERR:
case SIPC_RX_FIS_STATUS_BSY_BIT_ERR:
case SIPC_RX_WRSETUP_LEN_ODD_ERR:
case SIPC_RX_WRSETUP_LEN_ZERO_ERR:
case SIPC_RX_WRDATA_LEN_NOT_MATCH_ERR:
case SIPC_RX_SATA_UNEXP_FIS_ERR:
case DMA_RX_DATA_SGL_OVERFLOW:
case DMA_RX_DATA_OFFSET_ERR:
case DMA_RX_SATA_FRAME_TYPE_ERR:
case DMA_RX_UNEXP_RDFRAME_ERR:
case DMA_RX_PIO_DATA_LEN_ERR:
case DMA_RX_RDSETUP_STATUS_ERR:
case DMA_RX_RDSETUP_STATUS_DRQ_ERR:
case DMA_RX_RDSETUP_STATUS_BSY_ERR:
case DMA_RX_RDSETUP_LEN_ODD_ERR:
case DMA_RX_RDSETUP_LEN_ZERO_ERR:
case DMA_RX_RDSETUP_LEN_OVER_ERR:
case DMA_RX_RDSETUP_OFFSET_ERR:
case DMA_RX_RDSETUP_ACTIVE_ERR:
case DMA_RX_RDSETUP_ESTATUS_ERR:
case DMA_RX_UNKNOWN_FRM_ERR:
case TRANS_RX_SSP_FRM_LEN_ERR:
case TRANS_TX_OPEN_CNX_ERR_STP_RESOURCES_BUSY:
{
slot->abort = 1;
ts->stat = SAS_PHY_DOWN;
break;
}
default:
{
ts->stat = SAS_PROTO_RESPONSE;
break;
}
}
hisi_sas_sata_done(task, slot);
}
break;
default:
break;
}
}
static int
slot_complete_v2_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_device *sas_dev;
struct device *dev = hisi_hba->dev;
struct task_status_struct *ts;
struct domain_device *device;
struct sas_ha_struct *ha;
enum exec_status sts;
struct hisi_sas_complete_v2_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v2_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
unsigned long flags;
bool is_internal = slot->is_internal;
u32 dw0;
if (unlikely(!task || !task->lldd_task || !task->dev))
return -EINVAL;
ts = &task->task_status;
device = task->dev;
ha = device->port->ha;
sas_dev = device->lldd_dev;
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags &=
~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
spin_unlock_irqrestore(&task->task_state_lock, flags);
memset(ts, 0, sizeof(*ts));
ts->resp = SAS_TASK_COMPLETE;
if (unlikely(!sas_dev)) {
dev_dbg(dev, "slot complete: port has no device\n");
ts->stat = SAS_PHY_DOWN;
goto out;
}
/* Use SAS+TMF status codes */
dw0 = le32_to_cpu(complete_hdr->dw0);
switch ((dw0 & CMPLT_HDR_ABORT_STAT_MSK) >>
CMPLT_HDR_ABORT_STAT_OFF) {
case STAT_IO_ABORTED:
/* this io has been aborted by abort command */
ts->stat = SAS_ABORTED_TASK;
goto out;
case STAT_IO_COMPLETE:
/* internal abort command complete */
ts->stat = TMF_RESP_FUNC_SUCC;
del_timer(&slot->internal_abort_timer);
goto out;
case STAT_IO_NO_DEVICE:
ts->stat = TMF_RESP_FUNC_COMPLETE;
del_timer(&slot->internal_abort_timer);
goto out;
case STAT_IO_NOT_VALID:
/* abort single io, controller don't find
* the io need to abort
*/
ts->stat = TMF_RESP_FUNC_FAILED;
del_timer(&slot->internal_abort_timer);
goto out;
default:
break;
}
if ((dw0 & CMPLT_HDR_ERX_MSK) && (!(dw0 & CMPLT_HDR_RSPNS_XFRD_MSK))) {
u32 err_phase = (dw0 & CMPLT_HDR_ERR_PHASE_MSK)
>> CMPLT_HDR_ERR_PHASE_OFF;
u32 *error_info = hisi_sas_status_buf_addr_mem(slot);
/* Analyse error happens on which phase TX or RX */
if (ERR_ON_TX_PHASE(err_phase))
slot_err_v2_hw(hisi_hba, task, slot, 1);
else if (ERR_ON_RX_PHASE(err_phase))
slot_err_v2_hw(hisi_hba, task, slot, 2);
if (ts->stat != SAS_DATA_UNDERRUN)
dev_info(dev, "erroneous completion iptt=%d task=%p dev id=%d "
"CQ hdr: 0x%x 0x%x 0x%x 0x%x "
"Error info: 0x%x 0x%x 0x%x 0x%x\n",
slot->idx, task, sas_dev->device_id,
complete_hdr->dw0, complete_hdr->dw1,
complete_hdr->act, complete_hdr->dw3,
error_info[0], error_info[1],
error_info[2], error_info[3]);
if (unlikely(slot->abort))
return ts->stat;
goto out;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
{
struct hisi_sas_status_buffer *status_buffer =
hisi_sas_status_buf_addr_mem(slot);
struct ssp_response_iu *iu = (struct ssp_response_iu *)
&status_buffer->iu[0];
sas_ssp_task_response(dev, task, iu);
break;
}
case SAS_PROTOCOL_SMP:
{
struct scatterlist *sg_resp = &task->smp_task.smp_resp;
void *to;
ts->stat = SAM_STAT_GOOD;
to = kmap_atomic(sg_page(sg_resp));
dma_unmap_sg(dev, &task->smp_task.smp_resp, 1,
DMA_FROM_DEVICE);
dma_unmap_sg(dev, &task->smp_task.smp_req, 1,
DMA_TO_DEVICE);
memcpy(to + sg_resp->offset,
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record),
sg_dma_len(sg_resp));
kunmap_atomic(to);
break;
}
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
{
ts->stat = SAM_STAT_GOOD;
hisi_sas_sata_done(task, slot);
break;
}
default:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
}
if (!slot->port->port_attached) {
dev_warn(dev, "slot complete: port %d has removed\n",
slot->port->sas_port.id);
ts->stat = SAS_PHY_DOWN;
}
out:
sts = ts->stat;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
spin_unlock_irqrestore(&task->task_state_lock, flags);
dev_info(dev, "slot complete: task(%p) aborted\n", task);
return SAS_ABORTED_TASK;
}
task->task_state_flags |= SAS_TASK_STATE_DONE;
spin_unlock_irqrestore(&task->task_state_lock, flags);
hisi_sas_slot_task_free(hisi_hba, task, slot);
if (!is_internal && (task->task_proto != SAS_PROTOCOL_SMP)) {
spin_lock_irqsave(&device->done_lock, flags);
if (test_bit(SAS_HA_FROZEN, &ha->state)) {
spin_unlock_irqrestore(&device->done_lock, flags);
dev_info(dev, "slot complete: task(%p) ignored\n ",
task);
return sts;
}
spin_unlock_irqrestore(&device->done_lock, flags);
}
if (task->task_done)
task->task_done(task);
return sts;
}
static void prep_ata_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct domain_device *device = task->dev;
struct domain_device *parent_dev = device->parent;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
struct hisi_sas_tmf_task *tmf = slot->tmf;
u8 *buf_cmd;
int has_data = 0, hdr_tag = 0;
u32 dw0, dw1 = 0, dw2 = 0;
/* create header */
/* dw0 */
dw0 = port->id << CMD_HDR_PORT_OFF;
if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type))
dw0 |= 3 << CMD_HDR_CMD_OFF;
else
dw0 |= 4 << CMD_HDR_CMD_OFF;
if (tmf && tmf->force_phy) {
dw0 |= CMD_HDR_FORCE_PHY_MSK;
dw0 |= (1 << tmf->phy_id) << CMD_HDR_PHY_ID_OFF;
}
hdr->dw0 = cpu_to_le32(dw0);
/* dw1 */
switch (task->data_dir) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) &&
(task->ata_task.fis.control & ATA_SRST))
dw1 |= 1 << CMD_HDR_RESET_OFF;
dw1 |= (hisi_sas_get_ata_protocol(
&task->ata_task.fis, task->data_dir))
<< CMD_HDR_FRAME_TYPE_OFF;
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
hdr->dw1 = cpu_to_le32(dw1);
/* dw2 */
if (task->ata_task.use_ncq && hisi_sas_get_ncq_tag(task, &hdr_tag)) {
task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF;
}
dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF |
2 << CMD_HDR_SG_MOD_OFF;
hdr->dw2 = cpu_to_le32(dw2);
/* dw3 */
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data)
prep_prd_sge_v2_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot);
if (likely(!task->ata_task.device_control_reg_update))
task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
/* fill in command FIS */
memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
}
static void hisi_sas_internal_abort_quirk_timeout(struct timer_list *t)
{
struct hisi_sas_slot *slot = from_timer(slot, t, internal_abort_timer);
struct hisi_sas_port *port = slot->port;
struct asd_sas_port *asd_sas_port;
struct asd_sas_phy *sas_phy;
if (!port)
return;
asd_sas_port = &port->sas_port;
/* Kick the hardware - send break command */
list_for_each_entry(sas_phy, &asd_sas_port->phy_list, port_phy_el) {
struct hisi_sas_phy *phy = sas_phy->lldd_phy;
struct hisi_hba *hisi_hba = phy->hisi_hba;
int phy_no = sas_phy->id;
u32 link_dfx2;
link_dfx2 = hisi_sas_phy_read32(hisi_hba, phy_no, LINK_DFX2);
if ((link_dfx2 == LINK_DFX2_RCVR_HOLD_STS_MSK) ||
(link_dfx2 & LINK_DFX2_SEND_HOLD_STS_MSK)) {
u32 txid_auto;
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no,
TXID_AUTO);
txid_auto |= TXID_AUTO_CTB_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto);
return;
}
}
}
static void prep_abort_v2_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
int device_id, int abort_flag, int tag_to_abort)
{
struct sas_task *task = slot->task;
struct domain_device *dev = task->dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct hisi_sas_port *port = slot->port;
struct timer_list *timer = &slot->internal_abort_timer;
/* setup the quirk timer */
timer_setup(timer, hisi_sas_internal_abort_quirk_timeout, 0);
/* Set the timeout to 10ms less than internal abort timeout */
mod_timer(timer, jiffies + msecs_to_jiffies(100));
/* dw0 */
hdr->dw0 = cpu_to_le32((5 << CMD_HDR_CMD_OFF) | /*abort*/
(port->id << CMD_HDR_PORT_OFF) |
(dev_is_sata(dev) <<
CMD_HDR_ABORT_DEVICE_TYPE_OFF) |
(abort_flag << CMD_HDR_ABORT_FLAG_OFF));
/* dw1 */
hdr->dw1 = cpu_to_le32(device_id << CMD_HDR_DEV_ID_OFF);
/* dw7 */
hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF);
hdr->transfer_tags = cpu_to_le32(slot->idx);
}
static int phy_up_v2_hw(int phy_no, struct hisi_hba *hisi_hba)
{
int i, res = IRQ_HANDLED;
u32 port_id, link_rate;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd;
struct sas_identify_frame *id = (struct sas_identify_frame *)frame_rcvd;
unsigned long flags;
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1);
if (is_sata_phy_v2_hw(hisi_hba, phy_no))
goto end;
del_timer(&phy->timer);
if (phy_no == 8) {
u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >>
PORT_STATE_PHY8_PORT_NUM_OFF;
link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >>
PORT_STATE_PHY8_CONN_RATE_OFF;
} else {
port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
port_id = (port_id >> (4 * phy_no)) & 0xf;
link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE);
link_rate = (link_rate >> (phy_no * 4)) & 0xf;
}
if (port_id == 0xf) {
dev_err(dev, "phyup: phy%d invalid portid\n", phy_no);
res = IRQ_NONE;
goto end;
}
for (i = 0; i < 6; i++) {
u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no,
RX_IDAF_DWORD0 + (i * 4));
frame_rcvd[i] = __swab32(idaf);
}
sas_phy->linkrate = link_rate;
sas_phy->oob_mode = SAS_OOB_MODE;
memcpy(sas_phy->attached_sas_addr, &id->sas_addr, SAS_ADDR_SIZE);
dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate);
phy->port_id = port_id;
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
phy->phy_type |= PORT_TYPE_SAS;
phy->phy_attached = 1;
phy->identify.device_type = id->dev_type;
phy->frame_rcvd_size = sizeof(struct sas_identify_frame);
if (phy->identify.device_type == SAS_END_DEVICE)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != SAS_PHY_UNUSED) {
phy->identify.target_port_protocols =
SAS_PROTOCOL_SMP;
if (!timer_pending(&hisi_hba->timer))
set_link_timer_quirk(hisi_hba);
}
hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP);
spin_lock_irqsave(&phy->lock, flags);
if (phy->reset_completion) {
phy->in_reset = 0;
complete(phy->reset_completion);
}
spin_unlock_irqrestore(&phy->lock, flags);
end:
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_PHY_ENABLE_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0);
return res;
}
static bool check_any_wideports_v2_hw(struct hisi_hba *hisi_hba)
{
u32 port_state;
port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
if (port_state & 0x1ff)
return true;
return false;
}
static int phy_down_v2_hw(int phy_no, struct hisi_hba *hisi_hba)
{
u32 phy_state, sl_ctrl, txid_auto;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct hisi_sas_port *port = phy->port;
struct device *dev = hisi_hba->dev;
del_timer(&phy->timer);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1);
phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state);
hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0);
sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL,
sl_ctrl & ~SL_CONTROL_CTA_MSK);
if (port && !get_wideport_bitmap_v2_hw(hisi_hba, port->id))
if (!check_any_wideports_v2_hw(hisi_hba) &&
timer_pending(&hisi_hba->timer))
del_timer(&hisi_hba->timer);
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | TXID_AUTO_CT3_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0);
return IRQ_HANDLED;
}
static irqreturn_t int_phy_updown_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_msk;
int phy_no = 0;
irqreturn_t res = IRQ_NONE;
irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO)
>> HGC_INVLD_DQE_INFO_FB_CH0_OFF) & 0x1ff;
while (irq_msk) {
if (irq_msk & 1) {
u32 reg_value = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
switch (reg_value & (CHL_INT0_NOT_RDY_MSK |
CHL_INT0_SL_PHY_ENABLE_MSK)) {
case CHL_INT0_SL_PHY_ENABLE_MSK:
/* phy up */
if (phy_up_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
break;
case CHL_INT0_NOT_RDY_MSK:
/* phy down */
if (phy_down_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
break;
case (CHL_INT0_NOT_RDY_MSK |
CHL_INT0_SL_PHY_ENABLE_MSK):
reg_value = hisi_sas_read32(hisi_hba,
PHY_STATE);
if (reg_value & BIT(phy_no)) {
/* phy up */
if (phy_up_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
} else {
/* phy down */
if (phy_down_v2_hw(phy_no, hisi_hba) ==
IRQ_HANDLED)
res = IRQ_HANDLED;
}
break;
default:
break;
}
}
irq_msk >>= 1;
phy_no++;
}
return res;
}
static void phy_bcast_v2_hw(int phy_no, struct hisi_hba *hisi_hba)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_ha_struct *sas_ha = &hisi_hba->sha;
u32 bcast_status;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1);
bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS);
if ((bcast_status & RX_BCAST_CHG_MSK) &&
!test_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags))
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_RX_BCST_ACK_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0);
}
static const struct hisi_sas_hw_error port_ecc_axi_error[] = {
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_ECC_ERR_OFF),
.msg = "dmac_tx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_ECC_ERR_OFF),
.msg = "dmac_rx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF),
.msg = "dma_tx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF),
.msg = "dma_tx_axi_rd_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF),
.msg = "dma_rx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF),
.msg = "dma_rx_axi_rd_err",
},
};
static irqreturn_t int_chnl_int_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
struct device *dev = hisi_hba->dev;
u32 ent_msk, ent_tmp, irq_msk;
int phy_no = 0;
ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
ent_tmp = ent_msk;
ent_msk |= ENT_INT_SRC_MSK3_ENT95_MSK_MSK;
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_msk);
irq_msk = (hisi_sas_read32(hisi_hba, HGC_INVLD_DQE_INFO) >>
HGC_INVLD_DQE_INFO_FB_CH3_OFF) & 0x1ff;
while (irq_msk) {
u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
u32 irq_value1 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT1);
u32 irq_value2 = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT2);
if ((irq_msk & (1 << phy_no)) && irq_value1) {
int i;
for (i = 0; i < ARRAY_SIZE(port_ecc_axi_error); i++) {
const struct hisi_sas_hw_error *error =
&port_ecc_axi_error[i];
if (!(irq_value1 & error->irq_msk))
continue;
dev_warn(dev, "%s error (phy%d 0x%x) found!\n",
error->msg, phy_no, irq_value1);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT1, irq_value1);
}
if ((irq_msk & (1 << phy_no)) && irq_value2) {
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
if (irq_value2 & BIT(CHL_INT2_SL_IDAF_TOUT_CONF_OFF)) {
dev_warn(dev, "phy%d identify timeout\n",
phy_no);
hisi_sas_notify_phy_event(phy,
HISI_PHYE_LINK_RESET);
}
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT2, irq_value2);
}
if ((irq_msk & (1 << phy_no)) && irq_value0) {
if (irq_value0 & CHL_INT0_SL_RX_BCST_ACK_MSK)
phy_bcast_v2_hw(phy_no, hisi_hba);
if (irq_value0 & CHL_INT0_PHY_RDY_MSK)
hisi_sas_phy_oob_ready(hisi_hba, phy_no);
hisi_sas_phy_write32(hisi_hba, phy_no,
CHL_INT0, irq_value0
& (~CHL_INT0_HOTPLUG_TOUT_MSK)
& (~CHL_INT0_SL_PHY_ENABLE_MSK)
& (~CHL_INT0_NOT_RDY_MSK));
}
irq_msk &= ~(1 << phy_no);
phy_no++;
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, ent_tmp);
return IRQ_HANDLED;
}
static void
one_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba, u32 irq_value)
{
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *ecc_error;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(one_bit_ecc_errors); i++) {
ecc_error = &one_bit_ecc_errors[i];
if (irq_value & ecc_error->irq_msk) {
val = hisi_sas_read32(hisi_hba, ecc_error->reg);
val &= ecc_error->msk;
val >>= ecc_error->shift;
dev_warn(dev, ecc_error->msg, val);
}
}
}
static void multi_bit_ecc_error_process_v2_hw(struct hisi_hba *hisi_hba,
u32 irq_value)
{
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *ecc_error;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(multi_bit_ecc_errors); i++) {
ecc_error = &multi_bit_ecc_errors[i];
if (irq_value & ecc_error->irq_msk) {
val = hisi_sas_read32(hisi_hba, ecc_error->reg);
val &= ecc_error->msk;
val >>= ecc_error->shift;
dev_err(dev, ecc_error->msg, irq_value, val);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
}
return;
}
static irqreturn_t fatal_ecc_int_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_value, irq_msk;
irq_msk = hisi_sas_read32(hisi_hba, SAS_ECC_INTR_MSK);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk | 0xffffffff);
irq_value = hisi_sas_read32(hisi_hba, SAS_ECC_INTR);
if (irq_value) {
one_bit_ecc_error_process_v2_hw(hisi_hba, irq_value);
multi_bit_ecc_error_process_v2_hw(hisi_hba, irq_value);
}
hisi_sas_write32(hisi_hba, SAS_ECC_INTR, irq_value);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk);
return IRQ_HANDLED;
}
static const struct hisi_sas_hw_error axi_error[] = {
{ .msk = BIT(0), .msg = "IOST_AXI_W_ERR" },
{ .msk = BIT(1), .msg = "IOST_AXI_R_ERR" },
{ .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" },
{ .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" },
{ .msk = BIT(4), .msg = "SATA_AXI_W_ERR" },
{ .msk = BIT(5), .msg = "SATA_AXI_R_ERR" },
{ .msk = BIT(6), .msg = "DQE_AXI_R_ERR" },
{ .msk = BIT(7), .msg = "CQE_AXI_W_ERR" },
{},
};
static const struct hisi_sas_hw_error fifo_error[] = {
{ .msk = BIT(8), .msg = "CQE_WINFO_FIFO" },
{ .msk = BIT(9), .msg = "CQE_MSG_FIFIO" },
{ .msk = BIT(10), .msg = "GETDQE_FIFO" },
{ .msk = BIT(11), .msg = "CMDP_FIFO" },
{ .msk = BIT(12), .msg = "AWTCTRL_FIFO" },
{},
};
static const struct hisi_sas_hw_error fatal_axi_errors[] = {
{
.irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF),
.msg = "write pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF),
.msg = "iptt no match slot",
},
{
.irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF),
.msg = "read pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_AXI_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = axi_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = fifo_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_LM_OFF),
.msg = "LM add/fetch list",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ABT_OFF),
.msg = "SAS_HGC_ABT fetch LM list",
},
};
static irqreturn_t fatal_axi_int_v2_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_value, irq_msk, err_value;
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *axi_error;
int i;
irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0xfffffffe);
irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
for (i = 0; i < ARRAY_SIZE(fatal_axi_errors); i++) {
axi_error = &fatal_axi_errors[i];
if (!(irq_value & axi_error->irq_msk))
continue;
hisi_sas_write32(hisi_hba, ENT_INT_SRC3,
1 << axi_error->shift);
if (axi_error->sub) {
const struct hisi_sas_hw_error *sub = axi_error->sub;
err_value = hisi_sas_read32(hisi_hba, axi_error->reg);
for (; sub->msk || sub->msg; sub++) {
if (!(err_value & sub->msk))
continue;
dev_err(dev, "%s (0x%x) found!\n",
sub->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
} else {
dev_err(dev, "%s (0x%x) found!\n",
axi_error->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
}
if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) {
u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR);
u32 dev_id = reg_val & ITCT_DEV_MSK;
struct hisi_sas_device *sas_dev = &hisi_hba->devices[dev_id];
hisi_sas_write32(hisi_hba, ITCT_CLR, 0);
dev_dbg(dev, "clear ITCT ok\n");
complete(sas_dev->completion);
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk);
return IRQ_HANDLED;
}
static void cq_tasklet_v2_hw(unsigned long val)
{
struct hisi_sas_cq *cq = (struct hisi_sas_cq *)val;
struct hisi_hba *hisi_hba = cq->hisi_hba;
struct hisi_sas_slot *slot;
struct hisi_sas_itct *itct;
struct hisi_sas_complete_v2_hdr *complete_queue;
u32 rd_point = cq->rd_point, wr_point, dev_id;
int queue = cq->id;
if (unlikely(hisi_hba->reject_stp_links_msk))
phys_try_accept_stp_links_v2_hw(hisi_hba);
complete_queue = hisi_hba->complete_hdr[queue];
wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR +
(0x14 * queue));
while (rd_point != wr_point) {
struct hisi_sas_complete_v2_hdr *complete_hdr;
int iptt;
complete_hdr = &complete_queue[rd_point];
/* Check for NCQ completion */
if (complete_hdr->act) {
u32 act_tmp = le32_to_cpu(complete_hdr->act);
int ncq_tag_count = ffs(act_tmp);
u32 dw1 = le32_to_cpu(complete_hdr->dw1);
dev_id = (dw1 & CMPLT_HDR_DEV_ID_MSK) >>
CMPLT_HDR_DEV_ID_OFF;
itct = &hisi_hba->itct[dev_id];
/* The NCQ tags are held in the itct header */
while (ncq_tag_count) {
__le64 *_ncq_tag = &itct->qw4_15[0], __ncq_tag;
u64 ncq_tag;
ncq_tag_count--;
__ncq_tag = _ncq_tag[ncq_tag_count / 5];
ncq_tag = le64_to_cpu(__ncq_tag);
iptt = (ncq_tag >> (ncq_tag_count % 5) * 12) &
0xfff;
slot = &hisi_hba->slot_info[iptt];
slot->cmplt_queue_slot = rd_point;
slot->cmplt_queue = queue;
slot_complete_v2_hw(hisi_hba, slot);
act_tmp &= ~(1 << ncq_tag_count);
ncq_tag_count = ffs(act_tmp);
}
} else {
u32 dw1 = le32_to_cpu(complete_hdr->dw1);
iptt = dw1 & CMPLT_HDR_IPTT_MSK;
slot = &hisi_hba->slot_info[iptt];
slot->cmplt_queue_slot = rd_point;
slot->cmplt_queue = queue;
slot_complete_v2_hw(hisi_hba, slot);
}
if (++rd_point >= HISI_SAS_QUEUE_SLOTS)
rd_point = 0;
}
/* update rd_point */
cq->rd_point = rd_point;
hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point);
}
static irqreturn_t cq_interrupt_v2_hw(int irq_no, void *p)
{
struct hisi_sas_cq *cq = p;
struct hisi_hba *hisi_hba = cq->hisi_hba;
int queue = cq->id;
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue);
tasklet_schedule(&cq->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t sata_int_v2_hw(int irq_no, void *p)
{
struct hisi_sas_phy *phy = p;
struct hisi_hba *hisi_hba = phy->hisi_hba;
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
struct hisi_sas_initial_fis *initial_fis;
struct dev_to_host_fis *fis;
u32 ent_tmp, ent_msk, ent_int, port_id, link_rate, hard_phy_linkrate;
irqreturn_t res = IRQ_HANDLED;
u8 attached_sas_addr[SAS_ADDR_SIZE] = {0};
unsigned long flags;
int phy_no, offset;
del_timer(&phy->timer);
phy_no = sas_phy->id;
initial_fis = &hisi_hba->initial_fis[phy_no];
fis = &initial_fis->fis;
offset = 4 * (phy_no / 4);
ent_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK1 + offset);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset,
ent_msk | 1 << ((phy_no % 4) * 8));
ent_int = hisi_sas_read32(hisi_hba, ENT_INT_SRC1 + offset);
ent_tmp = ent_int & (1 << (ENT_INT_SRC1_D2H_FIS_CH1_OFF *
(phy_no % 4)));
ent_int >>= ENT_INT_SRC1_D2H_FIS_CH1_OFF * (phy_no % 4);
if ((ent_int & ENT_INT_SRC1_D2H_FIS_CH0_MSK) == 0) {
dev_warn(dev, "sata int: phy%d did not receive FIS\n", phy_no);
res = IRQ_NONE;
goto end;
}
/* check ERR bit of Status Register */
if (fis->status & ATA_ERR) {
dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n", phy_no,
fis->status);
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
res = IRQ_NONE;
goto end;
}
if (unlikely(phy_no == 8)) {
u32 port_state = hisi_sas_read32(hisi_hba, PORT_STATE);
port_id = (port_state & PORT_STATE_PHY8_PORT_NUM_MSK) >>
PORT_STATE_PHY8_PORT_NUM_OFF;
link_rate = (port_state & PORT_STATE_PHY8_CONN_RATE_MSK) >>
PORT_STATE_PHY8_CONN_RATE_OFF;
} else {
port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
port_id = (port_id >> (4 * phy_no)) & 0xf;
link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE);
link_rate = (link_rate >> (phy_no * 4)) & 0xf;
}
if (port_id == 0xf) {
dev_err(dev, "sata int: phy%d invalid portid\n", phy_no);
res = IRQ_NONE;
goto end;
}
sas_phy->linkrate = link_rate;
hard_phy_linkrate = hisi_sas_phy_read32(hisi_hba, phy_no,
HARD_PHY_LINKRATE);
phy->maximum_linkrate = hard_phy_linkrate & 0xf;
phy->minimum_linkrate = (hard_phy_linkrate >> 4) & 0xf;
sas_phy->oob_mode = SATA_OOB_MODE;
/* Make up some unique SAS address */
attached_sas_addr[0] = 0x50;
attached_sas_addr[6] = hisi_hba->shost->host_no;
attached_sas_addr[7] = phy_no;
memcpy(sas_phy->attached_sas_addr, attached_sas_addr, SAS_ADDR_SIZE);
memcpy(sas_phy->frame_rcvd, fis, sizeof(struct dev_to_host_fis));
dev_info(dev, "sata int phyup: phy%d link_rate=%d\n", phy_no, link_rate);
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
phy->port_id = port_id;
phy->phy_type |= PORT_TYPE_SATA;
phy->phy_attached = 1;
phy->identify.device_type = SAS_SATA_DEV;
phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP);
spin_lock_irqsave(&phy->lock, flags);
if (phy->reset_completion) {
phy->in_reset = 0;
complete(phy->reset_completion);
}
spin_unlock_irqrestore(&phy->lock, flags);
end:
hisi_sas_write32(hisi_hba, ENT_INT_SRC1 + offset, ent_tmp);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1 + offset, ent_msk);
return res;
}
static irq_handler_t phy_interrupts[HISI_SAS_PHY_INT_NR] = {
int_phy_updown_v2_hw,
int_chnl_int_v2_hw,
};
static irq_handler_t fatal_interrupts[HISI_SAS_FATAL_INT_NR] = {
fatal_ecc_int_v2_hw,
fatal_axi_int_v2_hw
};
/**
* There is a limitation in the hip06 chipset that we need
* to map in all mbigen interrupts, even if they are not used.
*/
static int interrupt_init_v2_hw(struct hisi_hba *hisi_hba)
{
struct platform_device *pdev = hisi_hba->platform_dev;
struct device *dev = &pdev->dev;
int irq, rc, irq_map[128];
int i, phy_no, fatal_no, queue_no, k;
for (i = 0; i < 128; i++)
irq_map[i] = platform_get_irq(pdev, i);
for (i = 0; i < HISI_SAS_PHY_INT_NR; i++) {
irq = irq_map[i + 1]; /* Phy up/down is irq1 */
rc = devm_request_irq(dev, irq, phy_interrupts[i], 0,
DRV_NAME " phy", hisi_hba);
if (rc) {
dev_err(dev, "irq init: could not request "
"phy interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_phy_int_irqs;
}
}
for (phy_no = 0; phy_no < hisi_hba->n_phy; phy_no++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
irq = irq_map[phy_no + 72];
rc = devm_request_irq(dev, irq, sata_int_v2_hw, 0,
DRV_NAME " sata", phy);
if (rc) {
dev_err(dev, "irq init: could not request "
"sata interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_sata_int_irqs;
}
}
for (fatal_no = 0; fatal_no < HISI_SAS_FATAL_INT_NR; fatal_no++) {
irq = irq_map[fatal_no + 81];
rc = devm_request_irq(dev, irq, fatal_interrupts[fatal_no], 0,
DRV_NAME " fatal", hisi_hba);
if (rc) {
dev_err(dev,
"irq init: could not request fatal interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_fatal_int_irqs;
}
}
for (queue_no = 0; queue_no < hisi_hba->queue_count; queue_no++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[queue_no];
struct tasklet_struct *t = &cq->tasklet;
irq = irq_map[queue_no + 96];
rc = devm_request_irq(dev, irq, cq_interrupt_v2_hw, 0,
DRV_NAME " cq", cq);
if (rc) {
dev_err(dev,
"irq init: could not request cq interrupt %d, rc=%d\n",
irq, rc);
rc = -ENOENT;
goto free_cq_int_irqs;
}
tasklet_init(t, cq_tasklet_v2_hw, (unsigned long)cq);
}
hisi_hba->cq_nvecs = hisi_hba->queue_count;
return 0;
free_cq_int_irqs:
for (k = 0; k < queue_no; k++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[k];
free_irq(irq_map[k + 96], cq);
tasklet_kill(&cq->tasklet);
}
free_fatal_int_irqs:
for (k = 0; k < fatal_no; k++)
free_irq(irq_map[k + 81], hisi_hba);
free_sata_int_irqs:
for (k = 0; k < phy_no; k++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[k];
free_irq(irq_map[k + 72], phy);
}
free_phy_int_irqs:
for (k = 0; k < i; k++)
free_irq(irq_map[k + 1], hisi_hba);
return rc;
}
static int hisi_sas_v2_init(struct hisi_hba *hisi_hba)
{
int rc;
memset(hisi_hba->sata_dev_bitmap, 0, sizeof(hisi_hba->sata_dev_bitmap));
rc = hw_init_v2_hw(hisi_hba);
if (rc)
return rc;
rc = interrupt_init_v2_hw(hisi_hba);
if (rc)
return rc;
return 0;
}
static void interrupt_disable_v2_hw(struct hisi_hba *hisi_hba)
{
struct platform_device *pdev = hisi_hba->platform_dev;
int i;
for (i = 0; i < hisi_hba->queue_count; i++)
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff);
for (i = 0; i < hisi_hba->n_phy; i++) {
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff);
}
for (i = 0; i < 128; i++)
synchronize_irq(platform_get_irq(pdev, i));
}
static u32 get_phys_state_v2_hw(struct hisi_hba *hisi_hba)
{
return hisi_sas_read32(hisi_hba, PHY_STATE);
}
static int soft_reset_v2_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc, cnt;
interrupt_disable_v2_hw(hisi_hba);
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0);
hisi_sas_kill_tasklets(hisi_hba);
hisi_sas_stop_phys(hisi_hba);
mdelay(10);
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE + AM_CTRL_GLOBAL, 0x1);
/* wait until bus idle */
cnt = 0;
while (1) {
u32 status = hisi_sas_read32_relaxed(hisi_hba,
AXI_MASTER_CFG_BASE + AM_CURR_TRANS_RETURN);
if (status == 0x3)
break;
udelay(10);
if (cnt++ > 10) {
dev_err(dev, "wait axi bus state to idle timeout!\n");
return -1;
}
}
hisi_sas_init_mem(hisi_hba);
rc = hw_init_v2_hw(hisi_hba);
if (rc)
return rc;
phys_reject_stp_links_v2_hw(hisi_hba);
return 0;
}
static int write_gpio_v2_hw(struct hisi_hba *hisi_hba, u8 reg_type,
u8 reg_index, u8 reg_count, u8 *write_data)
{
struct device *dev = hisi_hba->dev;
int phy_no, count;
if (!hisi_hba->sgpio_regs)
return -EOPNOTSUPP;
switch (reg_type) {
case SAS_GPIO_REG_TX:
count = reg_count * 4;
count = min(count, hisi_hba->n_phy);
for (phy_no = 0; phy_no < count; phy_no++) {
/*
* GPIO_TX[n] register has the highest numbered drive
* of the four in the first byte and the lowest
* numbered drive in the fourth byte.
* See SFF-8485 Rev. 0.7 Table 24.
*/
void __iomem *reg_addr = hisi_hba->sgpio_regs +
reg_index * 4 + phy_no;
int data_idx = phy_no + 3 - (phy_no % 4) * 2;
writeb(write_data[data_idx], reg_addr);
}
break;
default:
dev_err(dev, "write gpio: unsupported or bad reg type %d\n",
reg_type);
return -EINVAL;
}
return 0;
}
static int wait_cmds_complete_timeout_v2_hw(struct hisi_hba *hisi_hba,
int delay_ms, int timeout_ms)
{
struct device *dev = hisi_hba->dev;
int entries, entries_old = 0, time;
for (time = 0; time < timeout_ms; time += delay_ms) {
entries = hisi_sas_read32(hisi_hba, CQE_SEND_CNT);
if (entries == entries_old)
break;
entries_old = entries;
msleep(delay_ms);
}
if (time >= timeout_ms)
return -ETIMEDOUT;
dev_dbg(dev, "wait commands complete %dms\n", time);
return 0;
}
static struct device_attribute *host_attrs_v2_hw[] = {
&dev_attr_phy_event_threshold,
NULL
};
static struct scsi_host_template sht_v2_hw = {
.name = DRV_NAME,
.module = THIS_MODULE,
.queuecommand = sas_queuecommand,
.target_alloc = sas_target_alloc,
.slave_configure = hisi_sas_slave_configure,
.scan_finished = hisi_sas_scan_finished,
.scan_start = hisi_sas_scan_start,
.change_queue_depth = sas_change_queue_depth,
.bios_param = sas_bios_param,
.this_id = -1,
.sg_tablesize = HISI_SAS_SGE_PAGE_CNT,
.max_sectors = SCSI_DEFAULT_MAX_SECTORS,
.eh_device_reset_handler = sas_eh_device_reset_handler,
.eh_target_reset_handler = sas_eh_target_reset_handler,
.target_destroy = sas_target_destroy,
.ioctl = sas_ioctl,
.shost_attrs = host_attrs_v2_hw,
};
static const struct hisi_sas_hw hisi_sas_v2_hw = {
.hw_init = hisi_sas_v2_init,
.setup_itct = setup_itct_v2_hw,
.slot_index_alloc = slot_index_alloc_quirk_v2_hw,
.alloc_dev = alloc_dev_quirk_v2_hw,
.sl_notify_ssp = sl_notify_ssp_v2_hw,
.get_wideport_bitmap = get_wideport_bitmap_v2_hw,
.clear_itct = clear_itct_v2_hw,
.free_device = free_device_v2_hw,
.prep_smp = prep_smp_v2_hw,
.prep_ssp = prep_ssp_v2_hw,
.prep_stp = prep_ata_v2_hw,
.prep_abort = prep_abort_v2_hw,
.get_free_slot = get_free_slot_v2_hw,
.start_delivery = start_delivery_v2_hw,
.slot_complete = slot_complete_v2_hw,
.phys_init = phys_init_v2_hw,
.phy_start = start_phy_v2_hw,
.phy_disable = disable_phy_v2_hw,
.phy_hard_reset = phy_hard_reset_v2_hw,
.get_events = phy_get_events_v2_hw,
.phy_set_linkrate = phy_set_linkrate_v2_hw,
.phy_get_max_linkrate = phy_get_max_linkrate_v2_hw,
.max_command_entries = HISI_SAS_COMMAND_ENTRIES_V2_HW,
.complete_hdr_size = sizeof(struct hisi_sas_complete_v2_hdr),
.soft_reset = soft_reset_v2_hw,
.get_phys_state = get_phys_state_v2_hw,
.write_gpio = write_gpio_v2_hw,
.wait_cmds_complete_timeout = wait_cmds_complete_timeout_v2_hw,
.sht = &sht_v2_hw,
};
static int hisi_sas_v2_probe(struct platform_device *pdev)
{
/*
* Check if we should defer the probe before we probe the
* upper layer, as it's hard to defer later on.
*/
int ret = platform_get_irq(pdev, 0);
if (ret < 0) {
if (ret != -EPROBE_DEFER)
dev_err(&pdev->dev, "cannot obtain irq\n");
return ret;
}
return hisi_sas_probe(pdev, &hisi_sas_v2_hw);
}
static int hisi_sas_v2_remove(struct platform_device *pdev)
{
struct sas_ha_struct *sha = platform_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
hisi_sas_kill_tasklets(hisi_hba);
return hisi_sas_remove(pdev);
}
static const struct of_device_id sas_v2_of_match[] = {
{ .compatible = "hisilicon,hip06-sas-v2",},
{ .compatible = "hisilicon,hip07-sas-v2",},
{},
};
MODULE_DEVICE_TABLE(of, sas_v2_of_match);
static const struct acpi_device_id sas_v2_acpi_match[] = {
{ "HISI0162", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, sas_v2_acpi_match);
static struct platform_driver hisi_sas_v2_driver = {
.probe = hisi_sas_v2_probe,
.remove = hisi_sas_v2_remove,
.driver = {
.name = DRV_NAME,
.of_match_table = sas_v2_of_match,
.acpi_match_table = ACPI_PTR(sas_v2_acpi_match),
},
};
module_platform_driver(hisi_sas_v2_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Garry <john.garry@huawei.com>");
MODULE_DESCRIPTION("HISILICON SAS controller v2 hw driver");
MODULE_ALIAS("platform:" DRV_NAME);